Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3064766 A
Publication typeGrant
Publication dateNov 20, 1962
Filing dateNov 30, 1960
Priority dateNov 30, 1960
Publication numberUS 3064766 A, US 3064766A, US-A-3064766, US3064766 A, US3064766A
InventorsRoman H Hanizeski
Original AssigneeGen Electric
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Spring lock for x-ray apparatus
US 3064766 A
Abstract  available in
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Nov. 20, 1962 R. H. HANIZESKI $06 SPRING LOCK FOR X-RAY APPARATUS Filed Nov. 30, 1960 2 Sheets-Sheet 1 FIG] WWW V V lmviii iw f i INVENTOR. ROMAN H. HANIZESKI ATTORNEY Nov. 20, 1962 R. H. HANIZESKI spams LOCK FOR X-RAY APPARATUS 2 Sheets-Sheet 2 Filed NOV. 30, 1960 INVENTOR. ROMAN H. HAN

IZESKL.

e P ATTORNEY 3,364,766 SPRING LOCK FUR X-RAY APPARATUS Roman H. Hanizeski, Miiwaakee, Wis, assignor to General Electric Company, a corporation of New York Fiied Nov. 30, 196i), Ser. No. 72,723 6 Elairns. (ill. 188-77) This invention relates to a spring actuated drive shaft locking device for use in conjunction with X-ray appa ratus driven by a bi-directionally rotatable shaft.

In diagnostic medical X-ray technology, the table upon or against which the patient rests, and the apparatus for obtaining the radiograph, must be locked into position during the taking of the radiograph to insure the avoid ance or mechanically introduced motion that could blur the radiographic image formed on the spot film. An advanced form of table and related apparatus is disclosed in detail in a copending application entitled X-ray Apparatus by Arthur I. Kizaur, Serial No. 764,911, which was filed on October 2, 1958, now United States Patent No. 2,966,588 which issued December 27, 1960. The

table and apparatus in this application has great flexibility by virtue of the table being capable of uninterrupted angulation through 180, and of lateral movement of great length to facilitate transfer of hospital cart patients and in many instances, eliminating the need for the transfer. The fluoroscopic carriage and screen support has freedom of motion in three dimensions, i.e., in vertical, longitudinal and transverse directions relative to the table. Each one of the three directions of motion for the fluoroscopic carriage and screen support, and for the transverse motion of the table, requires a drive which for certain purposes and at certain times, must be stopped and locked. A drive shaft for each of these motion must be locked to insure the absence of chance movement and vibration when the spot film carrying cassette is shifted into radiographic position.

To properly perform its function, the lock should be structurally simple and positive in its action, and very strong, since the equipment to be locked in position is bulky. To insure that the X-ray exposure may be made immediately upon the placement of the spot film in radiographic position, the lock should operate free of mechanical backlash that may result in undesirable vibrations, and should be actuated as rapidly as possible, i.e., the interval between the flipping of the switch and the completed cessation of movement of the drive shaft in the locked position should be kept to a minimum.

It is desirable in the radiographic art that when the fluoroscopic carriage and screen support are in position and the spot film is shifted to its radiographic position, 1

all of the locks for the carriage and screen support be set automatically. Consequently, the lock utilized should be one adaptable and especially amenable to electrical control, and is preferably an electromagnetically actuated device.

In therapeutic medical X-ray, apparatus, such as a 300 kilovolt therapy unit, is often disposed in a manner producing very high torques, especially since nonlinear motion is involved in its operation. Such applications require even stronger and more positive locks than does the diagnostic equipment wherein the motion of the equipment is linear.

Both diagnostic and therpeutic X-ray devices are usually installed and operated in quiet rooms or areas. It is highly desirable, from the Viewpoint of maintaining the patients composure, to keep the noise level low and especially to avoid sudden loud noises. The lock used for the equipment should, therefore, be as quiet in opera- I 3,064,755 Patented Nov. 20, 1952 scribed below, contemplates a helical spring lock wherein two separate helical springs, having an internal diameter smaller than that of the shaft element which they are to lock, are coaxially mounted upon and wrapped around the shaft. Each spring is also secured to a stationary member, to therby prevent rotation of the shaft. One end of each of the springs is movable and controlled by a rotary solenoid, such that when the solenoid is actuated, each of the two springs is expanded or unwrapped, thereby permitting rotation of the shaft around which the springs are coaxially wrapped.

