Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3113623 A
Publication typeGrant
Publication dateDec 10, 1963
Filing dateJul 20, 1959
Priority dateJul 20, 1959
Publication numberUS 3113623 A, US 3113623A, US-A-3113623, US3113623 A, US3113623A
InventorsKrueger Roland F
Original AssigneeUnion Oil Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Apparatus for underground retorting
US 3113623 A
Abstract  available in
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Dec. 10, 1963 RF. K RUEGER APPARATUS FOR UNDERGROUND RETORTING 2 Sheets-Sheet l Filed July 20, 1959 INVENTOR. @OLA/'VD AT K/EUEGE/Q Eifer 2 Dec. 10, 1963 R. F. KRUEGER APPARATUS FOR UNDERGROUND RETORTING' 2 sheets-snaai 2 Filed July 20, 1959 .FIG-,5

23? (ffm ATTORNEY UnitedStates Patent O 3,113,623 APPARATUS FOR UNDERGR RETORTING Roland F. Krueger, Placentia, Calif., assignor to Union @il Company of California, Los Angeles, Calif., a corporation of California Filed July 20, 1959, Ser. No. 828,106 3 Claims. (Cl. 166-59) This invention relates to a novel method and apparatus for uniformly heating an elongated region of mineral deposits located beneath the earths surface, and more particularly concerns a method Iand apparatus for the thermal recovery of hydhocarbon values from subterranean deposits comprising the same.

A number of processes have been proposed whereby heat is employed to facilitate the recovery of hydrocarbon values from subterranean deposits such as bituminous sands, oil shale, bituminous and sub-bituminous coals, oil-soaked diatomite, heavy petroleum deposits, etc. ln most of said processes at least part of the heat is supplied from a burner positioned in a bore hole drilled into the deposit. For example, according to one process which has been `applied to the treatment of tar sand deposits, a plurality of relatively closely-spaced holes is drilled into the deposit, and heat is generated in a selected number of these holes by combustion of gas or other fuel in la suitably positioned burner device. The surrounding sand is thereby heated and the volatile petroleum fractions are driven towards a production bore hole from which they are recovered. .'Ilhe heavier ends which fail to vol-atilize are pyrolyzed by continued heating. As previously practiced, a single burner has been positioned at the base of the formation or at a point along the combustion tube. This technique results in localized heating, which is useful with shallow formations but not readily `applicable where the formation is vertically extended. Attempts to use this localized heating to transmit heat to an elongated zone within subterranean deposits have employed ow reversal methods, alone, or with packed annular zones of coarse inert material around the burner zone, or with `an annular fluidized bed of iinely divided inert solids. In the flow reversal method of heating, a combustion tube is concentrically placed Within the bore hole and extended nearly to the base of the hole. Combustible gases and air are mixed in the tube and ignited at a selected point. The flame front is prevented from rising to the top of the burner by flame arrestors positioned Within the burner upstream from the llame. The combustion gases pass down the extended burner tube to the base of the hole Where they reverse their direction and ilow upwardly through the annulus between the burner Itube and bore casing. lI-t has been found that `a high temperature zone within the shale deposit exists immediately adjacent the burner flame, and that the temperature of the shale at points vertically removed from this high 'temperature zone are substantially less. This type of operation is not entirely satisfactory because the heat is not eicicntly distributed and because the localized thigh temperature zone causes thermal failure of the burner tube. While use of a lfluidized bed of solids within the annulus between the burner and casing improves heat transfer to the shale, it does not completely eliminate the uneven heating along the bore hole and is disadvantageous in that it causes a high erosion rate of the metal surf-aces.

lt is a purpose of `this invention to provide an improved method for subterranean heating. It is also a purpose of the invention to provide a unique burner construction which achieves uniform heating over an extended length and has a long service life.

These purposes are achieved by providing a continuous elongated combustion zone extending the length of an ice elongated portion of the mineral deposits. The elongated combustion zone is achieved by use of a porous metallic, glass or ceramic combustion tube and Will be described by reference to the drawings which form a part of this application.

In the drawings, FIGURES l, 2 5 and 6 shovw the placement of the novel burner construction in the mineral deposits. FIGURES 3 and 4 show alternative features of construction of `the burner tubes. Although FIGURES 1, Zand 5 show a vertical disposition of the burner tubes, it is apparent -that a horizontal or inclined placement could also be employed, if desired.

