Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3095031 A
Publication typeGrant
Publication dateJun 25, 1963
Filing dateDec 28, 1959
Priority dateDec 9, 1959
Publication numberUS 3095031 A, US 3095031A, US-A-3095031, US3095031 A, US3095031A
InventorsHarry Sinclair Leif, Oscar Eurenius Malte
Original AssigneeHarry Sinclair Leif, Oscar Eurenius Malte
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Burners for use in bore holes in the ground
US 3095031 A
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

June 25, 1963 M. o. EURENIUS ETAL 3,095,031

BURNERS FOR USE IN BORE HOLES IN THE GROUND Filed Dec. 28, 1959 2 Sheets-Sheet 1 INVENTOR MALTE OSCAR EURENIUS LEIF HARRY SINCLAIR AT TOR NEY June 25, 1963 M. o. EURENIUS ETAL 3,095,031

BURNERS FOR USE IN BORE HOLES IN THE GROUND Filed Dec. 28, 1959 2 Sheets-Sheet 2 1e 25 -36 ao 32" 31 Fig.3 Fi .1. 7 L7 v15 30- i i i P130 l I 1 I l I l K' B /18 18 i I as u U "32 324' I i -31. I l

A I r INVENTOR MALTE SCAR EURENIUS LEIF HARRY SINCLAIR ATTORNEY United States Patent 3,095,031 BURNERS FOR USE IN BORE HOLES IN THE GROUND Malte Oscar Eurenius, 7 von Rosensteins Vag, and Leif Harry Sinclair, 6 Andreas Vag, both of Kumla, Sweden Filed Dec. 28, 1.959, Ser. No. 862,212 Claims priority, application Sweden Dec. 9, 1959 6 Claims. (Cl. 158-99) This invention relates to burners for use in boreholes deeply penetrating into the ground.

More particularly this invention relates to gas burners of the type adapted to be placed in boreholes deeply penetrating from the surface into sub-surface deposits of bituminous sedimentary geological layers such as oil shale or tar sand for recovery of valuable liquid and/ or gaseous products therefrom by heating said deposits in their natural location in the ground.

Still more particularly this invention relates to a gas burner of the type described in the co-pending U.S. Serial No. 706,789, filed January 2, 1958 by Malte Oscar Eurenius, entitled Method and Means for Heating in Situ of Sub-surface Preferably Fuel Containing Deposits, in which tubular burner a uniform distribution of the temperature along a predetermined dimension of the tube is accomplished by conducting the combustion products or flue gases through a layer of solid granular particles such as sand, for example, so as to cause said particles to be whirled up and kept floating. To the upper endportion of the tube of the burner a mixture containing fuel and oxygen is supplied, the flue gases formed by the com bustion of the mixture within said tubular structure flowing downwards and then turning upwards through a space surrounding the burner tube and forming the zone in which the solid particles are kept floating.

It has now been found that the gas burner of the type set forth after interruption of the supply of the fuel mixture is diflicult to put in operation again unless the whole burner tube is lifted so'much as to cause its lower opening to be positioned above the layer of particles then packed into a dense mass. This lifting operation is elfected without diificulty if the burner is used in the heating of thin sedimentary deposits near the surface of the ground. The burner may then be lifted manually for the purpose of reignition. However, where the burner is used in the heating of thick sedimentary deposits and/ or deposits located at considerable depth below the ground surface its weight will be so great as to necessitate some kind of mechanical elevator device for the lifting operation.

One main object of the present invention is to improve the burner of the type set forth so as to permit easy lifting thereof even when intended for use in boreholes deeply penetrating into sub-surface deposits to be heated.

According to one main feature of the invention the burner tube is formed in two parts adapted to be in sealing connection during the heating operation but to be separated from one another by lifting of the upper part during the operation of igniting the fuel and oxygen mixture. During normal operation the tube parts thus are tightly pressed together and the burner works in the same manner as a non-divided tubular burner, for example of the type described in the co-pending application referred to hereinbefore. For the purpose of ignition of the fuel and oxygen mixture the parts are separated from one another in such a manner as to allow an igniting flame to penetrate into the interior of the burner through the space formed between said two parts.

Further objects and advantages of the invention will become apparent from the following description, considered in connection with the attached drawings, which form part of this specification, and of which:

FIG. 1 is a longitudinal sectional view of a tubular burner constructed according to the invention and illustrated in operative position in a vertical borehole in the ground.

FIGS. 2 and 3 are partial sectional views of adjacent end portions of the tube parts shown separated from one another and in an enlarged scale.

FIG. 4 is a perspective view also in an enlarged scale of end portions of the two tube parts in their abutting sealing position.