Release of the locked shaft is achieved by mounting the springs such that they unwrap in opposite senses from each other; i.e., the motion of the spring end of one spring 1n a clockwise direction will expand the spring, while mot on of the other in a counterclockwise direction will similarly expand it. This arrangement of the two springs insures positive locking action, irrespective of in which of the two angular directions the shaft may be tending to rotate. The solenoid drives the two spring ends, when the solenoid is actuated, in these opposite senses simultaneously.

The helical spring lock structure is exceedingly compact because of a special coupling mechanism between the rotary solenoid stem or shaft and the actuatin ends of the two springs. a

The spring lock also has the advantage that what little backlash may exist is of the type that the equipment is restored to its required position by the spring tension itself.

The novel features which I believe to be characteristic of my invention are set forth with particularity in the appended clauns. My invention itself, however, both as to its organ zation and method of operation, together with further ob ects and advantages thereof, may best be understood by reference to the following description taken in connect1on with the accompanying drawings.

In the drawings:

EIGURE 1 is a plan view, and FIGURE 2 is a longitudrnal cross-sectional view of an embodiment of a helical spring lock for X-ray apparatus, in accordance with the principles of the invention, and is shown by way of example merely for purposes of illustration;

FIGURE 3 is a detail of FIGURES 1 and 2 showing the special coupling between the rotary solenoid and the springs;

URES 3 and 4.

Referring to the figures in greater detail, the elements Wlll be set forth from left to right (relative to FIGURES 1 and 2). Commencing at the left, there is a drive shaft 11 wh ch may either be actuated by, or is responsible for actuating, the X-ray apparatus of interest. The drive shaft 11 may be actuated by a source of motive power on theleft (not shown). Coaxial with and circumscribing a portion of shaft 11 is a hollow cylindrical retaining element 12 through which shaft 11 is journaled. Immedlately contiguous to, and on the right of, retainer 12 is an annular cylindrical drum 13, also coaxial with and circumscribing the shaft 11. Drum 13 is, however, rigidly secured to shaft 11 by virtue of the tapered pin passing through the drum 13 and the shaft 11 in a direction perpendicular to the longitudinal axis of the shaft, i.e., passingthrough both the drum and the shaft in a diametral position. Contiguous to the right hand side of the drum 13 1s a second hollow cylindrical retaining element 14, through which shaft 11 is journalcd.

Circumscribing the abutting ends of retainer 12 and drum 13 is a close-wound helical spring 15 disposed such that half of its length sheaths a part of retainer 12 and the other half sheaths a part of drum 13. Helical spring 15 has a constant internal diameter along its entire length which, under ordinary conditions, and when not mounted on the retainer 1 2, is smaller than the external diameter of that portion of retainer 12 which it sheaths. Since the external diameter of retainer 12 is the same as that of drum 13 in those regions wherein they are both sheathed by helical spring 15, the same relationship between the internal diameter of the spring 15 and the external diameter of the drum 13 also holds as for the retainer 12.

The external diameter of the spring 15 tapers to a smaller dimension from the plane defined by the abutting ends of retainer .12 and drum 13 to the end of the spring in the region sheathing the drum 13. Circumscribing and coaxial with retainer 12 inthe region at the left-hand end of spring 15, is an annular adjusting ring 16 which is rigidly secured to the retainer 12 by set screws 17 and 18. The adjusting ring 16 may be rotated to a new angular position about the retainer .12 by loosening the set screws 1718, resetting the ring to its new, desired position, and then securing the screws once again. The left-hand tip end of spring 15 is bent upwardly in a direction perpendicular to the longitudinal axis of shaft 11, and rests in a slot in adjusting ring 16, such that the left-hand end of spring 15 is fixedly secured to that point in the adjusting ring.

circumscribing drum 13 in the region immediately to the right of spring 15 is an annular actuating ring 19 which is free to rotate about the drum 13 (see also the FIGURE 4 detail). The right-hand tip end 34 of the spring is in contact with and actuated by, but not secured to, a pin 33 which is secured in a hole formed in the actuating ring 19.- As a consequence, rotation of actuating ring 19 in one direction (counterclockwise when viewed from the left) about drum- 13 results in the bottom end of pin 33 moving in that direction and forcing the tip end 34 of spring 15 to also move in that direction to thereby cause an expansion of spring 15, while rotation of actuating ring 19 in the opposite direction allows the spring to grip drum 13 since pin 33 is moved out of contact withthe tip end 34 of spring 15.

