Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3053511 A
Publication typeGrant
Publication dateSep 11, 1962
Filing dateNov 15, 1957
Priority dateNov 15, 1957
Publication numberUS 3053511 A, US 3053511A, US-A-3053511, US3053511 A, US3053511A
InventorsJohn W Godfrey
Original AssigneeGen Motors Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Clad alloy metal for corrosion resistance and heat exchanger made therefrom
US 3053511 A
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

p 1962 J. w GODFREY 3,053,511

cum ALLOY METAL FOR CORROSION RESISTANCE AND HEAT EXCHANGER MADE THEREFROM Filed Nov. 15, 1957 IN VENT OR.

HTTORNEY ire Sttes This invention relates to clad alloy metal for corrosion resistance and more particularly to cladding of coppernickel alloy material for inhibiting corrosion of the base alloy.

The prevention of corrosion has always been a major problem in the metal fabricating industries. Reasonably effective protection has been achieved in the past by applying surface coatings of such nature as to obtain physical protection by reason of the covering of the base metal. The measure of protection afforded by such covering layers is of course limited since fabricating and usage conditions frequently expose the base metal thereby making it subject to attack. The most effective protection has been found to be that which affords not only the physical protection of covering the base metal but also protects the base metal by electrolytic action. Such protection has been achieved by covering the base metal with such metals as aluminum, aluminum alloys and zinc.

Copper-nickel alloys have been used in the past for fabrication of metal articles which are subjected to sea water exposure in normal usage. It has been found that such alloy materials may be efifectively protected from corrosion by applying zinc coatings or by using a zinc protective or sacrificial anode which has electrical connection to the base alloy and is preferentially corroded with regard to the base alloy. However, it has been known that the protection afforded by such means is unsatisfactory for the reason that the rate of zinc corrosion is extremely rapid. The thickness of the coating or the quantity of sacrificial anode must therefore be extremely large in order to meet life-test requirements. These factors are of extreme importance in the fabrication of sea water heat exchangers such as are in common use in water vehicles since economy, maintenance and weight factors require that the heat exchanger design be such as to resist corrosion over long periods of time in order to minimize operational delays for tear down and maintenance while at the same time achieving economy of space and weight.

It is therefore an object of my invention to provide corrosion resistant clad copper-nickel alloy which will provide corrosion protection over extended periods of time; it is a further object of my invention to provide a corrosion resistant clad copper-nickel alloy in which the cladding material contains substantially the same constituents as that of the base alloy. It is a further object of my invention to provide a heat exchanger wherein the surfaces are protected from corrosion by means of a copper-nickel alloy coating containing substantially the same constituents as' those of the base metal. It is a still further object of my invention to provide a brazed heat exchanger adapted for salt water exposure wherein the copper-nickel base alloy is protected from corrosion by means of a copper-nickel alloy coating containing different percentages of the constituent materials contained in the base alloy.

These and other objects of my invention are attained by providing the base copper-nickel alloy with a coppernickel alloy coating containing different weight percentages of the same constituents contained in the base material.

The nature of my invention will be apparent to those 3,053,511 l Patented Sept- 1,

skilled in the art from the following description as read in connection with the drawing in which:

FIGURE 1 discloses a broken out portion of a heat exchanger embodying the principles of my invention in plan view and in which FIGURE 2 shows an enlarged cross-sectional view of a typical heat exchanger tube taken on line 2-2 of FIG- URE 1.

Having reference now to FIGURE 1 of the drawing, there is shown a portion of a heat exchanger embodying the principles of my invention in which a plurality of tubes '1 extend between and interconnect an inlet header 3 and an outlet header 5 in order to permit one medium of the heat exchange system to flow through the tubes for heat exchange contact with another medium flowing over the tubes.

The heat exchanger shown on the drawing is particularly adapted for applications involving exposure to sea water, the base material of the heat exchanger elements being formed of a copper-nickel alloy well known in the art for such purposes. As is shown more clearly in FIGURE 2, the individual tubes 1 are formed by interconnecting two half-tube sections 7 and 9 having their side edges 11 and 13 formed so as to over-lap one another to create a tubular member 1. The half-tube sections are interconnected at the overlapping edges 11 and 13 by means of any suitable method such as brazing or welding in order to create a fluid-tight seal. The interconnection .15 shown on the drawing is preferably attained by brazing with copper foil. A cladding layer 17, more particularly described hereinafter, is provided on the outer surface of the tubes 1 to inhibit corrosion of the base metal.

