Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3051235 A
Publication typeGrant
Publication dateAug 28, 1962
Filing dateFeb 24, 1958
Priority dateFeb 24, 1958
Publication numberUS 3051235 A, US 3051235A, US-A-3051235, US3051235 A, US3051235A
InventorsBanks William P
Original AssigneeJersey Prod Res Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Recovery of petroleum crude oil, by in situ combustion and in situ hydrogenation
US 3051235 A
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

Aug. 28, 1962 PRODUCED OIL INJECTED FLUIDS w. P. BANKS 3,051,235 RECOVERY oF PETROLEUM CRUDE on. BY 1N sITU COMBUSTION AND 1N sITU HYDROGENATION Filed Feb. 24, 1958 Byw. Attorney 3,05l,235 Patented Aug. 28, 1962 ice 3,051,235 RECOVERY F PETROLEUM CRUDE GIL, BY

1N SlTU CMBUSTION AND IN SITU HY- DROGENATIUN William P. Banks, Tulsa, Okla., assignor, by mesne assignments, to Jersey Production Research Company Filed Feb. 24, 1958, Ser. No. 717,256 1 Claim. (Cl. 166-11) This present invention generally relates to a method of recovering petroleum oil from a subterranean oil reservoir. The invention more particularly concerns a secondary recovery type procedure for producing oil, and it is especially adapted for use in reservoirs that contain relatively viscous oil. In accordance with this invention, petroleum crude oils are hydrogenated in-situ within a reservoir by injecting hydrogen and a catalyst into the reservoir.

Petroleum crude oil is generally recovered from an oil-bearing earth formation initially as a result of gas pressure, rock pressure, or natural water drive forcing the oil from the formation through a producing well to the surface. As oil production continues, the initial reservoir energy gradually decreases and finally becomes insulicient to force the oil to the production well. It is well known by the petroleum industry that a relatively small proportion of the oil in a subterranean oil reservoir is produced from the reservoir during this primary stage of production. It is also generally recognized that almost all reservoirs retain from about 30% to 90% of their original oil when they have ceased primary production; and it is not unusual for a reservoir containing highly viscous crude to retain at least 90% of the oil originally in place following primary production.

It has, accordingly, been a continuing problem and object in the petroleum industry to recover the large amounts of oil that remain within a reservoir following primary production. Numerous methods have been suggested or employed to date for this purpose. In general, the methods used have involved injecting a scavenging iiuid into a reservoir through one or more injection wells and thereby displacing the oil from the reservoir through one or more spaced production wells. Fluids which have been employed or suggested thus far as a scavenging media in oil recovery operations include gases such as natural gas, carbon dioxide, methane, iiue gas, and various hydrocarbons; and liquids such as water, petroleum fractions, aqueous sugar solutions, and the like. Unfortunately, none of these procedures are markedly eiective in recovering a heavy viscous oil from a reservoir. The primary reason that these methods have not proved themselves of value in the production of Viscous crudes is the high capillary resistance Within the interstices of reservoir rocks to the iiow of viscous oil.

Methods that have appeared to be very attractive for the production of viscous oil are ones involving the use of scavenging iluids such as steam and hot combustion gases which heat up a reservoir, thereby reducing the viscosity of the oil Within the reservoir and rendering it much more mobile. The hot combustion gases may be generated by combustion processes conducted either outside or directly within a reservoir.

While methods of heating a reservoir for scavenging oil from the reservoir have been recognized to possess very desirable advantages, they have also been recognized to have serious disadvantages. For example, in the case of combustion processes, it is diiiicult to regulate and maintain a combustion front throughout a reservoir. Frequently, the combustion process is interrupted and the llame front disappears-all too often necessitating abandonment of the operation.

In the case of steam-injection processes, it has been found that such processes are very slow; and they take very long periods of time for the steam to effectively penetrate and raise the temperature of a reservoir. Furthermore, when the pressure of the steam is increased in an effort to speed up the recovery process, the accompanying rise in the temperature of the steam causes large amounts of heat to be lost to the surrounding formations in which oil is not present. Even at low operating pressures, heat losses in a steam injection process are undesirably high-thereby tending to make this type of operation inefficient and uneconomical.

Accordingly, it is an object of the present invention to provide an oil recovery method wherein highly viscous petroleum is readily recovered from subterranean reservoirs. More specifically, the object of this invention is a process for the in-situ hydrogenation of petroleum within a reservoir whereby the petroleum is made readily mobile and high recovery of the oil in place is obtained. It is especially an object of the invention to provide a method for petroleum recovery which is rapid and etlicient. These and related objects of this invention Will become more apparent from the ensuing description.