Referring now to FIG. 1, the fuel-carrying deposit to be heated is denoted by reference numeral 10. covered by a layer 12 consisting of limestone, shale, garden earth or the like. The burner comprises an external tube or protective casing 14 closed at its base and positioned in a hole bored through the layers 10 and 12, the space between the wall of the hole and the tube being filled With sand 15, if desired. The external tube 14 encloses a burner tube composed of two parts 16 and 18 which both have the same diameter and are kept in concentric position within the tube 14 by means of guide fins 20. The lower portion of the tubular burner part 18 constitutes the exhaust portion and is spaced by means of spacers or feet 22 for a predetermined distance from the base of the external tube 14 so as to permit the flue gases produced by the combustion of the fuel and oxygen containing mixture to escape from the burner tube. The lower end of the tube part 16 and the upper end of the tube part 18 are shaped so as to form a gas-tight fitting or seal when the two tube ends are pressed against one another. Said ends may be ground to constitute an external and internal conical sealing face 24 and 26, respectively (FIG. 2) or a conical and a part-spherical sealing face 27 and 2-8, respectively (FIG. 3). The sealing face of the lower part is preferably formed so as to prevent solid particles precipitated on said face from remainingthere and thereby obstructing gas-tight contact between the adjacent ends of the two tube parts. To eifect a well centered engagement between said adjacent tube ends either the upper or the lower end portion is provided with guide fins 30 forcing the other end portion into the correct position when the parts are pressed together.

These guide fins may preferably at the same time for their further purpose have to maintain the tube part centered relatively to the external tube 14.

Since the upper tube part 16 is in sealing engagement with the lower tube part 18 there may arise the danger of a change in pressure of the supplied mixture of fuel' and oxygen-containing gas forcing the burner parts apart from one another during a short time so as to allow gas to escape through the space between the adjacent end surfaces. This danger is eliminated by locking the burner' parts together in their sealing position. The lower burner part 18 is provided with at least one locking means such as projections 32 having their lower face 34 inclining slightly relatively to the horizontal plane. The guide fins 30 of the upper burner part are formed with recesses- 36 disposed so as to cause said recesses upon contact being established between the burner parts 16 and 18 to extend over and engage the locking projections 32 after a partrotational movement of the upper burner part relative to the lower part 18. This locking device has not only for its purpose to ensure the gas-tight seal between the burner parts but also to render possible simultaneous withdrawal of both burner parts from the external casing tube 14 by a single lifting operation.

The upper tube part 16 merges at its upper open end into a downwardly tapering conical part 38 which at its top is rigidly connected with a tube of reduced diameter for supply of fuel and an oxygen-containing gas such as a combustible gas and air or pure oxygen. This supply tube is through a coupling 42 and a hose 43 connected in a known manner with a piping system (not shown) Patented June 25, 1963 It is located above the ground and intended for controlled supply of fuel and oxygen-containing gas. The space between the lower burner part 18 and the external tube 14 is-fill'ed with sandor similar granular material 44 to a levelcausing saidmaterial during operation of the burner to be carried upwards and kept floating by the escaping flue gases within a zone, the upper level of which substantially coincides with the upper limit of the deposit 10 to be heated. The lower tube part 18 has such longitudinal dimension as in its position on the closed base of the'external tube-.14 with its upper end to project at least about one half yard over the upper level of the layer-f the granular material in its packed state of rest;

When :the burner is tobe ignited theupper tube part 16 is turnedso much as to disengage the locking members 32 and 36, whereupon it is lifted between approximately 2 and 4 inches. This lifting may be etfectedmanually or by means of a simple lifting device 46 operating according to the lever principle. Fuel and air or oxygen are supplied through the tube 40. When the air initially present in the burner has been driven out, the upwards flowing mixture of fuel and oxygen-is ignited when escaping from the external tube 14. The supply of said gas-mixture is then controlled so as to force the flame to migrate downwards in the space between the external tube 14 and the upper tube part of the burner and-into said burner through the'opening between theupper tube part 1-6 and the lower tube part 18 and to continue its migration upwards within the upper part 16 towards the conical part 38 in which the flame is normally maintained during operation. The upper part 16- is then lowered towards the lower part 18 and the parts :are locked together in the mannerdescribed hereinbefore. As soon as the sealing between the parts has been completed the flue gases will find their way through thelower endof the tube part 18 into the space between said part 18 and the external tube 14 and cause fluidization of-the layer of granular material 44. Thereafter the supply of fuel is adjusted-so as to cause a desired quantity of heat to be genera-ted in the burner and uponuniform distribution transferred into the deposit.

Whileseveral more 'or less specific embodiments of the invention have been described, it is to be understood that this is for purpose of illustration only and the-invention is not to be limited thereby but its scope is to be determined by the appended claims.

What we claim is:

1. A burner for heating a sub-surface deposit for recovery of valuable products and'constituted of a burner tube adapted to be lowered into a-vertical hole formed in the ground and penetrating from the surface into the deposit, said burner tube comprising a feeder portion connectable with its upper end to a source of a mixture containing fuel and oxygen and merging atits lower end intoa downwardly conically tapering portion constituting the zone of combustion of said mixture during normal operationof the-burner, and an exhaust portion having a combustion of said mixture, a casing surrounding said exhaust portion and 'feder portion, andat its base in open communication with the open base of the exhaust portion to constitute a flow passage in an upward direction to and above the surface of-the ground for the flue gases leaving the open base end of the exhaust portion, said casing containing a body of solid granular particles providing particles between thelower part thereof and the lower part of-the burner tube infloatingcondition by upwardly moving flue gases within'a zone substantially coinciding with that part of the deposit to be heated, characterized by said exhaust portion being subdivided at a slight distance from the conically tapering portion into two individual end-to-end communicating parts of which a first part is integral with said conically tapering portion and a second part formed'as a separate member, means to keep said'two parts of the exhaust portion in end to-end abutting and sealing connection with one another and to lift the first part together with the conically tapering portionand the feeder portion during the operation of igniting said fuel and oxygen mixture with the second part remaining in its location within the hole.

