Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3103042 A
Publication typeGrant
Publication dateSep 10, 1963
Filing dateSep 28, 1959
Priority dateSep 28, 1959
Publication numberUS 3103042 A, US 3103042A, US-A-3103042, US3103042 A, US3103042A
InventorsJohn Martin
Original AssigneeMaquinas Fabricacion Sa De
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Structural building element
US 3103042 A
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

Sept. 10, 1963 J. MARTIN STRUCTURAL BUILDING ELEMENT 2 SheetsSheet 1 Filed Sept. 28, 1959 INVENTOR. John Martin,

ATTORNEYS j Sept. 10, 1963 J. MARTIN STRUCTURAL BUILDING ELEMENT 2 Sheets-Sheet 2 Filed Sept. 28, 1959 INVENTOR John Martin ATTORNEYS United States Patent 3,103,042 STRUCTURAL BUILDING ELEMENT John Martin, Monterrey, Nuevo Leon, Mexico, assignor to Fabricaci'on de Maquinas, S.A., Monterrey, Nuevo Leon, Mexico, a corporation of Mexico Filed Sept. 28, 1959, Ser. No. 842,820 1 Claim. (CI. 20-15) This invention relates to thermal insulation members and more particularly to thermal insulation members which have load supporting characteristics and which can therefore be classified as construction elements. While this development was originally designed for use in a particular type of roof construction which is widely used in other countries, notably Mexico, it should have a wide field of application wherever its unique combined properties of thermal insulation and load bearing would be useful.

In any form of thermal insulation, it is always a problem to construct a member such that its insulating properties are not destroyed with age or by the absorption of moisture, dust, dirt and the like. It is likewise a problem to provide a form of insulation which is easily shipped and handled without the likelihood of destruction of its useful properties.

Accordingly, it is the principal object of the present invention to provide a readily usable and inexpensively produced unitized form of load supporting and thermal insulating material. A further object of the present invention is to provide a fluid tight thermalinsulating construction element with substantial permanent load bearing properties. Other objects will be apparent from the following description when read in conjunction with the attached sheets of drawings in which FIGS. 1A and 1B show a preferred embodiment of the construction element; and FIG. 2 is a perspective view with parts broken away of a typical roof structure of the type for which the construction element of the present invention was designed; and FIGS. 3, 4, 5 and 6 show alternative embodiments.

In general, the foregoing objects of the present invention are achieved by structurally reinforcing a bat of thermal insulating material and heat sealing the entire structure within a tight fitting plastic fluid tight cover. The specific form and arrangement of reinforcing elements and their distribution within the insulating bat is of particular interest.

Referring now specifically to FIGS. 1A and 1B of the drawings, a preferred embodiment will be described. The thermal insulating material is indicated at 10. This material is first formed into a bat having a pair of substantially parallel, opposed, planar surfaces and preferably, is in the shape of a rectangular parallelepiped, as shown. The next step in the assembly of the element is to form a plurality of X-shaped cuts or apertures in the insulating bat. Such apertures are indicaated in the drawing by the reference numeral 11. It will be noted that the orientation of the X-shaped cuts with respect to the bat is different from each adjacent cut. Next, a plurality of X-shaped reinforcing members 12 are formed in the manner indicated in FIG. 1A. One of these reinforcing members is then inserted into each of the correspondingly shaped cuts in the insulating hat. The thus reinforced bat is then placed on top of a sheet of corrugated cardboard or the like, indicated at 15 and the entire structure is placed within the open end of a plastic bag 16, shown in FIG. 1B. The open end of the bag is then heat sealed to form the completed element.

Turning now to FIG. 2 of the drawings, a typical roof structure for which the present invention was originally conceived is shown. A concrete roof slab 30 is first 3,103,042 Patented Sept. 10, 1963 poured in a conventional manner around reinforcing rods 31. On top of the slab 30, a wedge-shaped pile or layer of sand or earth is arranged as shown at 32. The builder will then place a plurality of the insulating construction elements previously described on top of the sand or earth layer. The insulating members are laid to completely cover the earth or sand layer and are arranged in side by side relation as indicated in this figurel The next step in the construction of the roof is to place a simple board form or mold around the outer periphery of the assemblage of the insulating elements, and a second concrete slab 34 is poured in this form. Usually, once the upper slab has set, it is covered with a layer of asphalt or the like as indicated at 36 in this figure. Also conventionally, a layer of roofing paper or the like 37 is then laid on top of the asphalt coating on the upper slab. The entire upper surface is then covered with tile or brick blocks 38.