In the process of this invention, petroleum is hydrogenated within a reservoir so that an enhancement of its recovery is realized. The lirst step of the process lies in the injection of a mixture of a gaseous catalyst and hydrogen through an injection well into the reservoir. These materials as they are injected into the reservoir tend to ow through the reservoir in multiple flow paths. That is, the injected fluid tends to seek paths that are fingers through the reservoir extending from an injection well toward a production well. Preferably, the operation in any given reservoir is carried out concurrently throughout the reservoir so that the multiple paths extend substantially throughout the reservoir. Thus, injection wells are preferably spaced in a pattern that covers the entire lateral extent of the reservoir in a -manner consistent with conventional Well patterns. In this Way, multiple Wells are provided from which the petroleum can be produced.

The injection of the gaseous catalyst and hydrogen may be performed either sequentially or simultaneously. For example, a mass of catalyst may be injected, followed by a mass of hydrogen-or an admixture of catalyst and hydrogen may be injected. The mass of hydrogen may be about 1% to 4% by Weight of the oil in place; and the mass of catalyst may be about 1% to 6% by Weight of the oil in place.

In the operation of this process, hydrogen can be injected iirst and followed by the catalyst. However, the preferred method for the operation of this invention is the injection of a hydrogenating mixture of hydrogen and a gaseous catalyst such as methyl iodide, hydrogen iodide, or nickel carbonyl. This hydrogenating mixture can be injected continuously until ultimate oil recovery is obtained. However, it is preferred that the volume of hydrogen and catalyst be injected only at the beginning of the process and that it be limited to from about 1% to 10% by Weight of the oil in place. A supplemental driving or scavenging agent such as water or gas is then injected until ultimate oil recovery is obtained. The mass of the hydrogenating mixture serves to increase oil recovery beyond that obtainable by a conventional `water or gas drive operation.

In the process of this invention, reservoir oil is hydrogenated in-situ at a temperature above 400 F. and generally Within the range of 400 F. and 1200 F. by direct contact between the oil and hydrogen in the presence of a catalyst. Suitable injection pressures are those above 50 pounds per square inch but not so great as to lift the overburden above the reservoir and thereby fracture the formations. The pressure required to lift the overburden is usually equal to about one pound per square inch per foot of depth and is usually referred to as the fracturing pressure. Structural limitations of shallow petroleum formations--Such as shallow oil sands, tar sands, and oil shale deposits-usually require the maintenance of relatively low pressures, since Athe higher pressures tend to create fractures in the formation extending into the overburden. These fractures in turn permit undesirable leakage of fluids from the oil-bearing formations into adjacent structures.

The process of this invention may be controlled in various ways. In general, the rate of reaction of the process maybe readily adjusted and controlled by simply regulating the pressure Within a reservoir. High pressures tend to accelerate the rate of reaction; and, conversely, low pressures tend to retard the reaction.

Controlling the pressu-re of a reservoir in the practice of this invention may be accomplished in eiect by regulating the relative rates of fluid injection and production. Thus, it will be apparent that the pressure on any given reservoir may be readily controlled by simply controlling the back pressure on the production wells. The maximum pressure attainable, of course, is determined by the depth of the reservoir in question as well as the pressure of the fluids injected into the reservoir.

Other conditions being fixed, the rate `at which catalyst and hydrogen are injected within a reservoir also has a bearing upon the rate at which the reactions of this invention take place. In this connection, it is desirable that the hydrogen and catalyst-and any scavenging agentsbe passed through a reservoir at a rate suicient to stimulate intimate mixing and contacting. In conventional oil recovery processes (e.g., conventional gas and water drives), apparent rates of advance of the driving fluids of about one-tenth to one foot per day are usually employed. In the practice of this invention, however, it is preferred that the hydrogen and catalyst be injected in a quantity and at a rate sucient to provide an apparent rate of advance through a reservoir of about one to two feet per day. Rates of advance of this magnitude assure lingering of the hydrogen and catalyst into the reservoir oil and thus promote their mixing and reaction with the oil. Once the hydrogen and catalyst have been injected, it is generally preferred that any scavenging agents subsequently injected advance through a reservoir at a rate less than one foot per day in order to maintainY an essentially bank-type displacement of uids from the reservoir. It will be recognized, of course, that the hydrogen-containing gases and the catalysts used in this invention may be circulated repeatedly through a reservoir as may be necessary or desirable.