Disposed coaxial to, and in a circumscribing relation about the abutting ends of drum 13 and the retainer 14, are an adjusting ring 20, a helical spring 21 and an actuating ring 22 (from right to left), which occupy the very same relationship relative to the abutting ends of drum 13 and retainer 14 as do the adjusting ring 17, helical spring 15 and actuating ring 19 relative to the abutting ends of retainer 12 and the left-hand end of drum 13. The sole difference in the relationship is the fact the helical springs 15 and 21 are arranged to unwrap in opposite senses, so that a rotation of the actuating rings 19 and 22 in a'clockwise sense (when looking at the shaft 11 from the left) results in an expansion of spring 21, and therefore a lessening of the radial force exerted on shaft 11 by'the spring, while spring 15 remains in its contracted position, thereby maintaining the radial force exerted on the shaft. Likewise, rotating the actuating rings 19 and 22 in counterclockwise direction has the opposite effect on the two springs from that which was obtained by a clockwise rotation. The terms contract and expand with respect to the helical springs mean nothing more than, in the case of expansion, a tendency for the spring to unwrap about the drum, while contract" indicates a tendency for the spring to wrap more tightly about the drum 13. V

Fixedly secured to an end of each of retainers 12 and 14, is a bracket 23, which extends below the entire structure described above. The function of the bracket 23 is to support a rotary magnetic solenoid 24, which may be actuated by an energy source 25 through a switch 26. Although the switch 26 is shown as a mechanical switch, it may represent a relay contact actuated elsewhere by automatic electrical means.

The solenoid has a rotatable stem 27 aligned with the taper pin securing the drum 13 to shaft 11. Mounted on the stem 27 is a cross pin 28 which is adapted to rotate in a plane parallel to the longitudinal axis of shaft 11 by virtue of the rotation of stem 27 when the solenoid 24 is actuated. The stem 27 is mechanically biased by a small spring at its base (not shown), such that cross pin 23 returns to a position parallel to the axis of shaft 11 when the solenoid 24 is not actuated, i.e., when switch 25 is open. Extending radially from each of actuating rings 19 and 22 are actuating pins 30 and 31; these pins 3t131 are disposed such that rotation of the cross pin 28 in a clockwise direction (when viewing the stem27 from the bottom of the solenoid 24 as viewed and shown in FIGURE 3) results in the right-hand side of cross pin 28 engaging pin 31 to drive the actuating ring 22 in a clockwise direction (when viewing the shaft 11 from the left), while the left-hand end of cross pin 28 will engage the pin 30 to drive the actuating ring 19 in a counterclockwise direction (also when viewing shaft ,11 from the left). The rotary solenoid 24 has internal stops such that stem 27 cannot execute a complete rotation, and therefore cross pin 28 cannot execute a full 360 rotation.

Since springs 15 and 21 are disposed so as to unwrap in opposite senses about the drum 13, the actuation of rings 19 and 22 in opposite senses results in the two springs operating in the same way functionally, i.e., they will both be expanded or will tend to unwrap and therefore to release the drum. 13 about which they are mounted.

-When the solenoid 24 is tie-energized as by the opening of switch 26, the springs 15 and 21, by their own torsional force, wind tightly about the surfaces of the drum 13 and the retainers 12 and 14 respectively, so as to create a bearing friction which locks the drum and the shaft against rotation with respect to a fixed structure.

The locking force provided by this embodiment in accordance with the invention, results from a tremendous friction generated through the radial force exerted by the helical springs 15 and 21 (by virtue of their having a smaller internal diameter than the external diameter of drum 13) upon the surface of drum 13. This force is readily diminished by expanding the springs, as is done by the rotation of the actuating rings 19 and 22, to thereby decrease the radial force exerted by the springs. Since the force required to expand the springs 15 and 21 is only a small fraction of the locking force provided by the embodiment, the use of a relatively small solenoid for actuation of the adjusting rings is possible. 7

The tapering of the springs 15 and 21 is for the purpose of eliminating mechanical backlash in the system. As is well known in the art, the taper speeds up the gripping action when the spring is released, by decreasing the moment of inertia of the spring wire cross-section. The coupling between the actuating ring and the spring, detailed inFIGURE 4, preserves this effect; if the coupling were done by bending the spring tip up into a recess in the actuating ring (which is the common approach and is the way the spring is coupled at its other end to the adjusting ring) then the advantage of the taper in eliminating backlash would be lost.