Referring norw to FIGURE l, a mineral deposit, B, is shown located beneath an upper layer, A, which may comprise gravel, earth or stone or `an unheated portion of the mineral deposit. In accordance with this invention, a hole is bored through the 'earths surtiace and into the mineral deposit. A metal casing 1 is positioned Within `the bore hole in the conventional manner. Disposed within casing 1 are concentric tubes 2 and 3. Casing l, land tubes Z and 3 are closed at their upper ends. Conduit 4 connects with casing 1 to provide for removal of flue gases, conduit '5 communicates Iwith tube 2 for the introduction of `air or gas, and conduit 6 cornmunicates with inner tube =3, also for the entrance of air or gas. The unique construction of this invention is in the use of a gas-permeable tube 7 connected to the lower portion of central tube 3. Permeable tube 7 is sealed at its lower end by plate `fi which may be permeable, but is preferably impermeable to gas llow. Any suitable connection between permeable tube 7 and metal tube 3 may be employed, such as by cementing, threading or by use of a collar joint.

In operation, natural gas or other gaseous fuel is introduced Athrough conduit 6 into central tube 3. rllhe gas flows down into tube 7 `and passes through the Walls thereof into a flowing air stream which is introduced into tube 2 through conduit 5. The llow of gas through tube 7 into the air stream is lachieved by maintaining a higher pressure on the gas stream than on the air stream. Combustion is initiated in a conventional manner in the annular zone between tubes 2 and 7, and takes place along the entire length of tube 7, thereby providing an elongated combustion zone which may be of any suitable length corresponding to the ylength chosen for the permeable tube -7. y'Ille flue gases are discharged from the lower open end of tube 2 and reverse their direction of flow to pass upwardly through the annular zone between casing l and tube 2, and are removed through conduit yt. Heat is transmitted from the combustion zone by radiation to this upwardly flowing stre-am of flue gases and to lthe mineral deposits in zone B throughout the entire length of the burning zone, and heat is transmitted by convection from the flue gases to the mineral deposits. By this method a combustion zone with -a uniform temperature is maintained along the length of the mineral deposit. Although casing yl is shown to extend the length of the bore hole, it may be considerably shorter where the mineral matrix is suiciently consolidated so as not to tall into the hole. Suitable consolidation may occur naturally or be achieved by coking the hydrocarbons in the deposit immediately adjacent the bore hole.y This coking may be 'accomplished by introducing high temperature combustion gases into the hole.

Conventional ignition techniques presently employed to ignite gas burners in oil Wells lean be employed in the annulus surrounding fthe burner to ignite the burners of my invention. These techniques themselves constitute no inventive step in my system; they merely serve for the ignition `of the gas stream after it passes through the porous Wall and enters the annular combustion zone surrounding the porous burner. Among the suitable ignition techniques which are employed in the annular zone surrounding the porous burners are the following:

Dynamite and percussion caps;

Electrically actuated -heating coils and spark plugs which are positioned within the annular combustion zone and which are initiated by a supply of electrical energy from above ground; and

Chemical ignition techniques wherein a capsule of sodium or potassium is dropped into the well bore and followed by injection of water. The sodium or potassium is then released by mechanical breaking or dissolution of the capsule to react with Water and release heat to ignite the gas.

Referring now to FIGURE 2, a modified form of the invention is shown. In this embodiment, a single tube 16 is concentrically disposed within casing 9. The gas and air are introduced into tube 1h via inlets 11 and 12, respectively, and the gas-air mixture flows downwardly through tube into permeable tube 13 which is shown to be connected to the lower end of -tube 10 by a collar joint. The gas and air stream diuses through tube 13 into [the combustion zone which surrounds the same. The gas is ignited by any of the aforedescribed techniques and the resultant combustion occurs on the outside of this ltube and is prevented from backing into the permeable tube 13 by proper adjustment of the gas and air flow rates. lIf desired, central tube 1G may be extended downwardly as indicated so as to insure that the gases from the combustion zone flow to the base of the formation before reversal into an upwardly directed ilow to the flue gas outlet conduit 14.

