Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3104937 A
Publication typeGrant
Publication dateSep 24, 1963
Filing dateJan 4, 1962
Priority dateDec 8, 1960
Also published asUS3066366
Publication numberUS 3104937 A, US 3104937A, US-A-3104937, US3104937 A, US3104937A
InventorsHarold W Wyckoff, Jr Glen Oneal, Samuel S Starr
Original AssigneeAmerican Viscose Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method of making a binding strap
US 3104937 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

p 1963 H, w. WYCKOFF ETAL 3,104,937

METHOD OF MAKING A BINDING STRAP Original Filed Dec. 8, 1960 3,104,937 r/mrnon OF MAKING A BINDING STRAP Harold W. Wychofi and Glen (lneal, .lr., both of Middletown Township, Delaware County, and Samuel S. Starr, Rose Valley, Pa, assignors to American Viscose Corporation, Philadelphia, Pa, a corporation of Delaware Original application Dec. 8, 1960, Ser. No. 74,569, now Patent No. 3,066,366, dated Dec. 4, 1962. Divided and this application Jan. 4, 1962, Ser. No. 171,547

2 Claims. (Cl. 18- 3%) This invention relates to means for strapping, banding or bundling boxes, packages and the like and unitizing the same, and in its more particular aspects the invention deals with an improved method of making a strap. More especially the invention provides an improved strap formed of selectively molecularly oriented polymeric material which is useful in the manner of the well-known steel band strapping. The strap per se is claimed in U.S. Patent No. 3,066,366, which issued December 4, 1962, on application Ser. No. 74,569, filed December 8, 1960, of which the present application is a division.

Nhile steel band strapping is widely used, it is recognized that for many applications such strapping is not entirely satisfactory. Among the undesirable features of steel band strapping is the fact that it rusts, is seriously corroded by certain chemicals, is dilficult to remove from the package without a special tool, generally has sharp edges which make it somewhat dangerous to apply and remove, is difficult to dispose of when it has served its purpose and has a relatively high weight to strength ratio. In order to overcome some or all of these disadvantages, a number of non-metallic strapping materials have been proposed but these substitute straps have generally been formed of materials which must be assembled in a special way or of multiple elements which are associated together to form a fiat strap having a width considerably greater than its thickness. The flat band or strap-like formation is highly advantageous in that it prevents the binding, which is generally under considerable tension, from cutting into the package and greatly facilitates the fastening of the overlapping ends by means of a simple and quickly applied clamp or seal. These non-metallic straps have been relatively expensive to manufacture and have been considerably larger dimensionally than a steel strap of comparable strength, although in some instances the weight to strength ratio has been lower and therefore superior to steel.

It is an object of the present invention to provide a method of making a non-metallic binding device in the form of a strap having an exceptionally low weight to strength ratio, which is completely waterproof, has high impact strength, is not seriously affected by changes in temperature, is easily removable and disposable, safe to use and economical to manufacture.

A more general object of the invention is to provide a method of making a strap formed of polymeric filmor fiber-forming material which has high tensile strength in the longitudinal direction and is tough and non-brittle in the transverse direction, especially with respect to bending.

A still further object is to provide a method of making a molecularly oriented polymeric binding strap so constructed that a longitudinal split will not affect the overall longitudinal strength.

Another object is to provide a method of making a molecularly oriented polymeric binding strap so constructed that a nick or cut in an edge thereof will not seriously weaken it.

Other and further objects, features and advantages of the invention will become apparent as the description of a preferred embodiment thereof proceeds.

Zildfid? Patented Sept. 24-, 1963 It has been mentioned that the strap of the present invention is formed of a polymeric film-and-fiber-forming material and before describing the invention in detail it is believed desirable to mention certain specific materials and some of the known characteristics of films and fibers formed thereof. For reasons of economic feasibility, the preferred material is polypropylene. However, other polyolefins such as polyethylene may be employed, also polycarbonatcs, polyesters, polyamides such as polyhexamethylene adipamide, polyhexamethylene sebacamide and polycaproamides, acrylic resins, polystyrene and any of a great number of other film-andfiber-forming polymeric materials or copolymers. Such materials are long chain linear polymers and are formed into films and fibers by the melt extrusion process; that is, the molten polymer is extruded through an orifice which is a narrow slit if a film is to be made or a more or less circular opening when making fibers. The techniques of treatment immediately after extrusion, particularly the manner and rapidity of cooling vary considerably depending upon whether a film or a fiber is to be formed and also upon the particular polymer. However, these techniques are fairly well developed and need not be gone into here. Sufiice to say that a newly formed film or fiber is generally referred to as unoriented because the molecules thereof are substantially heterogeneously arranged, this being so even though a certain negligible amount of orientation actually does occur be tween extrusion and solidification. Molecularly unoriented films and fibers are characterized by low tenacity and either a high elongation or brittleness. In the case of fibers, these drawbacks are overcome by stretching or drawing the molecularly unoriented fiber to bring about a uniaxial orientation of the molecules longitudinally of the fiber. With films, the stretching is often done both longitudinally and transversely to cause biaxial orientation. The temperature, speed and extent of the draw of course vary with the polymer and the diameter of the fiber or thickness of the film but again these are techniques generally within the skill of the art and are only mentioned here to point out the fact that molecular orientation is necessary to produce a substantial degree of tensile strength in polymeric films and fibers. With these general observations in mind, the present invention will now be described in detail.

