Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3054516 A
Publication typeGrant
Publication dateSep 18, 1962
Filing dateAug 19, 1960
Priority dateAug 19, 1960
Publication numberUS 3054516 A, US 3054516A, US-A-3054516, US3054516 A, US3054516A
InventorsJoa Curt George
Original AssigneeJoa Curt George
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Apparatus for stacking sheets
US 3054516 A
Previous page
Next page
Description  (OCR text may contain errors)

Sept. 18, 1962 c. G. JOA

APPARATUS FOR STACKING SHEETS 3 Sheets-Sheet 1 Filed Aug. 19, 1960 M1,, AMAM A TraeA/svs Sept. 18, 1962 c. G. JOA

APPARATUS FOR smcxmc; SHEETS 3 Sheets-Sheet 2 Filed Aug. 19, 1960 BY 4%, myw

3 Sheets-Sheet 3 C. G. JOA


3,054,516 APPARATUS FOR STACKING SHEETS Curt George Joa, Box 1121, Ocean Ridge, Fla. Filed Aug. 19, 1960, Ser. No. 58,788 2 Claims. (Cl. 214-6) This invention relates to an apparatus for stacking sheets.

The invention will be exemplified in an apparatus embodiment thereof particularly adapted to stack folded paper tablecloths. It is clear, however, that the invention is not thus limited and may be embodied in machines to stack any material in sheet form.

The present invention includes apparatus for metering the sheets into a stack and counting the sheets as they are being metered. After a predetermined number of sheets have been stacked, suitable mechanism is triggered to transfer the stack to a discharge conveyor.

The novel apparatus of the present invention for metering the discrete sheets into a stack includes a metering table consisting of plates which reciprocate in their own plane towards and away from each other as part of a cycle of operation of the stacker. Each sheet is momentarily marginally supported on the opposed margins of the adjacent plates. The plates are then retracted to permit the sheet to drop by gravity therebet-ween onto a collecting apron below the table. As each sheet is metered through the space between the plates, a counter is actuated to log the number of sheets deposited in the stack. When a predetermined number of sheets have been stacked, mechanism is actuated to transfer the stack onto a discharge conveyor and the cycle repeats itself indefinitely.

The counting mechanism desirably comprises a photoelectric cell which faces a non-reflective target on one of the retractable plates. When a sheet of light reflective material is interposed between the light cell and the target, the cell will be triggered to actuate both the counting mechanism and the mechanism for retracting the plates to release the sheet.

In order to facilitate transfer of the stack from the collecting apron to the discharge conveyor, the apron is desirably at a slightly higher level than the discharge conveyor, thus to permit shifting the stack to a position above the level of the discharge conveyor before lowering it thereonto for smooth transfer from the apron to the conveyor. The apron and conveyor have portions which are interleaved to facilitate transposition of the levels of the apron and discharge conveyor.

Other objects, features and advantages of the invention will appear from the following disclosure in which:

FIG. 1 is a plan view of a stacking machine embodying the present invention.

FIG. 2 is a side elevation of the machine of FIG. 1.

FIG. 3 is a fragmentary side elevation similar to that shown in FIG. 2, but showing a stack in the course of transfer to the discharge conveyor.

FIG. 4 is a fragmentary perspective view of a stacking machine embodying the invention. This figure diagrammatically illustrates flow of sheets through the stacking machine.

FIG. 5 is a schematic diagram indicating the pneumatic and electrical connections by which the operation of the machine is controlled.

FIG. 6 is an end view taken along the line 66 of FIG. 1.

FIG. 7 is a cross section taken along the line 7-7 of FIG. 1.

FIG. 8 is a cross section taken along the line 8-8 of FIG. 1.

FIG. 9 is a cross section taken along the line 9-9 of FIG. 1.