FIGURE 3 shows an alternative method of construction for the gas permeable tube, and can be used to obtain a burner of greater strength than is possible with glass or ceramic tubes, alone. This construction comprises a central metal tube 15 which is perforated at suitable intervals by holes 16 and is sealed at its lower end by cap 20. A sleeve 17, constructed of a permeable ceramic or sintered glass material, surrounds lthe perforated portion of tube 15. The diameters of tube 15 and gas-permeable sleeve 17 are so chosen to insure a tight iit. The permeable sleeve extends a substantial distance, D, above the perforated portion of tube 15 to prevent gas llow from bypassing the permeable sleeve and flowing between the sleeve rand the tube. A Suitable sealing material 18 is placed above and below the permeable sleeve 17 to insure a gas-tight't, and is suitably held in place by coupling 19. If desired, the perforated portion of tube 15 can be on a separate piece of pipe and thereby permit connection to any suitable length of pipe to position fthe burning zone at any depth in the mineral deposit. Also if desired, several of these burning zones may be provided on a single string of vpipe separated by an impermeable portion of pipe, thereby permitting simultaneous `heating of multiple zones of mineral deposits. The thickness, W, of permeable sleeve 17 is selected to maintain suflicient thermal insulation between the `outer burning zone and metal tube 15. This is to eliminate any difficulties encountered due to the differences in thermal expansion of the dissimilar ceramic sleeve and the tube.

FIGURE 4 shows another embodiment of the permeable tube burner. This construction comprises a central tube 21 which is perforated similarly to tube 15 of FIGURE 3, and is similarly closed` at its lower end. Surrounding the perforated portion of tube 21 is a second concentric rtube 22 which is supported by rings 23. Tube 22 Ais also provided with a plurality of perforations. Between tubes 22 and 21 is packed an annular bed of unconsolidated silica, sand or quartz grains, which is permeable to gas ow. These grains fare prevented from falling through 4the perforations in tubes 21 and 22 by outer screen 24 and inner screen 25. Again, these burning zones may be constructed on separate pieces of pipe and connected to any desired length of pipe to permit the proper location within the mineral deposit.

FIGURE 5 illustrates an alternative type of construction. The gas permeable burner 26 in this embodiment is constructed of a gas permeable metal and is connected to a supply of air and `combustible gas. The gas and air ow into this permeable burner and diffuse into the annular lzone between the burner and the casing wall. The gas is ignited by any of the -aforedescribed techniques and the resultant combustion occurs in this annular zone along the entire length of the permeable lburner 26. A second concentric tube 27 may surround the permeable burner to insure that the combustion gases will flow to the base of the formation before reversal to the point of removal above the ground. Use of a permeable metal tube simplies construction and provides a burner which is somewhat easier to install than a glass or ceramic burner.

Another embodiment of the invention is illustrated by FIGURE 6. In this embodiment, a single tube 28 is concentrically positioned within casing 29. A ceramic rod 30, which is of a length corresponding to the depth of the mineral deposit, is supported within inner tube 28. lInlet 32 for the introduction of a combustible gas mixture, and outlet 3l for the removal of ue gas, communicate with tube 28 and casing 29, respectively. Gas and air ilow downwardly (through tube 28 and are Withdrawn through conduit 31. Combustion is initiated by igniting the gas stream flowing out of tube 31. However, any other conventional ignition technique is suitable. This combustion is permitted to back up into the burner until the flame front exists at the lower end of tube 28. The ceramic rod 30 is lowered so that its lower end is within the combustion zone at the base of tube 28. The ceramic rod slowly heats up by conduction, and a red-hot zone progresses up the length of rod 30. As this zone moves up the ceramic rod, the combustion zone follows it until a combustion zone exists within tube 2S along the entire length of the 4ceramic rod. An annular ring 33 may be placed within tube 2S above the ceramic rod to momentarily increase the combustible gas flow rate and thereby prevent the combustion zone from moving up tube 28 to the gas inlets or, if desired, tube 28 may be of a reduced diameter at its upper end to serve the same purpose. Other llame arrestors, such as screens or grids, may also be employed. The ceramic rod 30 is shown to be movable in a vertical direction. However, to simplify construction, particularly where the depth of the mineral formation is known, the ceramic rod may be rigidly supported within tube 28.

Suitable ceramic material for constructing the aforementioned gas-permeable elements may comprise permeable ceramics of alumina, zirconia, sandstone, and aluminum silicates such as sillimanite, or clays. These gas-permeable ceramics are commercially available in a wide rang of permeabilities and in a variety of shapes, including tubular elements.