In carrying out the present process, a well bore penetrating an oil-bearing formation should be cased with pipe in a conventional manner whereby a mixture' of gaseous catalyst and hydrogen may be injected into the formation. Well bores laterally spaced from the injection borehole are also drilled as necesasry, and oil produced by the process is withdrawn from these wells. The mixture of catalyst and hydrogen is forced under pressure through the injection well into direct contact with the oil in the formation. The hydrogen permeates the oil thoroughly and produces-in the presence of the catalyst and by reaction with the reservoir-an upgraded oil. The upgraded oil has a lower specific gravity and viscosity than the original oil and is an excellent hydrogen-transfer agent. In other words, it tends to absorb hydrogen from injected gases and later release it to the reservoir oil. Thus, hydrogenation of the reservoir oil occurs by direct reaction with injected hydrogen and also by a transfer -mechanism involving oil previously hydrogenated.

In addition to this upgrading phenomenon, several other actions occur in the process of the invention which further promote oil recovery. For example, as beforementioned, any driving fluid employed in the production of oil tends to select zones or fingers in traveling from an injection well to a production well. This is especially true when the driving or scavenging uid has a viscosity markedly lower than that of the driven fluid. In the present invention, this characteristic is -deliberately exploited so as to enhance the production of oil, since it promotes contact between the hydrogenating agents and viscous oil.

`As the hydrogen and catalyst in a process of this invention finger through a reservoir-and as hydrogenation takes place, transforming viscous petroleum to products of lower viscosity-heat released by the hydrogenation is transmitted through the reservoir, thereby further reducing the viscosity of the oil substantially. As the viscosity of the oil decreases, its mobility within the reservoir rapidly increases. The mobility of oil within a reservoir is by deiinition proportional to formation permeability and inversely proportional to the viscosity of the oil. Due to its increased mobility, the oil ows readily within the reservoir rock and drains into the production wells. The increased mobility also further promotes mixing of heated oil within the reservoir with unheated oil and with the injected gases.

The injected hydrogen and catalyst gases and the oil as it is hydrogenated tend to move up-structure in a reservoir, while the heavier reservoir fluids tend to ow downward. In other words, the low-density materials-hydrogen, gaseous catalyst, and hydrogenated oil-tend to diffuse upward through the denser reservoir oil. An eflicient contacting and mixing system is thus provided which further enhances oil hydrogenation.

The reaction of this invention may be intiated within a reservoir by raising the temperature at the borehole face of the reservoir to reaction temperature. Any suitable means of supplying heat may be used. Preferred methods are those involving liberation of heat near the face of the yoil-productive formation. A borehole heater-activated by electrical energy or combustion products-may be placed in the well bore to preheat the reactants. Once initiated, the reaction sustains itself due to the heat supplied by the hydrogenation process.

Insofar as injection or flooding patterns are concerned, it should be noted that any conventional flooding program used in the recovery of oil such as linear, 4-spot, S-spot, and related flooding patterns may be employed. Olbviously, in these patterns it will be understood that the wells conventionally designated `as injection and production wells will be similarly employed in carrying out the present process. The process of this invention is illustrated diagramrnatically by the accompanying drawing.

The accompanying drawing illustrates diagrammatically and in vertical section an oil reservoir and its relationship to the earths surface, and an oil production method as practiced according to this invention.

With reference to the drawing, the numeral 1 designates a subterranean oil-bearing formation, above which is a relatively impervious `stratum 2, and below which is another relatively impervious stratum 3. These impervious layers are usually lof a shale or other relatively impermeable composition. A well bore is drilled from the surface of the earth 4 -through the oil-bearing formationthis borehole being shown by the legend 5. A steel casing 6 is placed in the borehole and may terminate at the top of the oil sand. The annulus between the casing and borehole is sealed with cement or other sealing material in a conventional manner. The casing placed in this manner leaves a borehole within the oil sand which is completely unoased for the injection of fluids into the oilbearing formation.

As in conventional oil field practice, the casing may also be extended through the oil sand and, after being sealed in place, perforated by conventional means whereby an injected fluid will pass through the perforations into Ithe formation. By using this technique of placing the casing and then perforating the casing at desired points, control of the injection points for fluids into the formation may be eifected. For example, perforations may be made in a selected part of the casing and lthe catalyst` hydrogen mixture thereby injected into a selected zone of the oil-bearing formation. This and other obvious procedures may be practiced without departing from the scope of this invention.