, 3,054,516 Patented Sept. 18, 1962 Stacking machines embodying the present invention are adapted to receive sheet material such as folded paper tablecloths '15 from a belt conveyor 16 or the like. As best shown in FIGS. 1 and 2, the stacking machine is mounted on legs 17 which support longitudinal channelshaped frame members 18. The channels 18 support on posts 19 upper level channel supports 20 having paired cross rail members 21, 22. The respective pairs of cross rails 21, 22 support respective sets of longitudinally disposed guide rods 23, 24. Rod sets 23, 24 each provide guide and support means for bearing blocks 27, 28 from the undersurfaces of which project towards each other reciprocating metering table plates 29, 30.

The plates 29, 30 are made to reciprocate towards and away from each other by a pneumatic or like fluid operated motor 31. Motor piston 32 is connected through an adjustable coupling 33 near one end of one arm of a double armed crank 34 pivoted at its mid point on pin 35 to a strap bracket 38. Bracket 38 is mounted at opposite ends to proximate cross rails 21, 22.

The ends of the crank 34 remote from pivot pin 35 are respectively connected on links 39, 40 and corresponding pins 41, 42 to the respective bearing blocks 27, 28 for the metering plates 29, 30. Accordingly, extension of the piston 32 of the pneumatic motor 31 will rotate the crank 34 to retract the plates 29, 36 away from each other.

Each discrete sheet 15 is discharged from the input conveyor 16 onto the proximate margins of plates 29, 30. At this point in the cycle of the stacker, the plate margins will be adjacent one another, the piston 32 having been retracted fully within the motor cylinder 31. This is illustrated in FIG. 4 in which the tablecloth sheet 15 is moving in the direction of arrow 43. The sheet 15 is ordinarily sufficiently stiff to be supported marginally, the central portion of the sheet being unsupported.

The air cylinder 31 is triggered by deposit of the sheet 15 on the plates 29, 30 by reason of the interposition of the sheet between photocell 44 and a non-reflective target 45 on plate 29. Ordinarily a light source 48 beams its light on the non-reflective target so that no light is reflected to the photocell 44. However, when a sheet 15 having a reflective surface is placed over target 45, the beam of light from source 48 will be reflected thereby to the photoelectric cell 44, thus to complete a circuit to the photocell relay 49 shown in FIG. 5 and trigger the control relay 54 which actuates solenoid 51 connected to a three-way valve 52 in the air line 53- which supplies the pneumatic cylinder 31. Actuation of the air cylinder 31 as aforesaid will extend its piston 32 to separate the plates 29, 30 as aforesaid and permit the sheet to drop by gravity between the margins of the retracting plates 29, 30 onto a collection apron 54. The apron 54 desirably consists of a series of laterally spaced longitudinally disposed strips 55, which may conveniently be T-shape in cross section, each pivotally connected to a rock shaft 56 supported on brackets 57 from the cross member 58 of the machine frame.

In the course of its retracting or separating movement of the plates 29, 30, bearing block 28 on plate 30 will ultimately engage a reversing switch 59 mounted on cross rail 22. Switch 59 functions through control relay to reverse solenoid 51 and thus reverse the position of the three-way valve 52 to retract piston 32 and to restore the plates to their FIG. 1 position, thus to position them to receive the next sheet 15 in the cycle of the machine.

The collection apron 54 is desirably provided with vertical guide strips 61 against which the leading edges of the sheets are aligned in the course of piling up into a stack 62. Transfer mechanism to transfer the stack onto a discharge conveyor 81 after a predetermined number of sheets has been metered onto the stack includes a pusher' plate 63 supported on paired push beams 64. The push beams 64 have bearing base portions 65 bored to receive guide rods 66 on which the beams are adapted to reciprocate. Corresponding ends of the rods 66 are connected to a transverse channel member 58 and opposite corresponding ends thereof are supported on transverse channel 67.

The respective portions'65 of the push beams 64 are interconnected by a depending bracket 70 to which piston 71 of the pneumatic cylinder 72 is connected for actuating the push beams.