Gas-permeable glass suitable for use in this invention is made by sintering of glass powders to obtain a shatterproof porous glass permeable to gas flow. This type of glass is also commercially available.

Suitable gas-permeable vmetals for construction of the burners of this invention are made by sintering of metal powders. able in bronze and a wide range of stainless steel alloys, such as 304, 309, 316, 347, nickel, Monel, etc. The permeabilities of these metals may range from a value of cubic feet of air per minute per square foot at 0.01 psi. pressure drop for a one-sixteenth inch thick stock of a highly permeable material to a permeability of 27 cubic feet of air per minute at l0 psi. pressure drop for a oneeighth inch stock of low permeability material.

A typical `example of this Yinvention is as follows: The apparatus shown by FIGURE 5 is employed to supply heat to a tar sand deposit 50 feet below the earths surface. The deposit is 30 feet rthick, and it is desired to supply 31,00() B.t.u.s per hour to the sand. A two and one-half inch bore is drilled -into the deposit and a gaspermeable stainless steel burner made from one-eighth These sintered metals are commercially avail- A one-fourth inch pipe is connected to the top of the metal burner tto supply 310 cubic feet per hour of a combined gas and air stream. In order to insure even diffusion of the combustible mixture into the annulus surrounding the burner, it is necessary to maintain a high pressure drop through the burner walls relative to the gas fiow pressure drop down the porous metal tube. A stainless steel of relatively low permeability is chosen to provide a diffusion pressure drop which is l() to 830 times as great as the gas flow pressure drop within the permeable metal burner. The actual diffusion pressure drop through the tube is 4.15 inches of water. As a result, even distribution of the gas-air mixture is obtained and ya combustion zone surrounds the permeable tube over the entire thickness of the deposit. This example is by way of illustration only and is not to be construed as limiting the scope of the invention which is directed to providing an elongated combustion zone throughout the entire depth of thick mineral deposits.

I claim:

1. A burner in combination with a well bore which penetrates an oil sand interval to be heated, a combustible gas and an air supply conduit connected to the upper end of a tubing string, said tubing string extending into said well bore and connected therein to said burner, a casing within the upper extremity of said well bore and -a conduit communicating with said oasing for the removal of ue gases therefrom; said burner comprising an elongated metal tube perforated along its length and connected to said tubing string, a second perforated metal tube concentric with and surrounding said first tube, said second tube being7 of lesser diameter than said well bore to form an annulus therebetween, a first ring laterally positioned between the non-perforated ends of said first and second tubes, and a second ring laterally positioned between the opposite non-perforated ends of said tubes, a cap over the lower end of said first tube, a first metal screen around the outer periphery of said first tube extending from said first ring to said second ring, a second metal screen around the inner periphery of said second tube extending from said first ring to said second ring, and an annular bed of unconsolidated granular material packed between said first and second screens and said first and second rings.

2. The combination of claim 1 wherein said well bore penetrates a plurality of oil sand inten/als to be heated and wherein a plurality of said burners are attached to said tubing string so as to extend substantially the depth of its respective oil sand interval. i

3. The combina/tion of a Well bore penetrating a subterranean oil sand interval which comprises a first tubing string and a second tubing string concentrically disposed within said first tubing string, said first and second tubing strings extending into said well bore, a conduit communieating with the upper end of said well bore for removal of iue gas therefrom, said second tubing string extending to the upper level of said oil sand interval, said first tubing string extending to the lower level of said oil sand interval, a gas permeable tube concentrically disposed within said first tubing string and connected to the lower end of said second tubing string, said gas permeable tube being closed at its lower end and terminating at the lower level of said oil sand interval, said gas permeable tube having an uninterrupted wall of uniform permeability to gases so as to permit diffusion of a gas therethrough, a combustible gas supply conduit connected to the upper end of said second tubing string, an oxidizing gas supply conduit connected to the upper end of said first tubing string, a combustible gas supply means connected to said combustible gas supply conduit and an oxidizing gas supply means connected to said oxidizing supply conduit, said combustible gas supply means being adapted to supply combustible gas lat a pressure greater than the pressure of oxidizing gas supplied by said oxidizing gas supply means so as to cause said combustible gas to diffuse through said gas permeable tube and admix with said oxidizing gas within said first tubing string.