Referring now to the drawing:

FIGURE 1 is a view partially in side elevation and partially in section of the apparatus for making the strap;

FIGURE 2 is an elevational view showing a pair of cooperating rolls which are used to groove the strap;

FIGURE 3 is a perspective view of the strap;

FIGURE 4 is a diagrammatic view showing the effect of stretching upon the strap.

The molten polymer, e.g., polypropylene, is extruded from a hopper 10 through a substantially rectangular orifice into a brine tbath 11 contained in a tank 12. The brine is maintained at a low temperature and in the bath the polymer becomes solidified to form a sheet or band as indicated at 13. The band is led about a roller 14 rotatably mounted in the lower portion of the tank and thence between a pair of driven shaping rolls 15 and 16, the structure and purpose of which will later the eX- plained. From the rolls 15 and 16 the band passes around a roller 17 located in the lower portion of the tank and thence upwardly about a transfer roller 18. The shaping rolls 15 and 16 may be adjustably mounted for vertical movement as a unit so as to provide more or less travel of the band through the bath before it reaches these rolls and likewise the roll 17 may be adjustable vertically to regulate the distance traveled through the bath after the band leaves the shaping rolls. By regulating the temperature of the bath and the time the band is in the bath before reaching the shaping rolls, the band can be caused to reach these rolls in a completely solidified condition or in a condition wherein only the surface areas are solidified and the interior is still molten. At any rate, by the time the band reaches the transfer roller 18 it is completely solidified and is in the form of a relatively wide band of molecularly unoriented polymeric material. As previously mentioned, such a molecularly unoriented band has a low tenacity.

While uniaxial longitudinal orientation of the molecules can be produced by cold drawing, this can best be accomplished at commercially suitable speeds by heating the band to a point somewhere between the softening range and the melting range of the polymer. In order to raise the temperature of the band to the desired stretching \or drawing temperature, it is led from the transfer roller 18 into a warm water bath 19 contained in a tank 20, guide rollers 21 and 22 serving to direct the band through the warm water bath. From guide roller 22 the band passes between a low speed draw roll 23 and nip roll 24 and then between a high speed draw roll 25 and nip roll 26. The low and high speed draw rolls are preferably located quite close together for a reason presently to be explained and may be coated with a material such as rubber.

If the shaping rolls 15 and 16 were omitted, the band as it left the draw roll 25 would have a substantially rectangular cross-section and, due to the stretching which takes place between the draw rolls 23 and 25, the molecules would be uniaxially oriented longitudinally of the band. Such a band would have, because of the uniaxial orientation of the molecules, high tensile strength in the longitudinal direction but would be brittle in the transverse direction so that if folded sharply about the longitudinal axis it would split. It should be mentioned that the band 13, as extruded and as it leaves the stretch rolls 23 and 25, will normally be considerably wider than the final product and that after stretching it is slit by suitable means, not shown, into a plurality of relatively narrow straps. It is in this narrower form that the transverse brittleness is particularly objectionable. Furthermore, when a split develops as the result of an impact or from bending, the material fibrillates at the injured portion and the split does not necessarily extend exactly longitudinally of the strap but may run oil to one side, thus very considerably reducing the overall tensile strength of the strap.