As beforementioned, -the injected uids are pumped through injection Well 7 into the productive formation, and oil production is realized through production Well 8. This well, like injection well 7, is drilled from the surface of the earth through the productive sand formation as shown by the borehole 9. Here again ia casing 10 is placed within the borehole and may lbe set at the top of the productive formation 1 or may extend through this formation and be perforated by conventional means. The annular space between borehole 9 and casing 10 may be cemented or sealed in a manner analogous to conventional oil eld practice.

As may be noted, the Ysurface equipment which would normally be employed in injecting or producing fluids via Wells penetrating an oil reservoir is not shown. The inclusion of such equipment is not considered essential for the purpose of describing this invention.

Another illustrative embodiment of this invention lies in a combination-type operation wherein the hydrogenation step of the invention is preceded by an in-situ combustion step. After the in-situ combustion reaction has proceeded a substantial preselected distance within a reservoir from an injection well, an inert gas such as nitrogen is injected into the reservoir to flush oxygen from the vicinity of the injection Well. Thereafter, quantities of hydrogen and gaseous hydrogenation catalyst are injected into the reservoir in the manner described hereinfbefore so as to effect hydrogenation of the oil in place. A scavenging duid may be injected after -the hydrogen and catalyst, also as described hereinbefore.

The in-situ combustion step described `above achieves several desirable objectives. First, it heats up a substantial portion -of the reservoir and brings it up to a temperature favorable to the hydrogenation step which fol- !lows. Second, it reduces the viscosity of the oil in place, thereby rendering the oil much more mobile and readily contacted by the hydrogenating gases and catalyst.

The in-situ combustion step may make use of any conventional technique of this type. For example, it is contemplated that a combustible mixture of fuel gas and oxygen may be passed `down an injection Well bore. The combustible mix-ture may then be ignited and its heat of combustion used to start the combustion of part of the oil within the surrounding formation. Injection of the combustible mixture may then be suspended and oxygen alone supplied to move the combustion front away from the injection borehole. When the combustion front has proceeded an adequate predetermined distance into the formation, the injection of an inert gas followed by the injection of hydrogen and a gaseous hydrogenation catalyst may be practiced as described hereinabove. Generally speaking, the combustion front need not penetrate Within a formation much more than 20 to 40 feet to achieve the objects -of the in-situ combustion step. It will also be noted that the in-situ combustion step may be used to help build up the pressure of the reservoir to whatever level is desired. The combustion process Will tend to generate large volumes of gas which may be held within the reservoir by simply keeping the production wells shut dow-n.

The invention claimed is:

A method of producing petroleum crude oil from a subterranean oil bearing formation which comprises injecting `an oxygen-containing gas into the formation through an input well under conditions to effect combustion within a zone of the formation adjacent said input well, continuing said injection of oxygen-containing gas until the temperature within said zone is between 400 F. and 1200" F., thereafter discontinuing the injection of said oxygen-containing gas to terminate said combustion, injecting an inert gas Within said formation through said input well to flush said oxygen-containi-ng gas from said zone adjacent s-aid input well, then injecting hydrogen and a gaseous hydrogenation catalyst within the formation through said input Well whereby to hydrogenate oil within the formation in the presence of said catalyst, maintaining the pressure `of the formation in excess of 50 p.s.i.g., and recovering oil from the formation through an output well laterally spaced from said input well.

References Cited in the file of this patent UNITED STATES PATENTS 1,457,479 Walcott June 5, 1923 2,412,765 Buddrus et al Dec. 17, 1946 2,595,979 Pevere et al May 6, 1952 2,689,252 Clark Sept. 14, 1954 2,768,121 Denton et al. Oct. 23, 1956 2,788,071 Pelzer Apr. 9, 1957 2,857,002 Pevere et al. Oct. 21, 1958 FOREIGN PATENTS 696,524 Great Britain June 6, 1951