As the photocell relay 49 is triggered by the photocell 44, impulses communicated to the control relay 50 actuate a counter 73 which may conveniently comprise a conventional stepping switch or the like. After a predetermined number of impulses have been counted by the counter, thus indicating a predetermined number of sheets in the stack 62, counter 73 triggers relay 74 to actuate solenoid 75 to turn three-way valve 76 which is in the air line 53 to the air cylinder 72, thus to move the pusher plate 63 in the direction of arrow 77 in FIG. 3 and push the stack 62 off of the apron 54 and onto the laterally spaced belts 80 of a discharge conveyor 81 travelling in the direction of arrow 82 (FIG. 3). The conveyor 81 transports the stack to a carton filling machine or the like for further processing of the stack. 7

' As best shown in FIG. 8, strips 55 of the apron 54 are normally supported at a level higher than the belts 80. Accordingly, as the push plate 63 moves the stack 62 toward the discharge conveyor, the stack will be above the level of the belts to avoid contact of the belts with the stack until the stack is in readiness to be lowered onto the belt conveyor. The structure is such, however, that near the end of the stroke of the push plate 63, apron strips 55 are lowered to a level below the level of the belts 80, as indicated in dotted lines in FIG. 8, so as to transpose the level of the strips and belts. Accordingly, the entire load of the stack 62 is transferred to the belts 80, which carry the stack away.

Transpostion of the level of the apron strips and belt is accomplished by reason of the structure best shown in FIG. 6. Apron 54 has support tracks 83 which ride on rollers 84 carried on bearing stems 85 from the bearing portions 65 of the push beams 64. As is best shown in FIGS. 3 and 4, the tracks 83 are tapered near their end portions 87 so that as the rollers 84 come adjacent the tapered portions 87 of the tracks, the apron will be lowered as aforesaid to transfer stack 62 onto the belt conveyor. discharge.

In order to recycle the push plate 63, there is provided a reversing switch 86 (FIGS. 3 and for the solenoid relay 74. This switch is actuated by a striker 90 mounted on the bracket 70 so that on the completion of the retractive stroke of the piston 72 and deposit of stack 62 on discharge conveyor 80, reverse switch 86 will be actuated to reverse the three-way valve 76 and restore the pressure plate 63 to its retracted position as shown in FIG. 2.

Accordingly, the stacker and transfer mechanism will cycle in response to the deposit on the metering table 29, 30 of sheets 15 which will be counted by the counter 73 as they are successively metered past the plates 29, 30 into a stack 62. When a predetermined number of sheets have been collected on the apron 54, push plate 63 will transfer the stack onto discharge conveyor 80 and will return to be disposed behind a newly formed stack.

What is claimed is:

1. A sheet stacker adapted to receive and stack sheets fed thereto by an input conveyor, said stacker comprising a metering table substantially aligned with the input conveyor to receive discrete sheets therefrom, an apron beneath the metering table and to which sheets are delivered by gravity from the metering table in vertically stacked relation, a discharge conveyor for removing from the apron sheet stacks, said metering table comprising plates and means mounting said plates for movement toward and away from each other, said plates together constituting a sheet support when they are adjacent one another and which will drop said sheets therebetween when they are moved away from one another and a counter responsive to operation of said plate in the course of metering sheets to the apron for counting the number of sheets thus meter-ed, and means actuated by the counter for transferring the stack from the apron to the discharge conveyor, said metering table further comprising a frame, means on said frame on which said plates are mounted for reciprocation, a motor for reciprocating the plates and sensing means responsive to deposit on said plates of a sheet for actuating the motor to retract the plates one from another whereupon the sheet drops by gravity onto the apron, said sensing means comprising a photoelectric cell, one of said plates having a non-reflective target towards which said photocell is aimed, the interposition of arefiective sheet between the cell and the target triggering the cell for actuation of the motor.