According to the present invention, transverse brittleness and its subsequent deleterious clients are avoided by the use of the shaping rolls 15 and 16. Referring now to FIGURE 2, the roll 15 is provided with a series of cylindrical ribs 27 and the roll 16 is provided with a similar series of ribs 28. Rollers 15 and 16 extend the width of the band 13 and as the band passes therebetween the ribs 27 and 2S indent the opposite faces of the band so as to provide a longitudinally extending series of grooves in the opposite faces of the band. The ribs 27 and 28 are directly opposite one another so that the grooves cut into the opposite faces form the band into alternating thick and thin portions which extend longitudinally therealong. Preferably, the edges of ribs 27 and 28 are slightly rounded as are the portions between adjacent ribs.

When the grooved band is stretched between the draw rolls 23 and 25 the molecules of the thick portions become substantially entirely uniaxially oriented longitudinally of the band and for a reason which :can best be explained in connection with FIGURE 6, the molecules of the thin portions become biaxially oriented.

Referring now to FIGURE 4, a band or strap is represented as having alternating thick square pontions 29 and thin rectangular portions 30. 29 are held between a pair of rolls 31 and 32 so that when the band is stretched in a plane perpendicular to the plane of the paper, the thick portions are unable to move toward one another. Now, suppose that the thick The thick portions portions 29 before drawing, are 3 mm. on a sideand the distance between the squares is 3 mm. Now, if the band is stretched say to nine times its original length, the cross-sectional area of the thick squares 29 must reduce to one-ninth their original area which means that each square will now be 1 mm. on each side. The distance between the centers of adjacent squares 29 does not change because they are firmly held by the rollers 31 and 32, which incidentally would be spring urged toward one another so that they could move closer together as the squares are reduced in size. In FIGURE 4 the squares 29 are shown in dotted lines after their area has been reduced and it will be observed that the thin portions 39, also shown in dotted lines after stretching and which are joined to adjacent squares, have now actually increased in width in addition of course to being considerably reduced in thickness. This transverse stretching of the thin portions 30 is in addition to the longitudinal stretching produced by pulling on the larger portions 29 and results in biaxial orientation of the molecules in the thin portions. The transverse orientation in the thin p rtions does not result entirely from the fact that they are stretched but is accomplished partially through the fact that the thin portions naturally tend to become narrower as they are stretched in the plane transverse to the paper and are constrained from doing so by the fact that they are attached to the thick portions 29 which themselves are prevented from moving closer together by the rollers 31 and 32.

After the band 13 has been stretched, it is slit as aforesaid into desired strap widths and a portion of one of the Y straps is shown in FIGURE 3 at 33 and it will be observed that the Wide band has been slit through two of the thin sections. In FIGURE 3, which incidentally is drawnto an entirely different scale than FIGURE 2, the thick portions of the strap are indicated at 34, the thin portions at 35 and the aforementioned grooves at 36. The thin portions 35 are biaxially oriented for precisely the same reasons as the thin portions 30 in the example described in connection with FIGURE 4. In other words, the draw rolls prevent the thick portions 34 from moving toward One another and since the diameters or peripheries of the thick portions are reduced due to the stretching, the thin portions 35 are necessarily strained sideways which results in biaxial orientation. If the draw rolls 23 and 25 and their associated nip rolls 24 and 26 are spaced far apart, the band width will be maintained only at the draw rolls and that portion between the draw rolls will be able to contract sideways as the band is elongated, but by placing the draw rolls close together this sideways contraction is minimized. Thus to obtain the greatest biaxial orientation of the molecules of the thin portions of the band the draw rolls are placed as close together as possible. Because of the biaxial orientation of the molecules in the thin portions the transverse tensile strength of the strap per unit cross-section is greater in the thin portions than in the :thick portions.

When the strap as thus constructed is bent about its longitudinal axis, the bending naturally takes place in the thin sections and since these sections are biaxially oriented the strap can readily bend along those lines without crackmg. Should an unusual impact result in actually splitting the strap, the split will form in one of the thin sections and since the longitudinal tensile strength of the strap is supplied primarily by the uniaxially oriented thick portions, .a spht in one of the thin portions does not appreciably aifect the holding power of the strap. Furthermore, a

any split which should develop will continue along the thin portion rather than run out through an edge of the strap as it might if the strap were the same thickness all the way across.

The improved transverse toughness can of course be obtained by grooving only one side so as to obtain the necessary alternating thick and thin sections. While the alternating thick and thin sections have been described 5 as being formed by the shaping rolls 15 and 16, it is contemplated that the desired strap configuration could be obtained by extruding the molten polymer through an appropriately shaped nozzle.