The material most commonly used in applications involving sea water exposure are those compositions commonly known in the art as 70-30 and 90-10 copper-nickel alloy. The chemical composition of each of these alloys as hereinafter referred to in the specification and claims is shown in Table I below in terms of weight percentage:

Table I Copper (min.) 64. 85.0 Nickel 29.0-32; 0 9 011.0 Zinc (113m)." 1.0 1.00 on 0 40-0. 70 1 001. Lead (max.) 0.0 0.05 Manganese (max.) 1. 00 0.75 Copper plus sum of named elements (min.) 99. 50 99. 50

The remaining 0.50% may be trace elements such as carbon, titanium, silicon, aluminum, tin, sulfur and others.

I have found the -10 alloy to be difiicult to fabricate where such techniques as brazing and welding are utilized since the melting point of this composition is relatively low and is about 21100" F. The brazing of sheets formed therefrom is diflicult to control and results in frequent burning through of the material at the brazing points. Compositions of the 70-30 type are preferred for the base tube material since the melting point is appreci- I have discovered that very effective corrosion resistance is achieved by providing the 70-30 base material with a clad or coating of 90-10 copper-nickel alloy. It has been found that this cladding alloy is anodic to the base alloy and therefore will protect it through galvanic action. That is, if corrosion attack occurs, it will concentrate on the relatively thin layer of the cladding material, and the basic alloy material will not be attacked as long as the cladding material is present. This is, in essence, the well known principle of galvanic corrosion, but is controlled and applied to achieve the useful purpose described. It has been found that the potential of the 70-30 base coppernickel alloy is about 0.25 volt with reference to a saturated Calomel half cell whereas that of the 90-10 coppernickel alloy cladding is about 0.27 volt. It is thus obvious that while the cladding alloy is anodic to the base alloy, their potentials are so close that the rate of galvanic corrosion of the cladding material is extremely slow with the result that heat exchangers utilizing extremely thin cladding layers may be utilized without fear of corrosion of the base alloy over long periods of operation.

I have found that a heat exchanger using tubes formed of my clad sheet material having a total thickness of about 0.021 with the thickness of the cladding being about one-sixth to one-third of the total thickness or 0.0035" to 0.007" results in a unit having extremely long life cycle characteristics. A further advantage resulting from the use of 90-10 copper-nickel alloy as cladding for a 70-30 copper-nickel base alloy is that appreciable savings in the use of nickel, a strategic material, are achieved. Also, it has been found that the 90-10 alloy inhibits fouling of the heat exchanger due to the growth of sea water animal life on the metal surfaces.

I have found that a heat exchanger formed of 70-30 copper-nickel base alloy of about 0.014" thickness of the following composition in terms of weight percent:

copper 69.0 nickel 29.3 zinc 0.3

iron 0.6 lead 0.03

manganese 0.4

and having a cladding of 90-10 copper-nickel alloy of resulted in a successful life-test of more than two years in duration under sea water exposure conditions. It was unnecessary to tear down the exchanger for repair and/ or replacement of parts during this entire period.

It is apparent from the foregoing description that I have provided a clad alloy material having high resistance to corrosion and being adapted to be formed into sheets for the fabrication of such devices as sea water heat exchangers. The cladding may be applied to the base material in either sheet form or ingot form, the cladding becoming alloyed with the base material during the hot working and subsequent fabricating operations. The cladding may be applied in other ways well known to the art, such as by dipping or spraying, the cladding operation forming no part of my invention.

While I have described my invention with particular reference to salt water heat exchangers, it should be recognized that this corrosion inhibiting clad alloy may be used in other devices and that the cladding may be applied to more than a single surface of the base alloy material. These and other embodiments of my invention will be apparent to those skilled in the art from the foregoing description and such embodiments are to be considered as within the intended scope of the claims which follow.

I claim:

1. A corrosion resistant metal alloy material consisting of a base copper-nickel alloy metal having metallurgically bonded thereto as cladding a layer of copper-nickel alloy metal having substantially the same constituents as the base metal but in differing amount by weight so that the potential of the cladding is more negative than but close to that of the base metal, said base metal being formed of -30 copper-nickel alloy and said cladding being formed of -10 copper-nickel alloy.

2. A corrosion resistant metal alloy material consisting of a base copper-nickel alloy metal having metallurgically bonded thereto as cladding a layer of copper-nickel alloy metal having substantially the same constituents as the base metal but in differing amount by weight so that the potential of the cladding is more negative than but close to that of the base metal, said base metal being formed of copper 69%, nickel 29.3%, iron 0.6%, manganese 0.4%, zinc 0.3% and lead 0.03%, and said cladding being formed of copper 88.7%, nickel 9.1%, iron 1.2%, manganese 0.3%, Zinc 0.3% and lead 0.04%.