References Cited in the file ot' this patent UNITED STATES PATENTS 71,144 Dean Nov. 19, 1867 444,85() Reed Jan. 20, 1891 1,678,592 Garner et ral. July 24, 1928 2,161,865 Hobstetter et al. June 13, 1939 2,890,754 Hoifstrom et al June 16, 1959 2,913,050 lCrawford Nov. 17, 1959 2,981,332 Miller et al Apr. 25, 1961 3,010,516 Schleicher Nov. 28, 1961 3,050,116 Crawford Aug. 21, 1962 FOREIGN PATENTS 123,137 Sweden Nov. 9, 1948

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US71144 *Nov 19, 1867 louis
US444850 *Jun 16, 1890Jan 20, 1891 Burner for natural gas
US1678592 *Feb 3, 1923Jul 24, 1928Standard Oil Dev CoArt of treating oil wells
US2161865 *May 29, 1936Jun 13, 1939Wheeling Steel CorpBurner construction
US2890754 *Jan 4, 1954Jun 16, 1959Husky Oil CompanyApparatus for recovering combustible substances from subterraneous deposits in situ
US2913050 *May 12, 1955Nov 17, 1959Phillips Petroleum CoPreventing explosions in bore holes during underground combustion operations for oil recovery
US2981332 *Feb 1, 1957Apr 25, 1961Kumler William LWell screening method and device therefor
US3010516 *Nov 18, 1957Nov 28, 1961Phillips Petroleum CoBurner and process for in situ combustion
US3050116 *May 26, 1958Aug 21, 1962Phillips Petroleum CoMultiple zone production by in situ combustion
SE123137A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3181613 *Apr 23, 1963May 4, 1965Union Oil CoMethod and apparatus for subterranean heating
US3244231 *Apr 9, 1963Apr 5, 1966Pan American Petroleum CorpMethod for catalytically heating oil bearing formations
US3376932 *Mar 4, 1966Apr 9, 1968Pan American Petroleum CorpCatalytic heater
US3420300 *Oct 27, 1966Jan 7, 1969Sinclair Research IncMethod and apparatus for heating a subsurface formation
US3497000 *Aug 19, 1968Feb 24, 1970Pan American Petroleum CorpBottom hole catalytic heater
US3680635 *Dec 30, 1969Aug 1, 1972Sun Oil Co DelawareMethod and apparatus for igniting well heaters
US3680636 *Dec 30, 1969Aug 1, 1972Sun Oil CoMethod and apparatus for ignition and heating of earth formations
US3804163 *Apr 11, 1973Apr 16, 1974Sun Oil CoCatalytic wellbore heater
US4446917 *Mar 12, 1979May 8, 1984Todd John CMethod and apparatus for producing viscous or waxy crude oils
US4640352 *Sep 24, 1985Feb 3, 1987Shell Oil CompanyIn-situ steam drive oil recovery process
US4886118 *Feb 17, 1988Dec 12, 1989Shell Oil CompanyConductively heating a subterranean oil shale to create permeability and subsequently produce oil
US5070533 *Nov 7, 1990Dec 3, 1991Uentech CorporationRobust electrical heating systems for mineral wells
US5082055 *Jan 2, 1991Jan 21, 1992Indugas, Inc.Gas fired radiant tube heater
US5224542 *Jan 6, 1992Jul 6, 1993Indugas, Inc.Gas fired radiant tube heater
US5297626 *Jun 12, 1992Mar 29, 1994Shell Oil CompanyOil recovery process
US5392854 *Dec 20, 1993Feb 28, 1995Shell Oil CompanyOil recovery process
US5404952 *Dec 20, 1993Apr 11, 1995Shell Oil CompanyHeat injection process and apparatus
US5862858 *Dec 26, 1996Jan 26, 1999Shell Oil CompanyFlameless combustor
US6581684Apr 24, 2001Jun 24, 2003Shell Oil CompanyIn Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US6588504Apr 24, 2001Jul 8, 2003Shell Oil CompanyIn situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US6591906Apr 24, 2001Jul 15, 2003Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US6591907Apr 24, 2001Jul 15, 2003Shell Oil CompanyIn situ thermal processing of a coal formation with a selected vitrinite reflectance
US6607033Apr 24, 2001Aug 19, 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to produce a condensate
US6609570Apr 24, 2001Aug 26, 2003Shell Oil CompanyIn situ thermal processing of a coal formation and ammonia production
US6684948Jan 15, 2002Feb 3, 2004Marshall T. SavageApparatus and method for heating subterranean formations using fuel cells
US6688387Apr 24, 2001Feb 10, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6698515Apr 24, 2001Mar 2, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a relatively slow heating rate
US6702016Apr 24, 2001Mar 9, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US6708758Apr 24, 2001Mar 23, 2004Shell Oil CompanyIn situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US6712135Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a coal formation in reducing environment
US6712136Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US6712137Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US6715546Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6715547Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US6715548Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6715549Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US6719047Apr 24, 2001Apr 13, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US6722429Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6722430Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US6722431Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of hydrocarbons within a relatively permeable formation