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1457479 *Jan 12, 1920Jun 5, 1923Wolcott Edson RMethod of increasing the yield of oil wells
US2412765 *Jul 25, 1941Dec 17, 1946Phillips Petroleum CoRecovery of hydrocarbons
US2595979 *Jan 25, 1949May 6, 1952Texas CoUnderground liquefaction of coal
US2689252 *Nov 28, 1949Sep 14, 1954Phillips Petroleum CoHydrocarbon synth esis and catalyst therefor
US2768121 *Nov 18, 1954Oct 23, 1956Socony Mobil Oil Co IncTreatment of hydrocarbons with iodine and/or hydrogen iodide followed by hydrogenation
US2788071 *Mar 5, 1954Apr 9, 1957Sinclair Oil & Gas CompanyOil recovery process
US2857002 *Mar 19, 1956Oct 21, 1958Texas CoRecovery of viscous crude oil
GB696524A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3102588 *Jul 24, 1959Sep 3, 1963Phillips Petroleum CoProcess for recovering hydrocarbon from subterranean strata
US3156299 *Jan 7, 1963Nov 10, 1964Phillips Petroleum CoSubterranean chemical process
US3208514 *Oct 31, 1962Sep 28, 1965Continental Oil CoRecovery of hydrocarbons by in-situ hydrogenation
US3327782 *Sep 10, 1962Jun 27, 1967Pan American Petroleum CorpUnderground hydrogenation of oil
US3457996 *Jul 30, 1968Jul 29, 1969Phillips Petroleum CoThermal oil recovery process utilizing decomposition of co
US3598182 *Apr 25, 1967Aug 10, 1971Justheim Petroleum CoMethod and apparatus for in situ distillation and hydrogenation of carbonaceous materials
US3766982 *Dec 27, 1971Oct 23, 1973Justheim Petrol CoMethod for the in-situ treatment of hydrocarbonaceous materials
US4183405 *Oct 2, 1978Jan 15, 1980Magnie Robert LEnhanced recoveries of petroleum and hydrogen from underground reservoirs
US4186800 *Jan 23, 1978Feb 5, 1980Texaco Inc.Process for recovering hydrocarbons
US4241790 *May 14, 1979Dec 30, 1980Magnie Robert LRecovery of crude oil utilizing hydrogen
US4444257 *Dec 12, 1980Apr 24, 1984Uop Inc.Method for in situ conversion of hydrocarbonaceous oil
US4597441 *May 25, 1984Jul 1, 1986World Energy Systems, Inc.Superheated steam
US4691771 *Sep 15, 1986Sep 8, 1987Worldenergy Systems, Inc.Oxygen injection for heating by in-situ combostion
US5054551 *Aug 3, 1990Oct 8, 1991Chevron Research And Technology CompanyIn-situ heated annulus refining process
US5105887 *Feb 28, 1991Apr 21, 1992Union Oil Company Of CaliforniaIn situ hydrogenation
US5145003 *Jul 22, 1991Sep 8, 1992Chevron Research And Technology CompanyPetroleum recovery by viscosity reduction and catalytic hydrogenation
US6016867 *Jun 24, 1998Jan 25, 2000World Energy Systems, IncorporatedUpgrading and recovery of heavy crude oils and natural bitumens by in situ hydrovisbreaking
US6016868 *Jun 24, 1998Jan 25, 2000World Energy Systems, IncorporatedProduction of synthetic crude oil from heavy hydrocarbons recovered by in situ hydrovisbreaking
US6328104Jan 24, 2000Dec 11, 2001World Energy Systems IncorporatedUpgrading and recovery of heavy crude oils and natural bitumens by in situ hydrovisbreaking
US7219734Oct 24, 2003May 22, 2007Shell Oil CompanyInhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US7225866Jan 31, 2006Jun 5, 2007Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US7353872Apr 22, 2005Apr 8, 2008Shell Oil CompanyStart-up of temperature limited heaters using direct current (DC)
US7357180Apr 22, 2005Apr 15, 2008Shell Oil CompanyInhibiting effects of sloughing in wellbores
US7360588Oct 17, 2006Apr 22, 2008Shell Oil CompanyThermal processes for subsurface formations
US7370704Apr 22, 2005May 13, 2008Shell Oil CompanyTriaxial temperature limited heater
US7383877Apr 22, 2005Jun 10, 2008Shell Oil CompanyTemperature limited heaters with thermally conductive fluid used to heat subsurface formations
US7431076Apr 22, 2005Oct 7, 2008Shell Oil CompanyTemperature limited heaters using modulated DC power
US7435037Apr 21, 2006Oct 14, 2008Shell Oil CompanyLow temperature barriers with heat interceptor wells for in situ processes
US7461691Jan 23, 2007Dec 9, 2008Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7481274Apr 22, 2005Jan 27, 2009Shell Oil CompanyTemperature limited heaters with relatively constant current
US7490665Apr 22, 2005Feb 17, 2009Shell Oil CompanyVariable frequency temperature limited heaters