3. In a heat exchanger adapted to withstand the corrosive effects of salt water and comprising inlet and outlet headers and heat transfer tubes interconnecting said headers, said heat transfer tubes being formed of a corrosion resistant metal alloy material consisting of a base 70-30 copper-nickel alloy metal having metallurgically bonded thereto as cladding a layer of 90-10 copper-nickel alloy, the potential of the cladding being more negative than but close to that of the base metal, the thickness of the cladding being at least about one-sixth the total thickness of the tube material.

4. In a heat exchanger adapted to withstand the corrosive effects of salt water and comprising inlet and outlet headers and heat transfer tubes interconnecting said headers, said heat transfer tubes being formed of a corrosion resistant metal alloy material consisting of a base copper-nickel alloy metal having metallurgically bonded thereto as cladding a layer of copper-nickel alloy, the potential of the cladding being more negative than but close to that of the base metal, the thickness of the cladding being at least about one-sixth the thickness of the tube material, said base metal being formed of copper 69%, nickel 29.3%, iron 0.6%, manganese 0.4%, zinc 0.3%, and lead 0.03% and said cladding being formed of copper 88.7%, nickel 9.1%, iron 1.2%, manganese 0.3%, zinc 0.3%, and lead 0.04%.

References Cited in the file of this patent UNITED STATES PATENTS 1,804,237 Steenst-rup May 5, 1931 2,120,561 Laise June 14, 1938 2,147,709 Lawton Feb. 21, 1939 2,373,116 Hobrock Apr. 10, 1945 2,373,117 Hobrock Apr. 10, 1945 2,373,218 Arnold Apr. 10, 1945 2,511,084 Shaw June13, 1950 2,703,226 Simpelaar Mar. 1, 1950