Having thus described the invention, what is claimed is: 1. The method of making a binding strap comprising forming a molecularly unoriented strip of polymeric fiberforming material having in transverse cross-section alternating relatively thick and relatively thin portions, stretching said strip longitudinally by exerting a pull on the relatively thick portions whereby the molecules of the relatively thick portions become substantially uniaxially oriented longitudinally of the strip and the molecules of the relatively thin portions become biaxi'ally oriented.

2. The method of making a binding strap comprising extruding a molten polymeric fiber-formin-g material into a quenching bath to form a ribbon having a substantially rectangular cross-section and an unoriented molecular structure, forming a series of longitudinally extending grooves in one face of the ribbon whereby the ribbon is provided with longitudinally extending thick and thin portions alternating transversely thereof, stretching the ribbon longitudinally while preventing any substantial widthwise contraction thereof whereby the molecules of the thick portions become substantially uniaxially oriented longitudinally of the ribbon and the molecules of the thin portions become biaxially oriented.

References Cited in the file of this patent UNITED STATES PATENTS 2,079,584 Hazell et al. May 4, 1937 2,582,294 Stober Jan. 15, 1952 2,728,950 Annesser Jan. 3, 1956 2,750,631 Johnson June 19, 1956 3,051,987 Mercer Sept. 4, 1962