2. A burner accordingto claim 1, characterized by a spacer at the base of the-casing, on .and to support the secondmemberin spaced relation from the bottom of the protective casing, said second member further having a longitudinal dimension sufli'cient to raise the upper level of the tube portion of said second member above the upper level of the layer of the mass of granular particles in their packed state at rest;

3. A burner according to claim 1, characterized by the means to keep the parts of the exhaust portion in releasable sealing connection comprising locking members adapted to connect said parts axially by apart-rotational displacement of the first part relative to the second part, the abutting ends having inter-mating taperedfaces.

4. A burner according to claim 1, characterized by the means to keep the parts of'tlie exhaust portion in releasable sealing connection comprising locking members adapted to connect said parts axially by apart-rotational displacementof the first part relative to the-second part, one of the abuttingends being conical and the other being of part-spherical shape.

5. A burner accordingto claim 3, characterized by the locking members being formed' as guide means to center the first part'relative to the second part.

6. A burner according. to claim 5, characterized by additional guide fins provided on at least one of the parts of the exhaust portion to center said part relative to the other part of said exhaust portion.

References Cited in the fileof'this patent UNITED STATESPATENTS 2,051,713 Howard Aug. 18, 1936 2,260,167 Cope Oct. 21, 1941 2,269,699 Stoecker et al. Jan. 13, 1942 2,515,618 Wallerius -J-uly 18,.1950 2,890,755 Eurenius et al June 16, 1959 2,902,270 Salomonsson et-al. Sept. 1, 1959 2,927,640 Kenneday Mar. 8, 1960