US7500528Apr 21, 2006Mar 10, 2009Shell Oil CompanyLow temperature barrier wellbores formed using water flushing
US7527094Apr 21, 2006May 5, 2009Shell Oil CompanyDouble barrier system for an in situ conversion process
US7533719Apr 20, 2007May 19, 2009Shell Oil CompanyWellhead with non-ferromagnetic materials
US7540324Oct 19, 2007Jun 2, 2009Shell Oil CompanyHeating hydrocarbon containing formations in a checkerboard pattern staged process
US7546873Apr 21, 2006Jun 16, 2009Shell Oil CompanyLow temperature barriers for use with in situ processes
US7549470Oct 20, 2006Jun 23, 2009Shell Oil CompanySolution mining and heating by oxidation for treating hydrocarbon containing formations
US7556095Oct 20, 2006Jul 7, 2009Shell Oil CompanySolution mining dawsonite from hydrocarbon containing formations with a chelating agent
US7556096Oct 20, 2006Jul 7, 2009Shell Oil CompanyVarying heating in dawsonite zones in hydrocarbon containing formations
US7559367Oct 20, 2006Jul 14, 2009Shell Oil CompanyTemperature limited heater with a conduit substantially electrically isolated from the formation
US7559368Oct 20, 2006Jul 14, 2009Shell Oil CompanySolution mining systems and methods for treating hydrocarbon containing formations
US7562706Oct 20, 2006Jul 21, 2009Shell Oil CompanySystems and methods for producing hydrocarbons from tar sands formations
US7562707Oct 19, 2007Jul 21, 2009Shell Oil CompanyHeating hydrocarbon containing formations in a line drive staged process
US7575052Apr 21, 2006Aug 18, 2009Shell Oil CompanyIn situ conversion process utilizing a closed loop heating system
US7575053Apr 21, 2006Aug 18, 2009Shell Oil CompanyLow temperature monitoring system for subsurface barriers
US7581589Oct 20, 2006Sep 1, 2009Shell Oil CompanyMethods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US7584789Oct 20, 2006Sep 8, 2009Shell Oil CompanyMethods of cracking a crude product to produce additional crude products
US7591310Oct 20, 2006Sep 22, 2009Shell Oil CompanyMethods of hydrotreating a liquid stream to remove clogging compounds
US7597147Apr 20, 2007Oct 6, 2009Shell Oil CompanyTemperature limited heaters using phase transformation of ferromagnetic material
US7604052Apr 20, 2007Oct 20, 2009Shell Oil CompanyCompositions produced using an in situ heat treatment process
US7610962Apr 20, 2007Nov 3, 2009Shell Oil CompanyProviding acidic gas to a subterrean formation, such as oil shale, by heating from an electrical heater and injecting through an oil wellbore; one of the acidic acids includes hydrogen sulfide and is introduced at a pressure below the lithostatic pressure of the formation to produce fluids; efficiency
US7631689Apr 20, 2007Dec 15, 2009Shell Oil CompanySulfur barrier for use with in situ processes for treating formations
US7631690Oct 19, 2007Dec 15, 2009Shell Oil CompanyHeating hydrocarbon containing formations in a spiral startup staged sequence
US7635023Apr 20, 2007Dec 22, 2009Shell Oil CompanyTime sequenced heating of multiple layers in a hydrocarbon containing formation
US7635024Oct 19, 2007Dec 22, 2009Shell Oil CompanyHeating tar sands formations to visbreaking temperatures
US7635025Oct 20, 2006Dec 22, 2009Shell Oil CompanyCogeneration systems and processes for treating hydrocarbon containing formations
US7640980Apr 7, 2008Jan 5, 2010Shell Oil CompanyThermal processes for subsurface formations
US7644765Oct 19, 2007Jan 12, 2010Shell Oil CompanyHeating tar sands formations while controlling pressure
US7650939May 20, 2007Jan 26, 2010Pioneer Energy, Inc.Portable and modular system for extracting petroleum and generating power
US7654330May 19, 2007Feb 2, 2010Pioneer Energy, Inc.Apparatus, methods, and systems for extracting petroleum using a portable coal reformer
US7673681Oct 19, 2007Mar 9, 2010Shell Oil CompanyTreating tar sands formations with karsted zones
US7673786Apr 20, 2007Mar 9, 2010Shell Oil CompanyWelding shield for coupling heaters
US7677310Oct 19, 2007Mar 16, 2010Shell Oil CompanyCreating and maintaining a gas cap in tar sands formations
US7677314Oct 19, 2007Mar 16, 2010Shell Oil CompanyMethod of condensing vaporized water in situ to treat tar sands formations
US7681647Oct 19, 2007Mar 23, 2010Shell Oil CompanyMethod of producing drive fluid in situ in tar sands formations