US6725920Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US6725921Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation by controlling a pressure of the formation
US6725928Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a distributed combustor
US6729395Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US6729396Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US6729397Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US6729401Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation and ammonia production
US6732794Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6732795Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US6732796Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US6736215Apr 24, 2001May 18, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US6739393Apr 24, 2001May 25, 2004Shell Oil CompanyIn situ thermal processing of a coal formation and tuning production
US6739394Apr 24, 2001May 25, 2004Shell Oil CompanyProduction of synthesis gas from a hydrocarbon containing formation
US6742587Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US6742588Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US6742589Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US6742593Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US6745831Apr 24, 2001Jun 8, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US6745832Apr 24, 2001Jun 8, 2004Shell Oil CompanySitu thermal processing of a hydrocarbon containing formation to control product composition
US6745837Apr 24, 2001Jun 8, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US6749021Apr 24, 2001Jun 15, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a controlled heating rate
US6752210Apr 24, 2001Jun 22, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using heat sources positioned within open wellbores
US6758268Apr 24, 2001Jul 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US6761216Apr 24, 2001Jul 13, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
US6763886Apr 24, 2001Jul 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with carbon dioxide sequestration
US6769483Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US6769485Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ production of synthesis gas from a coal formation through a heat source wellbore
US6789625Apr 24, 2001Sep 14, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US6805195Apr 24, 2001Oct 19, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US6820688Apr 24, 2001Nov 23, 2004Shell Oil CompanyIn situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio
US6866097Apr 24, 2001Mar 15, 2005Shell Oil CompanyIn situ thermal processing of a coal formation to increase a permeability/porosity of the formation
US6871707Apr 24, 2001Mar 29, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
US6877554Apr 24, 2001Apr 12, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control
US6877555Apr 24, 2002Apr 12, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation while inhibiting coking
US6880633Apr 24, 2002Apr 19, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce a desired product
US6880635Apr 24, 2001Apr 19, 2005Shell Oil CompanyIn situ production of synthesis gas from a coal formation, the synthesis gas having a selected H2 to CO ratio
US6889769Apr 24, 2001May 10, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US6896053Apr 24, 2001May 24, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US6902003Apr 24, 2001Jun 7, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content
US6902004Apr 24, 2001Jun 7, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a movable heating element
US6910536Apr 24, 2001Jun 28, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US6913078Apr 24, 2001Jul 5, 2005Shell Oil CompanyIn Situ thermal processing of hydrocarbons within a relatively impermeable formation
US6915850Apr 24, 2002Jul 12, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation having permeable and impermeable sections
US6918442Apr 24, 2002Jul 19, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation in a reducing environment
US6918443Apr 24, 2002Jul 19, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US6923257Apr 24, 2002Aug 2, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce a condensate
US6923258Jun 12, 2003Aug 2, 2005Shell Oil CompanyIn situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6929067Apr 24, 2002Aug 16, 2005Shell Oil CompanyHeat sources with conductive material for in situ thermal processing of an oil shale formation