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2051713 *Oct 5, 1934Aug 18, 1936J H Mcevoy & CompanySet shoe seal and setting tool
US2260167 *Jun 9, 1938Oct 21, 1941Electric Furnace CoPilot for fuel burners
US2269699 *May 23, 1938Jan 13, 1942Askania Werke AgFuel burner for air heating apparatus
US2515618 *Apr 13, 1944Jul 18, 1950Sunbeam CorpLiquid bath furnace
US2890755 *Jan 4, 1954Jun 16, 1959Husky Oil CompanyApparatus for recovering combustible substances from subterraneous deposits in situ
US2902270 *Sep 1, 1953Sep 1, 1959Husky Oil CompanyMethod of and means in heating of subsurface fuel-containing deposits "in situ"
US2927640 *May 16, 1957Mar 8, 1960Jersey Prod Res CoWell tool placement apparatus
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4886118 *Feb 17, 1988Dec 12, 1989Shell Oil CompanyPyrolysis; enhanced oil recovery
US5255742 *Jun 12, 1992Oct 26, 1993Shell Oil CompanyHeat injection process
US5297626 *Jun 12, 1992Mar 29, 1994Shell Oil CompanyOil recovery process
US5392854 *Dec 20, 1993Feb 28, 1995Shell Oil CompanyOil recovery process
US5404952 *Dec 20, 1993Apr 11, 1995Shell Oil CompanyHeat injection process and apparatus
US6056057 *Oct 15, 1997May 2, 2000Shell Oil CompanyHeater well method and apparatus
US6581684Apr 24, 2001Jun 24, 2003Shell Oil CompanyIn Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US6588504Apr 24, 2001Jul 8, 2003Shell Oil CompanyConversion of hydrocarbons to produce hydrocarbons, hydrogen, and/or novel product streams from underground coal formations; pyrolysis
US6591906Apr 24, 2001Jul 15, 2003Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US6591907Apr 24, 2001Jul 15, 2003Shell Oil CompanyPyrolysis
US6607033Apr 24, 2001Aug 19, 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to produce a condensate
US6609570Apr 24, 2001Aug 26, 2003Shell Oil CompanyIn situ thermal processing of a coal formation and ammonia production
US6688387Apr 24, 2001Feb 10, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6698515Apr 24, 2001Mar 2, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a relatively slow heating rate
US6702016Apr 24, 2001Mar 9, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US6708758Apr 24, 2001Mar 23, 2004Shell Oil CompanyIn situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US6712135Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a coal formation in reducing environment
US6712136Apr 24, 2001Mar 30, 2004Shell Oil CompanyProviding heat to the formation; controlling the heat from the heat source such that an average temperature within at least a majority of the selected section of the formation is less than about 375 degrees c.
US6712137Apr 24, 2001Mar 30, 2004Shell Oil CompanyHeat exchanging to superimpose heat
US6715546Apr 24, 2001Apr 6, 2004Shell Oil CompanyChemical and/or physical properties of hydrocarbon material within a subterranean formation may need to be changed to allow hydrocarbon material to be more easily removed
US6715547Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US6715548Apr 24, 2001Apr 6, 2004Shell Oil CompanyElectrical heaters may be used to heat the subterranean formation by radiation and/or conduction
US6715549Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US6719047Apr 24, 2001Apr 13, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US6722429Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6722430Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US6722431Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of hydrocarbons within a relatively permeable formation
US6725920Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US6725921Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation by controlling a pressure of the formation
US6725928Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a distributed combustor
US6729395Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US6729396Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US6729397Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US6729401Apr 24, 2001May 4, 2004Shell Oil CompanySynthesis gas may be produced from the formation. synthesis gas may be used as a feed stream in an ammonia synthesis process. ammonia may be used as a feed stream in a urea synthesis process.
US6732794Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6732795Apr 24, 2001May 11, 2004Shell Oil CompanyProviding heat from one or more heat sources to at least one portion of formation; allowing heat to transfer from the one or more heat sources to a selected section of the formation; controlling the heat; producing a mixture from the formation
US6732796Apr 24, 2001May 11, 2004Shell Oil CompanyHeating section of formation with heat sources to temperature allowing generation of synthesis gas, providing synthesis gas generating fluid to section, removing synthesis gas generated, repeating for second section, blending for desired ratio
US6736215Apr 24, 2001May 18, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US6739393Apr 24, 2001May 25, 2004Shell Oil CompanyIn situ thermal processing of a coal formation and tuning production
US6739394Apr 24, 2001May 25, 2004Shell Oil CompanyProviding heat and a synthesis gas generating fluid to the section to generate synthesis gas
US6742587Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US6742588Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US6742589Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US6742593Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US6745831Apr 24, 2001Jun 8, 2004Shell Oil CompanyMixture of hydrocarbons, h2, and/or other formation fluids may be produced from the formation. heat may be applied to the formation to raise a temperature of a portion of the formation to a pyrolysis temperature.
US6745832Apr 24, 2001Jun 8, 2004Shell Oil CompanySitu thermal processing of a hydrocarbon containing formation to control product composition