Although a tapered spring has been shown, similar advantages may be obtained with two springs, each having coils of uniform thickness but different from each other. The springs may be welded together in tandem so that they may, for example, replace tapered spring 15 (or 21, or both). The spring having the thinner coils would be located in the position of the tapered section of spring 15, while the spring having the thicker coils would be located about the retainer 12 and the joint between retainer 12 and drum 13. In such an arrangement, and also when using a tapered spring, it is important that the bridging coil, i.e., the coil (or coils) located about the joint or interface between retainer 12 and drum 13,

be a thick one, since the coil at that region bears the heaviest load.

The magnitude of the locking force is a function of the number of coils in each spring, as well as the relationship of the internal diameter of the helix to the external diameter of the drum about which it is wrapped. Each one of these three constitutes parameters wnich may be utilized for varying the locking force. in this connection, it may be noted that the adjusting rings 16 and 20 may be reset so as to expand or contract the springs 15 and 21, and thereby control the zero or initial mechanical setting of the springs as required.

The operation of the above described embodiment in accordance with the invention may now be readily understood. In the locked condition, with switch 26 open, the springs 15 and 21 are tightly compressed against their respective retaining members 12 and 14, and the left and right-hand regions of drum 13. As a consequence, a clockwise rotation of the shaft 11 (looking at the shaft from the left) is opposed by frictional forces exerted by spring 15, since a clockwise direction of rotation inherently tends to contract spring 15 even more than its normal condition. A clockwise rotation of the shaft is in a direction which tends to expand rather than contract spring 21. Conversely, a tendency of shaft 11 to rotate in a counterclockwise direction is opposed by spring 21. Actuation of the solenoid through closing the switch 26 results in rotation of the actuating rings 19 and 22, such that they are rotated in opposite angular directions, thereby serving to unwrap or expand both the springs 15 and 21, and thereby removing the radial force exerted by both springs from both ends of drum 13. As long as the switch 26 remains closed, then, the solenoid remains actuated and the cross pin 23 rotated to its stop; and therefore the springs remain expanded and shaft 21 free to rotate. The moment the solenoid is de-energized by opening switch 26, the cross pin 28 is rotated back to its neutral stop or position by virtue of the above-mentioned biasing spring (not shown), and the springs 15 and 21 once more contract and wrap tightly about their respective portions of drum 13.

The operation of FIGURES 1-4 has been based upon the simultaneous actuation of both the springs 15 and 21 by solenoid 24 to thereby free the shaft 11 for rotation in both angular senses. Certain X-ray applications, however, require that a shaft be free to rotate in one angular sense and be precluded from rotation in the opposite sense. One example is amedical X-ray device wherein a sphere is mounted on a shaft and the sphere is adapted to be pressed against a portion of the patients torso so as to gently force aside certain internal organs for the purpose of obtaining a less obstructed radiograph. This is done by rotating the rack and pinion mounted shaft along the rack in the direction of the patient until the sphere is in place against the body (under some pressure). The shaft must be free to rotate toward the patient, but locked against rotation in the opposite sense. After the radiograph is obtained, the shaft must be free to rotate in the sense against which it was previously locked so as to remove the sphere from its location against the patients body. Such an arrangement is readily provided in accordance with the principles of the invention. By removing the cross-pin 2S and solenoid 24, each of the actuating pins 30 and 31 on actuating rings 19 and 22 respectively, may be rotated separately and independently of the other. Rotation of only one of pins 30 or 31 permits rotation of shaft 11 in one, and only one angular sense, since solely one of the springs 15 or 21 is expanded.

While I have shown particular embodiments of my invention, it will be understood that many modifications may be made without departing from the spirit thereof, and I contemplate by the appended claims to cover any such modifications as fall within the true spirit and scope of my invention.

What I claim is:

1. A spring lock for use with X-ray apparatus comprising: first, second and third hollow members, each having a cylindrical portion, said three members being axially aligned in tandem relation and having equal external diameters; a cylindrical drive shaft coaxially disposed to said three members with said drive shaft rigidly secured to and through said second member which is intermediate said first and third members, said drive shaft being journaled in said first and third hollow members; a first helical spring normally having an internal diameter smaller than said external diameter of said first, second and third members, said first helical spring being wrapped about a portion of each of said first and second members; a first securing means for securing one end of said first spring to said first member; a first actuating annular ring coaxial with, external to, and rotatable about said second member, said first actuating ring having a pin in contactable but unsecured relation to an end of said first spring opposite to that end secured to said first securing means; a second helical spring normally having an internal diameter smaller than said external diameter of said first, second and third members, said second helical spring being wrapped about a portion of each of said third and second members; a second securing means for securing one end of said second Spring to said third member; a second actuating annular ring coaxial with, external, to and rotatable about said second member, said second actuatring ring having a pin in contactable but unsecured relation to an end of said second spring opposite to that end secured to said second securing means, said first and second actuating rings each having a radially extending pin emerging from its external surface in the same quadrant of said actuating rings; a rotary solenoid disposed below said second member and having a rotatable stem extending toward said second member in a direction perpendicular to the longitudinal axis of said drive shaft; a cross pin rigidly secured to said stem and mounted thereon in a direction perpendicular to the axis of said stem and to said actuating pins radially extending from said actuating rings and positioned on said stem to contact said actuating pins when said stem is rotated; said first and second members being mounted on a chassis and fixedly secured thereto whereby said second member, said drive shaft, and said actuating rings are all rotatable relative to said first and third members; said spring lock being characterized in that said first and second springs have external diameters which taper over those portions of said springs wrapped about said second member and in the respective directions from the ends of said second member toward said actuating rings, and in that the ends of said springs in contactable relation with said pins of said actuating rings are disposed fiat against, and contiguous with, said second cylindrical member.

2. A spring lock for use with X-ray apparatus comprising: first, second and third hollow members, each having a cylindrical portion, said three members being axially aligned in tandem relation and having equal external diameters; a cylindrical drive shaft coaxially disposed to said three members with said drive shaft rigidly secured to and through said second member which is intermediate said first and third members, said drive shaft being journaled in said first and third hollow members; a first helical spring normally having an internal diameter smaller than said external diameter of said first, second and third members, said first helical spring being wrapped about a portion of each of said first and second members; a first annular spring adjusting ring secured to, coaxial with, and external to said first member and secured to one end of said first spring; a first actuating annular ring coaxial with, external to, and rotatable about said second member, said first actuating ring having a pin in contactable but unsecured relation to an end of said first spring opposite to that end secured to said first adjusting ring; a second helical spring normally having an internal diameter smaller than said external diameter of said first,

second and third members, said second helical spring being wrapped about a portion of each of said third and secondmembers; a second annular spring adjusting ring secured to, coaxial with, and external to said third member and secured to one end of said second spring; a second actuating annular ring coaxial with, external to, and rotatable about said second member, said second actuating ring having a pin in contactable but unsecured relation to an end of said second spring opposite to that end secured to said second adjusting ring, said first and second actuating rings each having a radially extending pin emerging from its external surface in the same quadrant of said actuating rings; a rotary solenoid disposed below said second member and having a rotatable stem extending toward said second member in a direction perpendicular to the longitudinal axis of said drive shaft; a cross pin rigidly secured to said stem and mounted thereon in a direction perpendicular to the axis of'said stem and to said actuating pins radially extending from said actuating rings and positioned on said stem to contact said actuating pins when said stem is rotated; said first and second members being mounted on a chassis and fixedly secured thereto whereby said second member, said drive shaft, and said actuating rings are all rotatable relative to said first and third members. 7

3. A spring lock as recited in claim 2, wherein said first and second springs have external diameters which taper over those portions of said springs wrapped about said second member and in the respective directions from the ends of said second member toward said actuating rings, and wherein the ends of said springs in contactable relation with said pins of said actuating rings are disposed flat against, and contiguous with, said second cylindrical member. 1

4. A spring lock as recited in claim 2 wherein said first and second adjusting rings include means which when operated permit the rotation of said adjusting rings about said first and third cylindrical members to thereby change the tension of said first and second springs secured to said first and second actuating rings, respectively, and to thereby change the angularposition ,of said pin radially extending from said actuating rings. 1

5. A spring lock for use with X-ray apparatus comprising: a rotatable cylindrical member; a stationary cylindrical member in axial alignment with said rotatable v member; a helical spring coaxially disposed relative to at least a portion of each of said stationary and rotatable cylindrical members and wrapped about said members, said helical spring having an internal diameter which when said spring is not wrapped about' said members is smaller than the external diameter of'said rotatable and stationary members; means for securing one end of said spring to said stationary member; an annular actuating ring coaxial with, external to, and rotatable about said rotatable member, having a pin in contactable but unsecured relation to the other end of said spring; said spring having an external diameter which tapers over that portion of said spring wrapped about said rotatable member in the direction away from said stationary mem her; and said other end of said spring disposed flat against, and contiguous with, said rotatable member.