It will be obvious, .that in this type of structure the insulating members in order to be effective must be able to maintain their original form and thickness permanently, and under the rather severe conditions of loading imposed by a roof structure of this type. Unfortunately, the greater the structural strength of the insulating members, the less insulating properties they have. To go to one extreme, if the X-shaped reinforcing members as described with reference to FIG. 1 were made of metal or other highly heat conductive material, the effectiveness of the insulation would be substantially destroyed. If corru gated cardboard or the like could be used and would furnish sufiicient strength for this purpose, the insulation effectiveness would remain substantially unimpaired. Here again, and unfortunately, corrugated cardboard does not have suflicient strength for use in this type of structure. Under actual tests, it was found, however, that corrugated cardboard would support a load of this type for a short period of time, for example say about one week. After that time, however, the cardboard would begin to buckle and the insulating material would therefore be compressed and its effectiveness as a. thermal insulator would be diminished. Accordingly, an ideal arrangement was found to be one in which the center X- shaped reinforcing member was formed of a material stronger than the surrounding X-shaped members. The ultimate design which was reached utilizes. corrugated cardboard for the peripheral X-shaped supporting members and for the center supporting member a material selected from the group consisting of wood, pressed board, plywood, or reinforced synthetic organic material. Other materials will be apparent to those skilled in the art. The use of cardboard for most of the reinforcing members resulted in a minimum diminishment of the insulating properties of the element and also furnished sufficient support .to hold the entire element in shape at least during the period in which the upper concrete slab was in the process of setting. After that time, the fact that these members would have a tendency to buckle slightly is overcome by the presence of the central reinforcing element of stronger material.

There are a number of form sustaining materials which are entirely practical and useful for the insulating bat. A suggested material could be selected, for example, from the group consisting of mineral fiber, organic fiber, mineral foam, and synthetic organic foam. Specifically, asbestos fiber and glass wool have been used successfully.

Referring now to FIG. 3 of the drawings, which shows an alternative embodiment, the reinforcing elements in this instance take the form of a honeycomb A which is preferably formed of paper or the like with adjacent sec tions glued to each other. Instead of starting with a bat of insulating material as described with reference to FIG. 1, the honeycomb is simply filled with scrap or waste materials left over from the construction of elements of the type shown in FIG. 1. The plurality of glued sections of the honeycomb provide suflicient load bearing capability. This embodiment, therefore, effects a saving in the manufacture of insulating elements.

In FIG. 4 of the drawings, a further alternative embodiment is shown and it will be noted that this differs only very slightly from the embodiment of FIG. 1 and no detailed description is believed necessary in order to fully understand this figure.

- FIG. 5 shows a further alternative embodiment in which the insulating bat is scored or cut in an X-shape at its center and then in an annular shape surrounding the center. A ring of corrugated cardboard may then be inserted in the circular cut and an X-shaped member of the type shown and described with reference to FIG. 1 is-inserted inthe center cut.

Turning now to FIG. 6 of the drawings, a still further alternative embodiment of the present invention is disclosed. Here, four reinforcing elements of equal length are fitted together in the form of a checkerboard having equal areas and therefore dividing the insulating bat into equal areas. Preferably, one of the reinforcing members is selected from the material useful for the center X- shaped member described with reference to FIG. 1.

It is believed that the usefulness of the structures described herein will be apparent to those skilled in the art. The insulating value is extremely high and tends to remain high because of the reinforcing elements which maintain the original geometrical configuration of the element. The insulating material is protected from the adverse efiects of dirt, dust, moisture and the like by the heat-sealed, fluid impermeable outer covering. Due to the shape of the units, they are easily packed and transported and easily assembled in their ultimate useful positions at the constructionsite.