US6745837Apr 24, 2001Jun 8, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US6749021Apr 24, 2001Jun 15, 2004Shell Oil CompanyPyrolysis
US6752210Apr 24, 2001Jun 22, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using heat sources positioned within open wellbores
US6758268Apr 24, 2001Jul 6, 2004Shell Oil CompanyHeat exchanging, pyrolysis; monitoring temperature
US6761216Apr 24, 2001Jul 13, 2004Shell Oil CompanyPyrolysis temperature
US6763886Apr 24, 2001Jul 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with carbon dioxide sequestration
US6769483Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US6769485Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ production of synthesis gas from a coal formation through a heat source wellbore
US6789625Apr 24, 2001Sep 14, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US6805195Apr 24, 2001Oct 19, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US6820688Apr 24, 2001Nov 23, 2004Shell Oil CompanyHeat exchanging after pyrolyzation to support synthesis gas generation
US6866097Apr 24, 2001Mar 15, 2005Shell Oil CompanySuperpositioning of heaters for pyrolysis to form mixture of hydrocarbons and hydrogen; controlling pressure; heat exchanging
US6871707Apr 24, 2001Mar 29, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
US6877554Apr 24, 2001Apr 12, 2005Shell Oil CompanyPyrolysis
US6877555Apr 24, 2002Apr 12, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation while inhibiting coking
US6880633Apr 24, 2002Apr 19, 2005Shell Oil CompanyIncludes shutting-in an in situ treatment process in an oil shale formation may include terminating heating from heat sources providing heat to a portion of the formation; hydrocarbon vapor may be produced
US6880635Apr 24, 2001Apr 19, 2005Shell Oil CompanyMethods and systems for production of hydrocarbons, hydrogen, and/or other products from underground coal formations
US6889769Apr 24, 2001May 10, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US6896053Apr 24, 2001May 24, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US6902003Apr 24, 2001Jun 7, 2005Shell Oil CompanyAllowing heat to transfer from heaters to a formation selected for heating using a total organic matter weight percentage of > 5% and recirculating hydrogen
US6902004Apr 24, 2001Jun 7, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a movable heating element
US6910536Apr 24, 2001Jun 28, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US6913078Apr 24, 2001Jul 5, 2005Shell Oil CompanyIn Situ thermal processing of hydrocarbons within a relatively impermeable formation
US6915850Apr 24, 2002Jul 12, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation having permeable and impermeable sections
US6918442Apr 24, 2002Jul 19, 2005Shell Oil CompanyIn situ conversion of hydrocarbons to produce hydrocarbons, hydrogen, and/or novel product streams from underground oil shale formations
US6918443Apr 24, 2002Jul 19, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US6923257Apr 24, 2002Aug 2, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce a condensate
US6923258Jun 12, 2003Aug 2, 2005Shell Oil CompanyIn situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6929067Apr 24, 2002Aug 16, 2005Shell Oil CompanyHeat sources with conductive material for in situ thermal processing of an oil shale formation
US6932155Oct 24, 2002Aug 23, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US6948562Apr 24, 2002Sep 27, 2005Shell Oil CompanyProduction of a blending agent using an in situ thermal process in a relatively permeable formation
US6948563Apr 24, 2001Sep 27, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US6951247Apr 24, 2002Oct 4, 2005Shell Oil CompanyControl the heat exchanging, pyrolyzing hydrocarbons, enhancing oil recovery
US6953087Apr 24, 2001Oct 11, 2005Shell Oil CompanyThermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US6959761Apr 24, 2001Nov 1, 2005Shell Oil CompanyIn situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US6964300Apr 24, 2002Nov 15, 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US6966372Apr 24, 2001Nov 22, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US6966374Apr 24, 2002Nov 22, 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation using gas to increase mobility
US6969123Oct 24, 2002Nov 29, 2005Shell Oil CompanyUpgrading and mining of coal
US6973967Apr 24, 2001Dec 13, 2005Shell Oil Companyhydrocarbons within a coal formation are converted in situ within the formation to yield a mixture of relatively high quality hydrocarbon products, hydrogen, and other products; the coal is heated to to temperatures that allow pyrolysis
US6981548Apr 24, 2002Jan 3, 2006Shell Oil Companyheating and pyrolysis of heavy hydrocarbon sections in subterranean wells to produce light hydrocarbons; reduced viscosity improves movement; fluid removal in liquid and/or vapor phase
US6991031Apr 24, 2001Jan 31, 2006Shell Oil CompanyIn situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US6991032Apr 24, 2002Jan 31, 2006Shell Oil CompanyHeat sources positioned within the formation in a selected pattern raise a temperature of a portion of the formation to a pyrolysis temperature.
US6991033Apr 24, 2002Jan 31, 2006Shell Oil CompanyIn situ thermal processing while controlling pressure in an oil shale formation
US6991036Apr 24, 2002Jan 31, 2006Shell Oil CompanyThermal processing of a relatively permeable formation
US6991045Oct 24, 2002Jan 31, 2006Shell Oil CompanyForming openings in a hydrocarbon containing formation using magnetic tracking
US6994160Apr 24, 2001Feb 7, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US6994161Apr 24, 2001Feb 7, 2006Kevin Albert MaherIn situ thermal processing of a coal formation with a selected moisture content
US6994168 *Apr 24, 2001Feb 7, 2006Scott Lee WellingtonIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US6994169Apr 24, 2002Feb 7, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation with a selected property