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2079584 *Feb 29, 1936May 4, 1937Us Rubber Prod IncRubber sheet material
US2582294 *Oct 31, 1947Jan 15, 1952Dow Chemical CoContinuous method for cooling and shaping thermoplastics
US2728950 *May 6, 1954Jan 3, 1956Dow Chemical CoProcess for producing fibers from films of polymeric materials
US2750631 *Jul 22, 1952Jun 19, 1956Clopay CorpProcess for manufacturing ribbed extruded sheet material
US3051987 *Mar 6, 1961Sep 4, 1962Plastic Textile Access LtdApparatus and method for production of thermoplastic net-like fabrics
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3214503 *Sep 28, 1962Oct 26, 1965Hercules Powder Co LtdUniaxial orientation of polypropylene film
US3257488 *Aug 8, 1962Jun 21, 1966Phillips Petroleum CoMethod for the orientation of a continuous sheet material by means of stretching, and apparatus for use in the method
US3318989 *Jun 23, 1965May 9, 1967Asahi Chemical IndMethod for melt-spinning of filamentary articles
US3320225 *Feb 8, 1965May 16, 1967Electric Storage Battery CoMethod for manufacturing a plastic hinge
US3324217 *Feb 25, 1963Jun 6, 1967Fmc CorpMethod of making a polypropylene binding strap
US3345447 *Jul 8, 1964Oct 3, 1967Hercules IncMethod for forming polypropylene film
US3470290 *Feb 28, 1967Sep 30, 1969Macoid Ind IncMethod of making plastic file folder
US3477895 *Dec 17, 1964Nov 11, 1969Uniroyal IncApparatus for making rubber articles
US3496262 *Jan 4, 1968Feb 17, 1970Specialties ConstMethod for producing embossed plastic articles
US3768938 *Apr 9, 1971Oct 30, 1973Scragg & SonsTextile process and apparatus
US3800008 *Aug 5, 1971Mar 26, 1974Du PontOriented polymer strap
US3816886 *Oct 29, 1971Jun 18, 1974Agfa Gevaert NvApparatus for longitudinally stretching film
US4101625 *Jan 10, 1977Jul 18, 1978Fmc CorporationMethod for making corrugated molecularly oriented plastic strapping
US4152475 *Apr 26, 1978May 1, 1979Fmc CorporationCorrugated molecularly oriented plastic strapping
US4336679 *Dec 11, 1980Jun 29, 1982Lantech Inc.Film web drive stretch wrapping apparatus and process
US4387548 *Sep 8, 1980Jun 14, 1983Lantech, Inc.Power assisted roller-stretch wrapping process
US4387552 *Dec 12, 1980Jun 14, 1983Lantech, Inc.Wrapping apparatus
US4413463 *Oct 23, 1980Nov 8, 1983Lantech, Inc.Roller stretch pass through stretching apparatus and process
US4499040 *Apr 19, 1982Feb 12, 1985Nissen Chemical Industries Co., Ltd.Production of stamped plastic sheet
US4712686 *Dec 11, 1980Dec 15, 1987Lantech, Inc.Power assisted roller-stretch apparatus and process
US5009828 *Oct 11, 1989Apr 23, 1991The Dow Chemical CompanyMethod of forming a reclosable container with grip strip
US5084227 *Jun 11, 1990Jan 28, 1992Agfa-Gevaert N. V.Process of cooling a heated polymer film
US5105599 *Sep 26, 1991Apr 21, 1992Highland Supply CorporationMeans for securing a decorative cover about a flower pot
US5161349 *Oct 2, 1990Nov 10, 1992Lantech, Inc.Biaxial stretch wrapping
US5238631 *Jun 30, 1989Aug 24, 1993Kyowa LimitedProcess of making non-metallic polymeric twist ties
US5339601 *Sep 22, 1992Aug 23, 1994Highland Supply CorporationDecorative cover with band
US5366782 *Aug 25, 1992Nov 22, 1994The Procter & Gamble CompanyPolymeric web having deformed sections which provide a substantially increased elasticity to the web
US5410856 *Sep 8, 1992May 2, 1995Highland Supply CorporationDecorative assembly for a floral grouping
US5417033 *Sep 21, 1993May 23, 1995Highland Supply CorporationMeans for securing a decorative cover about a flower pot
US5426914 *Aug 24, 1992Jun 27, 1995Highland Supply CorporationBand applicator for applying a band about a sheet of material and a pot
US5465553 *Feb 25, 1994Nov 14, 1995Highland Supply CorporationMethod for applying a band about a sheet of material and a pot
US5471816 *Feb 1, 1995Dec 5, 1995Highland Supply CorporationMethod for applying a band about a sheet of material and a pot
US5522203 *Aug 15, 1991Jun 4, 1996Lantech, Inc.Biaxial stretch wrapping
US5531058 *Feb 27, 1995Jul 2, 1996Southpac Trust International, Inc. As Trustee Of The Family Trust U/T/AMeans for securing a decorative cover about a flower pot
US5588277 *Apr 17, 1995Dec 31, 1996Southpac Trust International, Inc.Band applicator for applying a band about a sheet of material and a pot
US5617702 *Oct 4, 1995Apr 8, 1997Southpac Trust International, Inc.Method for securing a decorative cover about a flower pot
US5623807 *May 8, 1995Apr 29, 1997Southpac Trust International, Inc.Method for applying a band about a sheet of material and a pot or floral grouping
US5632131 *Jun 6, 1995May 27, 1997Weder; Donald E.Method for applying a band about a sheet material and a pot
US5724790 *Oct 30, 1996Mar 10, 1998Southpac Trust InternationalMethod for securing a decorative cover about a pot means
US5761879 *Jun 6, 1995Jun 9, 1998Southpac Trust International, Inc.Method for applying a band about a sheet of material and a flower pot
US5989683 *Sep 19, 1997Nov 23, 1999Bedford Industries, Inc.Wireless polymeric twist tie
US6663809Jul 10, 2000Dec 16, 2003Bedford Industries, Inc.Wireless polymeric twist tie
US6668521Jan 23, 1998Dec 30, 2003Southpac Trust International, Inc.Method for applying a band about a sheet of material and a floral grouping
US6860085Oct 8, 2003Mar 1, 2005The Family Trust U/T/A 12/8/1995Method for applying a band about a sheet of material and a floral grouping
US6986235Jan 21, 2005Jan 17, 2006Wanda M. Weder and William F. Straeter, not individually but solely as Trustees of The Family Trust U/T/A dated December 8, 1995Method for applying a band about a sheet of material and a flower pot
US8015671Feb 28, 2007Sep 13, 2011Illinois Tool Works Inc.Strap with enhanced stiffness
US8732912Mar 14, 2011May 27, 2014Illinois Tool Works Inc.Strap with improved column stiffness
US20080201911 *Feb 28, 2007Aug 28, 2008Pearson Timothy BStrap with enhanced stiffness
EP3070024A1 *Jun 5, 2015Sep 21, 2016D R Baling Wire Manufactures LimitedImproved baling strap
U.S. Classification264/178.00R, 425/66, 26/71, 264/210.1, 264/280, 264/290.2, 264/DIG.730
International ClassificationD01D5/088, B65D63/10, B29C59/04, B29C67/00, B29C55/18, B29C47/00, B29C69/02
Cooperative ClassificationD01D5/088, B29C59/04, B29L2007/001, B29L2007/007, B29C47/00, B29K2995/0051, B65D63/10, Y10S264/73, B29K2995/0053, B29C47/0038, B29C67/0011, B29C47/003, B29K2023/12, B29C47/0057, B29C55/18
European ClassificationB29C67/00D, B29C47/00L, B29C59/04, D01D5/088, B65D63/10, B29C55/18