While specific materials and geometrical forms have been hereinbefore described, applicant is believed to be entitled to a full range of equivalents within the scope of the appended claim.

I claim:

A thermal insulating element for supporting a poured, settable slab, said element comprising: a bat of form sustaining thermal insulating material having a pair of substantially parallel, opposed, planar surfaces, said bat alsohaving a plurality of apertures formed therein and extending between said surfaces, one of said apertures being centrally positioned in said bat; a load supporting and low heat insulating member of permanent load supporting character in said central aperture; a load supporting and higher heat insulating member of less permanent load supporting character in each of the remaining of said;

References Cited in the file of this patent UNITED STATES PATENTS 1,943,701 Sprague Jan. 16, 1934 1,981,559 Lindsay Nov. 20, 1934 2,123,869 Walker July 19, 1938 2,233,190 Amorosi Feb. 25, 1941 2,357,115 Jack Aug. 29, 1944 2,779,066 Gaugler Jan. 29, 1957 2,837,779 Jacobs June 10, 1958 2,939,811 Dillon June 7, 1960

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1943701 *May 16, 1932Jan 16, 1934Sprague Wheeler SInsulation and means embodying the same
US1981559 *Jul 28, 1932Nov 20, 1934Dry Zero CorpInsulated structure
US2123869 *Oct 26, 1935Jul 19, 1938Zonolite Corp Of MichiganInsulating package
US2233190 *Nov 7, 1938Feb 25, 1941Amorosi RaoulInsulating board
US2357115 *Mar 10, 1942Aug 29, 1944Jack Rd William ASound-absorbing unit
US2779066 *May 23, 1952Jan 29, 1957Gen Motors CorpInsulated refrigerator wall
US2837779 *Sep 15, 1953Jun 10, 1958Harold W JacobsInsulation product
US2939811 *Mar 25, 1957Jun 7, 1960Gen ElectricHeat-insulating units for refrigerator cabinets
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3192882 *Jun 17, 1963Jul 6, 1965Weyerhaeuser CoKitchen counter top or the like
US3802141 *Aug 5, 1971Apr 9, 1974Hayes RSandwich panel
US3856613 *Aug 28, 1972Dec 24, 1974Mccord CorpCompressible energy absorbing article
US3892899 *Jul 19, 1973Jul 1, 1975Klein Paul PRoof construction
US4150175 *May 9, 1977Apr 17, 1979Huettemann Erik WBuilding panel and method of construction thereof
US4512882 *Oct 18, 1983Apr 23, 1985Donaldson Company, Inc.Single-ended, spin-on fuel water separator
US4520610 *Apr 22, 1983Jun 4, 1985Encon Products, Inc.Method for installing a roof system positionable over an existing roof structure
US4522712 *Oct 18, 1983Jun 11, 1985Donaldson Company, Inc.Double-ended, spin-on fuel water separator
US4530193 *Jul 16, 1984Jul 23, 1985Minnesota Diversified Products, Inc.Built-up roof structure and method of preparing roof structure
US4581867 *Sep 28, 1984Apr 15, 1986Standard Oil Company (Indiana)Refractory anchor
EP0310198A2 *Sep 29, 1988Apr 5, 1989George Gustaaf VeldhoenMethod for fabricating a flat panel
EP0806529A1 *May 10, 1996Nov 12, 1997Walter ReichmuthThermal-insulation element for buildings
EP0856616A2 *Feb 2, 1998Aug 5, 1998Building Materials Corporation Of AmericaBase sheet for roofing assembly
Classifications
U.S. Classification428/74, 52/506.1, 428/131, 52/794.1, 52/409, 428/116, 108/27, 52/746.11, 428/119, 52/408
International ClassificationE04C2/18, E04D3/35, E04C2/34, E04C2/36, E04C2/10, E04D11/00
Cooperative ClassificationE04C2/365, E04D3/352, E04C2/18, E04D11/00
European ClassificationE04C2/18, E04D11/00, E04C2/36B, E04D3/35A1