US6997255Apr 24, 2001Feb 14, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a reducing environment
US6997518Apr 24, 2002Feb 14, 2006Shell Oil CompanyIn situ thermal processing and solution mining of an oil shale formation
US7004247Apr 24, 2002Feb 28, 2006Shell Oil CompanyConductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US7004251Apr 24, 2002Feb 28, 2006Shell Oil CompanyIn situ thermal processing and remediation of an oil shale formation
US7011154Oct 24, 2002Mar 14, 2006Shell Oil CompanyIn situ recovery from a kerogen and liquid hydrocarbon containing formation
US7013972Apr 24, 2002Mar 21, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a natural distributed combustor
US7017661Apr 24, 2001Mar 28, 2006Shell Oil CompanyProduction of synthesis gas from a coal formation
US7032660 *Apr 24, 2002Apr 25, 2006Shell Oil CompanyIn situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US7036583Sep 24, 2001May 2, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US7040398Apr 24, 2002May 9, 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation in a reducing environment
US7040399Apr 24, 2002May 9, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a controlled heating rate
US7040400Apr 24, 2002May 9, 2006Shell Oil CompanyIn situ thermal processing of a relatively impermeable formation using an open wellbore
US7051807Apr 24, 2002May 30, 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with quality control
US7051808Oct 24, 2002May 30, 2006Shell Oil CompanySeismic monitoring of in situ conversion in a hydrocarbon containing formation
US7051811Apr 24, 2002May 30, 2006Shell Oil CompanyIn situ thermal processing through an open wellbore in an oil shale formation
US7055600Apr 24, 2002Jun 6, 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with controlled production rate
US7063145Oct 24, 2002Jun 20, 2006Shell Oil CompanyMethods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US7066254Oct 24, 2002Jun 27, 2006Shell Oil CompanyIn situ thermal processing of a tar sands formation
US7066257Oct 24, 2002Jun 27, 2006Shell Oil CompanyIn situ recovery from lean and rich zones in a hydrocarbon containing formation
US7073578Oct 24, 2003Jul 11, 2006Shell Oil CompanyStaged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US7077198Oct 24, 2002Jul 18, 2006Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using barriers
US7077199Oct 24, 2002Jul 18, 2006Shell Oil CompanyIn situ thermal processing of an oil reservoir formation
US7086465Oct 24, 2002Aug 8, 2006Shell Oil CompanyIn situ production of a blending agent from a hydrocarbon containing formation
US7086468Apr 24, 2001Aug 8, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US7090013Oct 24, 2002Aug 15, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US7096941Apr 24, 2001Aug 29, 2006Shell Oil CompanyIn situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US7096942Apr 24, 2002Aug 29, 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation while controlling pressure
US7096953Apr 24, 2001Aug 29, 2006Shell Oil CompanyIn situ thermal processing of a coal formation using a movable heating element
US7100994Oct 24, 2002Sep 5, 2006Shell Oil Companyinjecting a heated fluid into the well bore, producing a second fluid from the formation, conducting an in situ conversion process in the selected section.
US7104319Oct 24, 2002Sep 12, 2006Shell Oil CompanyIn situ thermal processing of a heavy oil diatomite formation
US7114566Oct 24, 2002Oct 3, 2006Shell Oil CompanyHeat treatment using natural distributed combustor; oxidation of hydrocarbons to generate heat; pyrolysis
US7121341Oct 24, 2003Oct 17, 2006Shell Oil CompanyConductor-in-conduit temperature limited heaters
US7121342Apr 23, 2004Oct 17, 2006Shell Oil CompanyThermal processes for subsurface formations
US7128153Oct 24, 2002Oct 31, 2006Shell Oil CompanyTreatment of a hydrocarbon containing formation after heating
US7156176Oct 24, 2002Jan 2, 2007Shell Oil CompanyInstallation and use of removable heaters in a hydrocarbon containing formation
US7165615Oct 24, 2002Jan 23, 2007Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US7219734Oct 24, 2003May 22, 2007Shell Oil CompanyInhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US7225866Jan 31, 2006Jun 5, 2007Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US7320364Apr 22, 2005Jan 22, 2008Shell Oil CompanyInhibiting reflux in a heated well of an in situ conversion system
US7353872Apr 22, 2005Apr 8, 2008Shell Oil CompanyStart-up of temperature limited heaters using direct current (DC)
US7357180Apr 22, 2005Apr 15, 2008Shell Oil CompanyInhibiting effects of sloughing in wellbores
US7360588Oct 17, 2006Apr 22, 2008Shell Oil CompanyThermal processes for subsurface formations
US7370704Apr 22, 2005May 13, 2008Shell Oil CompanyTriaxial temperature limited heater
US7383877Apr 22, 2005Jun 10, 2008Shell Oil CompanyTemperature limited heaters with thermally conductive fluid used to heat subsurface formations
US7424915Apr 22, 2005Sep 16, 2008Shell Oil CompanyVacuum pumping of conductor-in-conduit heaters
US7431076Apr 22, 2005Oct 7, 2008Shell Oil CompanyTemperature limited heaters using modulated DC power
US7435037Apr 21, 2006Oct 14, 2008Shell Oil CompanyLow temperature barriers with heat interceptor wells for in situ processes
US7461691Jan 23, 2007Dec 9, 2008Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7481274Apr 22, 2005Jan 27, 2009Shell Oil CompanyTemperature limited heaters with relatively constant current
US7490665Apr 22, 2005Feb 17, 2009Shell Oil CompanyVariable frequency temperature limited heaters
US7500528Apr 21, 2006Mar 10, 2009Shell Oil CompanyLow temperature barrier wellbores formed using water flushing
US7510000Apr 22, 2005Mar 31, 2009Shell Oil CompanyReducing viscosity of oil for production from a hydrocarbon containing formation