US7683296Apr 20, 2007Mar 23, 2010Shell Oil CompanyAdjusting alloy compositions for selected properties in temperature limited heaters
US7703513Oct 19, 2007Apr 27, 2010Shell Oil CompanyWax barrier for use with in situ processes for treating formations
US7717171Oct 19, 2007May 18, 2010Shell Oil CompanyMoving hydrocarbons through portions of tar sands formations with a fluid
US7730945Oct 19, 2007Jun 8, 2010Shell Oil CompanyUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7730946Oct 19, 2007Jun 8, 2010Shell Oil CompanyTreating tar sands formations with dolomite
US7730947Oct 19, 2007Jun 8, 2010Shell Oil CompanyCreating fluid injectivity in tar sands formations
US7735777Jun 6, 2006Jun 15, 2010Pioneer AstronauticsApparatus for generation and use of lift gas
US7735935Jun 1, 2007Jun 15, 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US7785427Apr 20, 2007Aug 31, 2010Shell Oil CompanyChromium, nickel, copper; niobium, iron manganese, nitrogen; nanonitrides; system for heating a subterranean formation;
US7793722Apr 20, 2007Sep 14, 2010Shell Oil CompanyNon-ferromagnetic overburden casing
US7798220Apr 18, 2008Sep 21, 2010Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US7798221May 31, 2007Sep 21, 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7831133Apr 21, 2006Nov 9, 2010Shell Oil CompanyInsulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration
US7831134Apr 21, 2006Nov 9, 2010Shell Oil CompanyGrouped exposed metal heaters
US7832484Apr 18, 2008Nov 16, 2010Shell Oil CompanyMolten salt as a heat transfer fluid for heating a subsurface formation
US7841401Oct 19, 2007Nov 30, 2010Shell Oil CompanyGas injection to inhibit migration during an in situ heat treatment process
US7841408Apr 18, 2008Nov 30, 2010Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US7841425Apr 18, 2008Nov 30, 2010Shell Oil CompanyDrilling subsurface wellbores with cutting structures
US7845411Oct 19, 2007Dec 7, 2010Shell Oil CompanyIn situ heat treatment process utilizing a closed loop heating system
US7849922Apr 18, 2008Dec 14, 2010Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US7860377Apr 21, 2006Dec 28, 2010Shell Oil CompanySubsurface connection methods for subsurface heaters
US7866385Apr 20, 2007Jan 11, 2011Shell Oil CompanyPower systems utilizing the heat of produced formation fluid
US7866386Oct 13, 2008Jan 11, 2011Shell Oil Companyproduction of hydrocarbons, hydrogen, and/or other products from various subsurface formations such as hydrocarbon containing formations through use of oxidizing fluids and heat
US7871036Apr 26, 2010Jan 18, 2011Pioneer AstronauticsApparatus for generation and use of lift gas
US7912358Apr 20, 2007Mar 22, 2011Shell Oil CompanyAlternate energy source usage for in situ heat treatment processes
US7931086Apr 18, 2008Apr 26, 2011Shell Oil CompanyHeating systems for heating subsurface formations
US7942197Apr 21, 2006May 17, 2011Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US7950453Apr 18, 2008May 31, 2011Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US8011451Oct 13, 2008Sep 6, 2011Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US8042610Apr 18, 2008Oct 25, 2011Shell Oil CompanyParallel heater system for subsurface formations
US8047007May 3, 2011Nov 1, 2011Pioneer Energy Inc.Methods for generating electricity from carbonaceous material with substantially no carbon dioxide emissions
US8083813Apr 20, 2007Dec 27, 2011Shell Oil CompanyMethods of producing transportation fuel
US8113272Oct 13, 2008Feb 14, 2012Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US8146661Oct 13, 2008Apr 3, 2012Shell Oil CompanyCryogenic treatment of gas
US8146669Oct 13, 2008Apr 3, 2012Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US8151880Dec 9, 2010Apr 10, 2012Shell Oil CompanyMethods of making transportation fuel
US8151907Apr 10, 2009Apr 10, 2012Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8162059Oct 13, 2008Apr 24, 2012Shell Oil CompanyInduction heaters used to heat subsurface formations
US8162405Apr 10, 2009Apr 24, 2012Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US8172335Apr 10, 2009May 8, 2012Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8191630Apr 28, 2010Jun 5, 2012Shell Oil CompanyCreating fluid injectivity in tar sands formations