2. In a device of the character described, a stack transfer mechanism comprising an apron on which a stack is formed, a discharge conveyor adjacent thereto and transfer mechanism for transferringthe stack from the apron to the discharge conveyor, said apron being normally disposed at a level higher than the level of the discharge conveyor whereby the discharge conveyor will not interfere with movement of the stack thereover, and means for transposing the levels of the apron anddischarge conveyor in the course of stack transfer to shift the stack from the apron to the discharge conveyor, said apron and discharge conveyor having portions which are interleaved to facilitate transposition of the levels thereof, said apron comprising laterally spaced strips, said discharge conveyor comprising laterally spaced belts disposed bewill descend by gravity when said wheels reach said inclined portion of the track as the transfer mechanism moves toward said other end'of the apron, thus to lower said strips with respect to the level of said belts.

References Cited in the file of this patent UNITED STATES PATENTS 1,688,219 Williams Oct. 16, 1928 2,606,483 Forbes Aug. 12, 1952 2,623,587 Hervey Dec. 30, 1952 2,679,789 Graves June 1, 1954

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1688219 *Jun 3, 1926Oct 16, 1928John D WilliamsMachine for piling sheets, plates, and the like
US2606483 *Jan 14, 1949Aug 12, 1952Benner Nawman IncAutomatic stacking, counting, and transferring apparatus
US2623587 *Aug 27, 1946Dec 30, 1952Hervey Foundation IncVeneer clipper
US2679789 *Nov 16, 1948Jun 1, 1954Graves MarkStack transfer machine
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3247981 *Sep 11, 1962Apr 26, 1966Certain Teed Prod CorpPackage arranging equipment
US3392853 *Nov 8, 1966Jul 16, 1968Rex L. MitchellHigh speed counting and stacking apparatus
US3480503 *Mar 10, 1966Nov 25, 1969Magnacraft Mfg CoStacking machine
US3525443 *Jun 10, 1968Aug 25, 1970El Chico CorpCounting and stacking apparatus
US4024965 *Oct 15, 1975May 24, 1977Manierre CorporationBag palletizing apparatus
US4041853 *Nov 17, 1975Aug 16, 1977Precision Industries, Inc.Apparatus for organizing and arranging bundles into stacks
US4050591 *Jan 26, 1976Sep 27, 1977W. A. Krueger Co.Stacking apparatus and method
US4066028 *May 10, 1976Jan 3, 1978Angelica CorporationGuiding, stitching and delivering system
US4271755 *Oct 25, 1978Jun 9, 1981Master Conveyor CorporationBag handling apparatus
US4421221 *Feb 3, 1982Dec 20, 1983Giorgio PessinaRevolving table for book-binding stackers and the like
US4569622 *May 18, 1983Feb 11, 1986Bielomatik Leuze Gmbh & Co.Apparatus for depositing sheets in a pile
US4652197 *Feb 22, 1985Mar 24, 1987Littleton Industrial Consultants, Inc.Sheet counter and stacker system
US4815924 *Apr 13, 1987Mar 28, 1989Oy Raumatic AbSheet stacking means after a cross-cutting saw
US4907940 *Nov 9, 1987Mar 13, 1990Oy Raumatic AbCross-cutting saw
US5476361 *Dec 16, 1993Dec 19, 1995Uno; TadaoDevice for piling bundles of sheets
US5507615 *Jul 13, 1994Apr 16, 1996Uno; TadaoDevice for piling bundles of sheets
US5727674 *Apr 23, 1996Mar 17, 1998Baldwin Technology CorporationStacker-bundler transfer apparatus with powered roller table
US5906367 *Nov 24, 1997May 25, 1999Minolta Co., Ltd.Sheet handling apparatus
US7303708Apr 8, 2005Dec 4, 2007Curt G. Joa, Inc.Super absorbent distribution system design for homogeneous distribution throughout an absorbent core