US7516785Oct 10, 2007Apr 14, 2009Exxonmobil Upstream Research CompanyMethod of developing subsurface freeze zone
US7516787Oct 10, 2007Apr 14, 2009Exxonmobil Upstream Research CompanyMethod of developing a subsurface freeze zone using formation fractures
US7527094Apr 21, 2006May 5, 2009Shell Oil CompanyDouble barrier system for an in situ conversion process
US7533719Apr 20, 2007May 19, 2009Shell Oil CompanyWellhead with non-ferromagnetic materials
US7540324Oct 19, 2007Jun 2, 2009Shell Oil CompanyHeating hydrocarbon containing formations in a checkerboard pattern staged process
US7546873Apr 21, 2006Jun 16, 2009Shell Oil CompanyLow temperature barriers for use with in situ processes
US7549470Oct 20, 2006Jun 23, 2009Shell Oil CompanySolution mining and heating by oxidation for treating hydrocarbon containing formations
US7556095Oct 20, 2006Jul 7, 2009Shell Oil CompanySolution mining dawsonite from hydrocarbon containing formations with a chelating agent
US7556096Oct 20, 2006Jul 7, 2009Shell Oil CompanyVarying heating in dawsonite zones in hydrocarbon containing formations
US7559367Oct 20, 2006Jul 14, 2009Shell Oil CompanyTemperature limited heater with a conduit substantially electrically isolated from the formation
US7559368Oct 20, 2006Jul 14, 2009Shell Oil CompanySolution mining systems and methods for treating hydrocarbon containing formations
US7562706Oct 20, 2006Jul 21, 2009Shell Oil CompanySystems and methods for producing hydrocarbons from tar sands formations
US7562707Oct 19, 2007Jul 21, 2009Shell Oil CompanyHeating hydrocarbon containing formations in a line drive staged process
US7575052Apr 21, 2006Aug 18, 2009Shell Oil CompanyIn situ conversion process utilizing a closed loop heating system
US7575053Apr 21, 2006Aug 18, 2009Shell Oil CompanyLow temperature monitoring system for subsurface barriers
US7581589Oct 20, 2006Sep 1, 2009Shell Oil CompanyMethods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US7584789Oct 20, 2006Sep 8, 2009Shell Oil CompanyMethods of cracking a crude product to produce additional crude products
US7597147Apr 20, 2007Oct 6, 2009Shell Oil CompanyTemperature limited heaters using phase transformation of ferromagnetic material
US7604052Apr 20, 2007Oct 20, 2009Shell Oil CompanyCompositions produced using an in situ heat treatment process
US7610962Apr 20, 2007Nov 3, 2009Shell Oil CompanyProviding acidic gas to a subterrean formation, such as oil shale, by heating from an electrical heater and injecting through an oil wellbore; one of the acidic acids includes hydrogen sulfide and is introduced at a pressure below the lithostatic pressure of the formation to produce fluids; efficiency
US7631689Apr 20, 2007Dec 15, 2009Shell Oil CompanySulfur barrier for use with in situ processes for treating formations
US7631690Oct 19, 2007Dec 15, 2009Shell Oil CompanyHeating hydrocarbon containing formations in a spiral startup staged sequence
US7631691Jan 25, 2008Dec 15, 2009Exxonmobil Upstream Research CompanyMethods of treating a subterranean formation to convert organic matter into producible hydrocarbons
US7635023Apr 20, 2007Dec 22, 2009Shell Oil CompanyTime sequenced heating of multiple layers in a hydrocarbon containing formation
US7635024Oct 19, 2007Dec 22, 2009Shell Oil CompanyHeating tar sands formations to visbreaking temperatures
US7635025Oct 20, 2006Dec 22, 2009Shell Oil CompanyCogeneration systems and processes for treating hydrocarbon containing formations
US7644765Oct 19, 2007Jan 12, 2010Shell Oil CompanyHeating tar sands formations while controlling pressure
US7647971Dec 23, 2008Jan 19, 2010Exxonmobil Upstream Research CompanyMethod of developing subsurface freeze zone
US7647972Dec 23, 2008Jan 19, 2010Exxonmobil Upstream Research CompanyFracturing fluid is injected into well to form fracture at depth of subsurface formation, providing fluid communication between first and second depths in well; cooling fluid is circulated under pressure through well into fracture to cause fluid to flow into subsurface formations, lowering temperature
US7669657Oct 10, 2007Mar 2, 2010Exxonmobil Upstream Research CompanyEnhanced shale oil production by in situ heating using hydraulically fractured producing wells
US7673681Oct 19, 2007Mar 9, 2010Shell Oil CompanyTreating tar sands formations with karsted zones
US7673786Apr 20, 2007Mar 9, 2010Shell Oil CompanyWelding shield for coupling heaters
US7677310Oct 19, 2007Mar 16, 2010Shell Oil CompanyCreating and maintaining a gas cap in tar sands formations
US7677314Oct 19, 2007Mar 16, 2010Shell Oil CompanyMethod of condensing vaporized water in situ to treat tar sands formations
US7681647Oct 19, 2007Mar 23, 2010Shell Oil CompanyMethod of producing drive fluid in situ in tar sands formations
US7683296Apr 20, 2007Mar 23, 2010Shell Oil CompanyAdjusting alloy compositions for selected properties in temperature limited heaters
US7703513Oct 19, 2007Apr 27, 2010Shell Oil CompanyWax barrier for use with in situ processes for treating formations
US7717171Oct 19, 2007May 18, 2010Shell Oil CompanyMoving hydrocarbons through portions of tar sands formations with a fluid
US7730945Oct 19, 2007Jun 8, 2010Shell Oil CompanyUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7730946Oct 19, 2007Jun 8, 2010Shell Oil CompanyTreating tar sands formations with dolomite
US7730947Oct 19, 2007Jun 8, 2010Shell Oil CompanyCreating fluid injectivity in tar sands formations
US7735935Jun 1, 2007Jun 15, 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US7785427Apr 20, 2007Aug 31, 2010Shell Oil CompanyChromium, nickel, copper; niobium, iron manganese, nitrogen; nanonitrides; system for heating a subterranean formation;
US7793722Apr 20, 2007Sep 14, 2010Shell Oil CompanyNon-ferromagnetic overburden casing
US7798220Apr 18, 2008Sep 21, 2010Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US7798221May 31, 2007Sep 21, 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7831134Apr 21, 2006Nov 9, 2010Shell Oil CompanyGrouped exposed metal heaters