US8192682Apr 26, 2010Jun 5, 2012Shell Oil CompanyHigh strength alloys
US8196658Oct 13, 2008Jun 12, 2012Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US8200072Oct 24, 2003Jun 12, 2012Shell Oil CompanyTemperature limited heaters for heating subsurface formations or wellbores
US8220539Oct 9, 2009Jul 17, 2012Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8224163Oct 24, 2003Jul 17, 2012Shell Oil CompanyVariable frequency temperature limited heaters
US8224164Oct 24, 2003Jul 17, 2012Shell Oil CompanyInsulated conductor temperature limited heaters
US8225866Jul 21, 2010Jul 24, 2012Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8230927May 16, 2011Jul 31, 2012Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US8233782Sep 29, 2010Jul 31, 2012Shell Oil CompanyGrouped exposed metal heaters
US8240774Oct 13, 2008Aug 14, 2012Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US8261832Oct 9, 2009Sep 11, 2012Shell Oil CompanyHeating subsurface formations with fluids
US8267170Oct 9, 2009Sep 18, 2012Shell Oil CompanyOffset barrier wells in subsurface formations
US8267185Oct 9, 2009Sep 18, 2012Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US8272455Oct 13, 2008Sep 25, 2012Shell Oil CompanyMethods for forming wellbores in heated formations
US8276661Oct 13, 2008Oct 2, 2012Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US8281861Oct 9, 2009Oct 9, 2012Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US8327681Apr 18, 2008Dec 11, 2012Shell Oil CompanyWellbore manufacturing processes for in situ heat treatment processes
US8327932Apr 9, 2010Dec 11, 2012Shell Oil CompanyRecovering energy from a subsurface formation
US8353347Oct 9, 2009Jan 15, 2013Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US8355623Apr 22, 2005Jan 15, 2013Shell Oil CompanyTemperature limited heaters with high power factors
US8381815Apr 18, 2008Feb 26, 2013Shell Oil CompanyProduction from multiple zones of a tar sands formation
US8434555Apr 9, 2010May 7, 2013Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US8450536Jul 17, 2009May 28, 2013Pioneer Energy, Inc.Methods of higher alcohol synthesis
US8459359Apr 18, 2008Jun 11, 2013Shell Oil CompanyTreating nahcolite containing formations and saline zones
US8485252Jul 11, 2012Jul 16, 2013Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8555971May 31, 2012Oct 15, 2013Shell Oil CompanyTreating tar sands formations with dolomite
US8579031May 17, 2011Nov 12, 2013Shell Oil CompanyThermal processes for subsurface formations
US8602095Feb 20, 2009Dec 10, 2013Pioneer Energy, Inc.Apparatus and method for extracting petroleum from underground sites using reformed gases
US8606091Oct 20, 2006Dec 10, 2013Shell Oil CompanySubsurface heaters with low sulfidation rates
US8608249Apr 26, 2010Dec 17, 2013Shell Oil CompanyIn situ thermal processing of an oil shale formation
US8616294Aug 25, 2010Dec 31, 2013Pioneer Energy, Inc.Systems and methods for generating in-situ carbon dioxide driver gas for use in enhanced oil recovery
US8627887Dec 8, 2008Jan 14, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8636323Nov 25, 2009Jan 28, 2014Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US8662175Apr 18, 2008Mar 4, 2014Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8691253 *May 18, 2009Apr 8, 2014Rhonda TracyShark repellent
US8785699Apr 19, 2013Jul 22, 2014Pioneer Energy, Inc.Methods of higher alcohol synthesis
US8789586Jul 12, 2013Jul 29, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8791396Apr 18, 2008Jul 29, 2014Shell Oil CompanyFloating insulated conductors for heating subsurface formations
US8833453Apr 8, 2011Sep 16, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US20130161008 *Dec 22, 2011Jun 27, 2013Argonne National LaboratoryPreparation and use of nano-catalysts for in-situ reaction with kerogen
WO2004097159A2 *Apr 23, 2004Nov 11, 2004Shell Oil CoThermal processes for subsurface formations
WO2008058400A1 *Nov 14, 2007May 22, 2008Kantzas ApostolosCatalytic down-hole upgrading of heavy oil and oil sand bitumens
Classifications
U.S. Classification166/261
International ClassificationE21B43/16, E21B43/243
Cooperative ClassificationE21B43/243
European ClassificationE21B43/243