US7374627Apr 7, 2005May 20, 2008Curt G. Joa, Inc.Method of producing an ultrasonically bonded lap seam
US7398870Oct 5, 2005Jul 15, 2008Curt G. Joa, IncArticle transfer and placement apparatus
US7452436Mar 9, 2006Nov 18, 2008Curt G. Joa, Inc.Transverse tape application method and apparatus
US7533709May 31, 2005May 19, 2009Curt G. Joa, Inc.High speed vacuum porting
US7537215Apr 22, 2005May 26, 2009Curt G. Joa, Inc.Method and apparatus for securing stretchable film using vacuum
US7618513May 31, 2005Nov 17, 2009Curt G. Joa, Inc.Web stabilization on a slip and cut applicator
US7638014Mar 18, 2005Dec 29, 2009Curt G. Joa, Inc.Method of producing a pants-type diaper
US7640962Apr 20, 2005Jan 5, 2010Curt G. Joa, Inc.Multiple tape application method and apparatus
US7703599Apr 12, 2005Apr 27, 2010Curt G. Joa, Inc.Method and apparatus for reversing direction of an article
US7708849Jan 4, 2006May 4, 2010Curt G. Joa, Inc.Apparatus and method for cutting elastic strands between layers of carrier webs
US7770712Feb 17, 2006Aug 10, 2010Curt G. Joa, Inc.Article transfer and placement apparatus with active puck
US7780052May 18, 2006Aug 24, 2010Curt G. Joa, Inc.Trim removal system
US7811403May 7, 2007Oct 12, 2010Curt G. Joa, Inc.Transverse tab application method and apparatus
US7861756May 8, 2007Jan 4, 2011Curt G. Joa, Inc.Staggered cutting knife
US7909956Aug 13, 2009Mar 22, 2011Curt G. Joa, Inc.Method of producing a pants-type diaper
US7975584Feb 21, 2008Jul 12, 2011Curt G. Joa, Inc.Single transfer insert placement method and apparatus
US8007484Apr 1, 2005Aug 30, 2011Curt G. Joa, Inc.Pants type product and method of making the same
US8016972May 8, 2008Sep 13, 2011Curt G. Joa, Inc.Methods and apparatus for application of nested zero waste ear to traveling web
US8172977Apr 5, 2010May 8, 2012Curt G. Joa, Inc.Methods and apparatus for application of nested zero waste ear to traveling web
US8182624Mar 11, 2009May 22, 2012Curt G. Joa, Inc.Registered stretch laminate and methods for forming a registered stretch laminate
US8293056Aug 24, 2010Oct 23, 2012Curt G. Joa, Inc.Trim removal system
US8398793Jul 20, 2007Mar 19, 2013Curt G. Joa, Inc.Apparatus and method for minimizing waste and improving quality and production in web processing operations
US8417374Apr 26, 2010Apr 9, 2013Curt G. Joa, Inc.Method and apparatus for changing speed or direction of an article
US8460495Dec 27, 2010Jun 11, 2013Curt G. Joa, Inc.Method for producing absorbent article with stretch film side panel and application of intermittent discrete components of an absorbent article
US8557077Mar 21, 2011Oct 15, 2013Curt G. Joa, Inc.Method of producing a pants-type diaper
US8656817Mar 7, 2012Feb 25, 2014Curt G. JoaMulti-profile die cutting assembly
US8663411Jun 6, 2011Mar 4, 2014Curt G. Joa, Inc.Apparatus and method for forming a pant-type diaper with refastenable side seams
US8673098Oct 25, 2010Mar 18, 2014Curt G. Joa, Inc.Method and apparatus for stretching segmented stretchable film and application of the segmented film to a moving web
USRE32872 *Dec 19, 1986Feb 21, 1989Bielomatik Leuze Gmbh & Co.Apparatus for depositing sheets in a pile
DE1627187B *Dec 1, 1967Oct 22, 1970Fischer Ag Brugg GeorgStapelvorrichtung an einer Schneidmaschine fuer Tafelmaterial
U.S. Classification414/790, 414/794.2, 414/901, 414/790.3
International ClassificationB65H29/34
Cooperative ClassificationY10S414/115, B65H29/34
European ClassificationB65H29/34