US7832484Apr 18, 2008Nov 16, 2010Shell Oil CompanyMolten salt as a heat transfer fluid for heating a subsurface formation
US7841401Oct 19, 2007Nov 30, 2010Shell Oil CompanyGas injection to inhibit migration during an in situ heat treatment process
US7841408Apr 18, 2008Nov 30, 2010Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US7841425Apr 18, 2008Nov 30, 2010Shell Oil CompanyDrilling subsurface wellbores with cutting structures
US7845411Oct 19, 2007Dec 7, 2010Shell Oil CompanyIn situ heat treatment process utilizing a closed loop heating system
US7849922Apr 18, 2008Dec 14, 2010Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US7860377Apr 21, 2006Dec 28, 2010Shell Oil CompanySubsurface connection methods for subsurface heaters
US7866385Apr 20, 2007Jan 11, 2011Shell Oil CompanyPower systems utilizing the heat of produced formation fluid
US7912358Apr 20, 2007Mar 22, 2011Shell Oil CompanyAlternate energy source usage for in situ heat treatment processes
US7931086Apr 18, 2008Apr 26, 2011Shell Oil CompanyHeating systems for heating subsurface formations
US7950453Apr 18, 2008May 31, 2011Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US7986869Apr 21, 2006Jul 26, 2011Shell Oil CompanyVarying properties along lengths of temperature limited heaters
US8027571Apr 21, 2006Sep 27, 2011Shell Oil CompanyIn situ conversion process systems utilizing wellbores in at least two regions of a formation
US8042610Apr 18, 2008Oct 25, 2011Shell Oil CompanyParallel heater system for subsurface formations
US8070840Apr 21, 2006Dec 6, 2011Shell Oil CompanyTreatment of gas from an in situ conversion process
US8082995Nov 14, 2008Dec 27, 2011Exxonmobil Upstream Research CompanyOptimization of untreated oil shale geometry to control subsidence
US8083813Apr 20, 2007Dec 27, 2011Shell Oil CompanyMethods of producing transportation fuel
US8087460Mar 7, 2008Jan 3, 2012Exxonmobil Upstream Research CompanyGranular electrical connections for in situ formation heating
US8104537Dec 15, 2009Jan 31, 2012Exxonmobil Upstream Research CompanyMethod of developing subsurface freeze zone
US8122955Apr 18, 2008Feb 28, 2012Exxonmobil Upstream Research CompanyDownhole burners for in situ conversion of organic-rich rock formations
US8146664May 21, 2008Apr 3, 2012Exxonmobil Upstream Research CompanyUtilization of low BTU gas generated during in situ heating of organic-rich rock
US8151877Apr 18, 2008Apr 10, 2012Exxonmobil Upstream Research CompanyDownhole burner wells for in situ conversion of organic-rich rock formations
US8151880Dec 9, 2010Apr 10, 2012Shell Oil CompanyMethods of making transportation fuel
US8151884Oct 10, 2007Apr 10, 2012Exxonmobil Upstream Research CompanyCombined development of oil shale by in situ heating with a deeper hydrocarbon resource
US8191630Apr 28, 2010Jun 5, 2012Shell Oil CompanyCreating fluid injectivity in tar sands formations
US8192682Apr 26, 2010Jun 5, 2012Shell Oil CompanyHigh strength alloys
US8224163Oct 24, 2003Jul 17, 2012Shell Oil CompanyVariable frequency temperature limited heaters
US8224164Oct 24, 2003Jul 17, 2012Shell Oil CompanyInsulated conductor temperature limited heaters
US8224165Apr 21, 2006Jul 17, 2012Shell Oil CompanyTemperature limited heater utilizing non-ferromagnetic conductor
US8225866Jul 21, 2010Jul 24, 2012Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8230929Mar 17, 2009Jul 31, 2012Exxonmobil Upstream Research CompanyMethods of producing hydrocarbons for substantially constant composition gas generation
US8238730Oct 24, 2003Aug 7, 2012Shell Oil CompanyHigh voltage temperature limited heaters
US8327681Apr 18, 2008Dec 11, 2012Shell Oil CompanyWellbore manufacturing processes for in situ heat treatment processes
US8355623Apr 22, 2005Jan 15, 2013Shell Oil CompanyTemperature limited heaters with high power factors
US8381815Apr 18, 2008Feb 26, 2013Shell Oil CompanyProduction from multiple zones of a tar sands formation
US8459359Apr 18, 2008Jun 11, 2013Shell Oil CompanyTreating nahcolite containing formations and saline zones
US8540020Apr 21, 2010Sep 24, 2013Exxonmobil Upstream Research CompanyConverting organic matter from a subterranean formation into producible hydrocarbons by controlling production operations based on availability of one or more production resources
US8596355Dec 10, 2010Dec 3, 2013Exxonmobil Upstream Research CompanyOptimized well spacing for in situ shale oil development
US8606091Oct 20, 2006Dec 10, 2013Shell Oil CompanySubsurface heaters with low sulfidation rates
US8608249Apr 26, 2010Dec 17, 2013Shell Oil CompanyIn situ thermal processing of an oil shale formation
US8616279Jan 7, 2010Dec 31, 2013Exxonmobil Upstream Research CompanyWater treatment following shale oil production by in situ heating
US8616280Jun 17, 2011Dec 31, 2013Exxonmobil Upstream Research CompanyWellbore mechanical integrity for in situ pyrolysis
US8622127Jun 17, 2011Jan 7, 2014Exxonmobil Upstream Research CompanyOlefin reduction for in situ pyrolysis oil generation
US8622133Mar 7, 2008Jan 7, 2014Exxonmobil Upstream Research CompanyResistive heater for in situ formation heating
US8641150Dec 11, 2009Feb 4, 2014Exxonmobil Upstream Research CompanyIn situ co-development of oil shale with mineral recovery
US8662175Apr 18, 2008Mar 4, 2014Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8770284Apr 19, 2013Jul 8, 2014Exxonmobil Upstream Research CompanySystems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
USRE35696 *Sep 28, 1995Dec 23, 1997Shell Oil CompanyHeat injection process
EP2098683A1Mar 4, 2008Sep 9, 2009ExxonMobil Upstream Research CompanyOptimization of untreated oil shale geometry to control subsidence
Classifications
U.S. Classification166/59, 175/11, 431/7, 431/202, 299/6
International ClassificationE21B36/00, E21B36/02
Cooperative ClassificationE21B36/02
European ClassificationE21B36/02