US6932155Oct 24, 2002Aug 23, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US6948562Apr 24, 2002Sep 27, 2005Shell Oil CompanyProduction of a blending agent using an in situ thermal process in a relatively permeable formation
US6948563Apr 24, 2001Sep 27, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US6951247Apr 24, 2002Oct 4, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation using horizontal heat sources
US6953087Apr 24, 2001Oct 11, 2005Shell Oil CompanyThermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US6959761Apr 24, 2001Nov 1, 2005Shell Oil CompanyIn situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US6964300Apr 24, 2002Nov 15, 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US6966372Apr 24, 2001Nov 22, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US6966374Apr 24, 2002Nov 22, 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation using gas to increase mobility
US6969123Oct 24, 2002Nov 29, 2005Shell Oil CompanyUpgrading and mining of coal
US6973967Apr 24, 2001Dec 13, 2005Shell Oil CompanySitu thermal processing of a coal formation using pressure and/or temperature control
US6981548Apr 24, 2002Jan 3, 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation
US6991031Apr 24, 2001Jan 31, 2006Shell Oil CompanyIn situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US6991032Apr 24, 2002Jan 31, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US6991033Apr 24, 2002Jan 31, 2006Shell Oil CompanyIn situ thermal processing while controlling pressure in an oil shale formation
US6991036Apr 24, 2002Jan 31, 2006Shell Oil CompanyThermal processing of a relatively permeable formation
US6991045Oct 24, 2002Jan 31, 2006Shell Oil CompanyForming openings in a hydrocarbon containing formation using magnetic tracking
US6994160Apr 24, 2001Feb 7, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US6994161Apr 24, 2001Feb 7, 2006Kevin Albert MaherIn situ thermal processing of a coal formation with a selected moisture content
US6994168 *Apr 24, 2001Feb 7, 2006Scott Lee WellingtonIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US6994169Apr 24, 2002Feb 7, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation with a selected property
US6997255Apr 24, 2001Feb 14, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a reducing environment
US6997518Apr 24, 2002Feb 14, 2006Shell Oil CompanyIn situ thermal processing and solution mining of an oil shale formation
US7004247Apr 24, 2002Feb 28, 2006Shell Oil CompanyConductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US7004251Apr 24, 2002Feb 28, 2006Shell Oil CompanyIn situ thermal processing and remediation of an oil shale formation
US7011154Oct 24, 2002Mar 14, 2006Shell Oil CompanyIn situ recovery from a kerogen and liquid hydrocarbon containing formation
US7013972Apr 24, 2002Mar 21, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a natural distributed combustor
US7017661Apr 24, 2001Mar 28, 2006Shell Oil CompanyProduction of synthesis gas from a coal formation
US7032660 *Apr 24, 2002Apr 25, 2006Shell Oil CompanyIn situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US7036583Sep 24, 2001May 2, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US7040398Apr 24, 2002May 9, 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation in a reducing environment
US7040399Apr 24, 2002May 9, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a controlled heating rate
US7040400Apr 24, 2002May 9, 2006Shell Oil CompanyIn situ thermal processing of a relatively impermeable formation using an open wellbore
US7051807Apr 24, 2002May 30, 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with quality control
US7051808Oct 24, 2002May 30, 2006Shell Oil CompanySeismic monitoring of in situ conversion in a hydrocarbon containing formation
US7051811Apr 24, 2002May 30, 2006Shell Oil CompanyIn situ thermal processing through an open wellbore in an oil shale formation
US7055600Apr 24, 2002Jun 6, 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with controlled production rate
US7063145Oct 24, 2002Jun 20, 2006Shell Oil CompanyMethods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US7066254Oct 24, 2002Jun 27, 2006Shell Oil CompanyIn situ thermal processing of a tar sands formation
US7066257Oct 24, 2002Jun 27, 2006Shell Oil CompanyIn situ recovery from lean and rich zones in a hydrocarbon containing formation
US7073578Oct 24, 2003Jul 11, 2006Shell Oil CompanyStaged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US7077198Oct 24, 2002Jul 18, 2006Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using barriers
US7077199Oct 24, 2002Jul 18, 2006Shell Oil CompanyIn situ thermal processing of an oil reservoir formation