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1804237 *Oct 16, 1925May 5, 1931Gen ElectricComposite metal and brazing process therefor
US2120561 *Jan 18, 1934Jun 14, 1938Eisler Electric CorpComposite metallic bodies
US2147709 *Jun 11, 1937Feb 21, 1939Gen Motors CorpTinned copper radiator fin
US2373116 *Oct 31, 1941Apr 10, 1945Bundy Tubing CoMethod of uniting metals
US2373117 *Jul 17, 1944Apr 10, 1945Bundy Tubing CoMethod of uniting metals
US2373218 *Nov 11, 1942Apr 10, 1945Modine Mfg CoOil cooler tube
US2511084 *Nov 7, 1947Jun 13, 1950Young Radiator CoHeat-exchanger core
US2703226 *Apr 24, 1946Mar 1, 1955Modine Mfg CoRadiator fin structure
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3207209 *Dec 28, 1962Sep 21, 1965Dept Of Chemical Engineering &Means for increasing the heat transfer coefficient between a wall and boiling liquid
US3268989 *Mar 26, 1962Aug 30, 1966Carrier CorpMethod of assembling a ceramic lined water heater
US3397440 *Sep 30, 1965Aug 20, 1968David DalinMethod of making heat exchanger having extended surface
US3545945 *Feb 26, 1968Dec 8, 1970Nickel Co Inc TheWelding copper-nickel alloys
US3650005 *Mar 19, 1970Mar 21, 1972Showa Aluminium Co LtdMethod for producing tube in sheets
US3960208 *Dec 13, 1974Jun 1, 1976Swiss Aluminium Ltd.Process for providing heat transfer with resistance to erosion-corrosion in aqueous environment
US4209059 *Dec 11, 1978Jun 24, 1980Swiss Aluminium Ltd.Crevice-corrosion resistant aluminum radiator triclad composite
US4674566 *Feb 14, 1985Jun 23, 1987Olin CorporationCorrosion resistant modified Cu-Zn alloy for heat exchanger tubes
US4727935 *May 13, 1985Mar 1, 1988Laitram CorporationHeat exchanger and method for making same
US4735868 *May 27, 1986Apr 5, 1988Olin CorporationComposites having improved resistance to stress relaxation
US4799973 *Apr 2, 1984Jan 24, 1989Olin CorporationProcess for treating copper-nickel alloys for use in brazed assemblies and product
US5014774 *Jun 2, 1989May 14, 1991General Motors CorporationBiocidal coated air conditioning evaporator
US5242657 *Jul 2, 1992Sep 7, 1993Waukesha Foundry, Inc.Food processing machine
US5413756 *Jun 17, 1994May 9, 1995Magnolia Metal CorporationLead-free bearing bronze
US5943772 *Aug 19, 1997Aug 31, 1999Brazeway, Inc.Method of cladding tubing and manufacturing condensor cores
US6192977 *Sep 29, 1999Feb 27, 2001Valeo Thermique MoteurTube for heat exchanger
US6213385Jun 24, 1999Apr 10, 2001Brazeway, Inc.Method of cladding tubing and manufacturing condensor cores
US6277499 *Apr 23, 1992Aug 21, 2001United Technologies CorporationHigh temperature protective coatings
US6725911 *Sep 28, 2001Apr 27, 2004Gas Research InstituteCorrosion resistance treatment of condensing heat exchanger steel structures exposed to a combustion environment
US7152671Jan 20, 2005Dec 26, 2006Denso CorporationExhaust gas heat exchanger
US7204302 *Jul 3, 2002Apr 17, 2007Denso CorporationExhaust gas heat exchanger
US7895749Mar 27, 2009Mar 1, 2011Valeo Thermal Systems Japan CorporationMethod of manufacturing heat exchanger
US7921559Jul 21, 2008Apr 12, 2011Modine Manufacturing CompanyFlat tube, flat tube heat exchanger, and method of manufacturing same
US8091621 *Jul 18, 2008Jan 10, 2012Modine Manufacturing CompanyFlat tube, flat tube heat exchanger, and method of manufacturing same
US8129036May 13, 2008Mar 6, 2012Hamilton Sundstrand Space Systems International, Inc.High strength and high thermal conductivity heat transfer apparatus
US8191258Jul 21, 2008Jun 5, 2012Modine Manufacturing CompanyFlat tube, flat tube heat exchanger, and method of manufacturing same
US8281489Jul 21, 2008Oct 9, 2012Modine Manufacturing CompanyFlat tube, flat tube heat exchanger, and method of manufacturing same
US8434227Aug 9, 2011May 7, 2013Modine Manufacturing CompanyMethod of forming heat exchanger tubes
US8438728Jul 18, 2008May 14, 2013Modine Manufacturing CompanyFlat tube, flat tube heat exchanger, and method of manufacturing same
US8561451Aug 3, 2009Oct 22, 2013Modine Manufacturing CompanyTubes and method and apparatus for producing tubes
US8683690 *Jul 18, 2008Apr 1, 2014Modine Manufacturing CompanyFlat tube, flat tube heat exchanger, and method of manufacturing same
US8720533 *Apr 29, 2005May 13, 2014Lyonnaise Des EauxHeat exchanger and installation for extracting heat from waste water
US8726508 *Jan 19, 2007May 20, 2014Modine Manufacturing CompanyFlat tube, flat tube heat exchanger, and method of manufacturing same
US20110005738 *Nov 15, 2007Jan 13, 2011Modine Manufacturing CompanySoldered flat tube for condensers and/or evaporators
DE102006016711A1 *Apr 8, 2006Oct 11, 2007Modine Manufacturing Co., RacineHeat exchanger tube comprises first thin sheet of material partially forming broad and narrow sides of tube body and partially enclosing an interior space, and second sheet of material partially forming fin brazed to tube body
EP1158260A1 *Feb 10, 2000Nov 28, 2001Zexel Valeo Climate Control CorporationHeat exchanger, method of manufacturing the heat exchanger, and method of manufacturing tube for heat exchange
WO2008011115A2 *Jul 19, 2007Jan 24, 2008Thomas BraeuningFlat tube for heat exchanger
WO2009073003A1 *Dec 4, 2007Jun 11, 2009Birgir NilsenApparatus and method for ballast water treatment
WO2013014028A1 *Jul 17, 2012Jan 31, 2013Siemens AktiengesellschaftMethod for producing a saltwater-proof cooling plate, and device produced by means of said method and the use thereof
Classifications
U.S. Classification165/133, 29/890.53, 420/485, 428/675, 428/925, 165/180, 165/170
International ClassificationC23F13/14, F28D9/00, F28F19/06, B32B15/01, C23F13/02, F28F21/08
Cooperative ClassificationF28F21/085, F28D9/0031, F28F21/087, C23F13/14, B32B15/01, C23F13/02, Y10S428/925, F28F19/06
European ClassificationF28F21/08A10, F28F21/08A6, C23F13/02, C23F13/14, B32B15/01, F28F19/06, F28D9/00F