6. A spring lockcomprising: a rotatable cylindrical diameter of said rotatable and stationary members; means for securing one end of said spring to said stationary member; an actuating means in contactable relation to the a 7 other end of said spring for angularly moving said other end of said spring; said other end :of said spring being disposed flat against, and contiguouswith; said rotatable member. j 5 in References fitted in the file of this patent I UNITED STATES PATENTS a 589,779 Hall Sept. 7, 1897 1,443,703 Divelbiss Jan. 30, 1923 2,637,415 Winther May 5, 1953 2,756,855 Kloss July 31, 1956' 2,961,267 Hungerford et a1, Nov. 22, 1960 2,028,933 Mueller Apr. 10, 1962 'FOREIGN PATENTS 419,466 Germany Oct. 6, 1925

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US589779 *Mar 18, 1896Sep 7, 1897 Edward spencer hall
US1443703 *Oct 6, 1921Jan 30, 1923Emma R BowneVehicle brake
US2028933 *Apr 11, 1932Jan 28, 1936Johnson Roy WTime controlled mechanism for valves or the like
US2637415 *Dec 13, 1949May 5, 1953Eaton Mfg CoBand brake
US2756855 *Jan 21, 1955Jul 31, 1956Champion Motors CompanyHelical spring friction clutch
US2961267 *Jul 29, 1957Nov 22, 1960Curtiss Wright CorpDoor latch mechanisms
DE419466C *May 3, 1924Oct 6, 1925Foerderanlagen HeckelBandbremse
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3246868 *Jul 14, 1964Apr 19, 1966Anderson CoPosition-retaining device
US3874480 *Apr 3, 1972Apr 1, 1975Porter Co P LFriction brake mechanism
US3956905 *Dec 19, 1974May 18, 1976Rockwell International CorporationClutch
US4074192 *May 27, 1976Feb 14, 1978Sangamo Electric CompanyKeyless unidirectional reset for cumulative demand register
US4192608 *Oct 10, 1978Mar 11, 1980Canon Kabushiki KaishaCopying apparatus
US4278032 *Jun 4, 1979Jul 14, 1981Mayline Co., Inc.Two direction brake for a drafting table
US4364286 *Feb 15, 1980Dec 21, 1982The Rotor Tool CompanyBi-directional speed reducing mechanism
US4443125 *Dec 24, 1981Apr 17, 1984Epson CorporationPrinter
US4687252 *Jul 1, 1985Aug 18, 1987Fisher Dynamics CorporationSeat recliner mechanism with spring coil actuator and redundant positioning
US4705319 *Sep 16, 1985Nov 10, 1987Fisher Dynamics CorporationSeat recliner mechanism with spring coil actuator and creep eliminator feature
US5007507 *Jun 7, 1989Apr 16, 1991Hadewe B.V.Method of, and a device for, controlling the rotation of an element about an axis of means of a wrap spring
US5064038 *Feb 6, 1991Nov 12, 1991Batchelder J WilliamOverrunning clutch with improved spring coil and mounting of same
US5088156 *Jan 30, 1990Feb 18, 1992Kabushiki Kaisha ToshibaShaft lock device and portable information processing apparatus with shaft lock device
US5170871 *Oct 15, 1991Dec 15, 1992Batchelder J WilliamOverrunning clutch with improved spring coil and mounting of same
US5186285 *Feb 28, 1991Feb 16, 1993Hadewe B.V.Method of, and a device for, controlling the rotation of an element about an axis by means of a wrap spring
US6584917 *Jun 8, 2001Jul 1, 2003Dennis L. LongDevice for controlling the rotation of a shaft
DE3103698A1 *Feb 4, 1981Dec 24, 1981Porter Co P LMechanische verriegelung
DE3146289A1 *Nov 23, 1981May 26, 1983Keiper Automobiltechnik GmbhBrake-spring coupling for adjusting gears, especially of seat-setting devices
EP0381202A1 *Jan 31, 1990Aug 8, 1990Kabushiki Kaisha ToshibaShaft lock device with coil spring inserted in rotational shaft of hinge mechanism and portable information processing apparatus with shaft lock device
Classifications
U.S. Classification188/77.00W, 192/41.00R, 188/82.34, 188/166, 192/41.00S, 188/82.6
International ClassificationA61B6/00
Cooperative ClassificationA61B6/447
European ClassificationA61B6/44J10