US7086465Oct 24, 2002Aug 8, 2006Shell Oil CompanyIn situ production of a blending agent from a hydrocarbon containing formation
US7086468Apr 24, 2001Aug 8, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US7090013Oct 24, 2002Aug 15, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US7096941Apr 24, 2001Aug 29, 2006Shell Oil CompanyIn situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US7096942Apr 24, 2002Aug 29, 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation while controlling pressure
US7096953Apr 24, 2001Aug 29, 2006Shell Oil CompanyIn situ thermal processing of a coal formation using a movable heating element
US7100994Oct 24, 2002Sep 5, 2006Shell Oil CompanyProducing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation
US7104319Oct 24, 2002Sep 12, 2006Shell Oil CompanyIn situ thermal processing of a heavy oil diatomite formation
US7114566Oct 24, 2002Oct 3, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US7121342Apr 23, 2004Oct 17, 2006Shell Oil CompanyThermal processes for subsurface formations
US7128153Oct 24, 2002Oct 31, 2006Shell Oil CompanyTreatment of a hydrocarbon containing formation after heating
US7156176Oct 24, 2002Jan 2, 2007Shell Oil CompanyInstallation and use of removable heaters in a hydrocarbon containing formation
US7165615Oct 24, 2002Jan 23, 2007Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US7182132Oct 15, 2003Feb 27, 2007Independant Energy Partners, Inc.Linearly scalable geothermic fuel cells
US7225866Jan 31, 2006Jun 5, 2007Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US7320364Apr 22, 2005Jan 22, 2008Shell Oil CompanyInhibiting reflux in a heated well of an in situ conversion system
US7353872Apr 22, 2005Apr 8, 2008Shell Oil CompanyStart-up of temperature limited heaters using direct current (DC)
US7357180Apr 22, 2005Apr 15, 2008Shell Oil CompanyInhibiting effects of sloughing in wellbores
US7360588Oct 17, 2006Apr 22, 2008Shell Oil CompanyThermal processes for subsurface formations
US7370704Apr 22, 2005May 13, 2008Shell Oil CompanyTriaxial temperature limited heater
US7383877Apr 22, 2005Jun 10, 2008Shell Oil CompanyTemperature limited heaters with thermally conductive fluid used to heat subsurface formations
US7424915Apr 22, 2005Sep 16, 2008Shell Oil CompanyVacuum pumping of conductor-in-conduit heaters
US7431076Apr 22, 2005Oct 7, 2008Shell Oil CompanyTemperature limited heaters using modulated DC power
US7435037Apr 21, 2006Oct 14, 2008Shell Oil CompanyLow temperature barriers with heat interceptor wells for in situ processes
US7461691Jan 23, 2007Dec 9, 2008Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7481274Apr 22, 2005Jan 27, 2009Shell Oil CompanyTemperature limited heaters with relatively constant current
US7490665Apr 22, 2005Feb 17, 2009Shell Oil CompanyVariable frequency temperature limited heaters
US7500528Apr 21, 2006Mar 10, 2009Shell Oil CompanyLow temperature barrier wellbores formed using water flushing
US7503761 *Jun 10, 2005Mar 17, 2009Fina Technology Inc.Method for reducing the formation of nitrogen oxides in steam generation
US7510000Apr 22, 2005Mar 31, 2009Shell Oil CompanyReducing viscosity of oil for production from a hydrocarbon containing formation
US7575052Apr 21, 2006Aug 18, 2009Shell Oil CompanyIn situ conversion process utilizing a closed loop heating system
US7575053Apr 21, 2006Aug 18, 2009Shell Oil CompanyLow temperature monitoring system for subsurface barriers
US7597147Apr 20, 2007Oct 6, 2009Shell Oil CompanyTemperature limited heaters using phase transformation of ferromagnetic material
US7644765Oct 19, 2007Jan 12, 2010Shell Oil CompanyHeating tar sands formations while controlling pressure
US7651331 *Mar 9, 2006Jan 26, 2010Shell Oil CompanyMulti-tube heat transfer system for the combustion of a fuel and heating of a process fluid and the use thereof
US7673681Oct 19, 2007Mar 9, 2010Shell Oil CompanyTreating tar sands formations with karsted zones
US7673786Apr 20, 2007Mar 9, 2010Shell Oil CompanyWelding shield for coupling heaters
US7677310Oct 19, 2007Mar 16, 2010Shell Oil CompanyCreating and maintaining a gas cap in tar sands formations
US7677314Oct 19, 2007Mar 16, 2010Shell Oil CompanyMethod of condensing vaporized water in situ to treat tar sands formations
US7681647Oct 19, 2007Mar 23, 2010Shell Oil CompanyMethod of producing drive fluid in situ in tar sands formations
US7683296Apr 20, 2007Mar 23, 2010Shell Oil CompanyAdjusting alloy compositions for selected properties in temperature limited heaters
US7703513Oct 19, 2007Apr 27, 2010Shell Oil CompanyWax barrier for use with in situ processes for treating formations
US7704070 *Mar 9, 2006Apr 27, 2010Shell Oil CompanyHeat transfer system for the combustion of a fuel heating of a process fluid and a process that uses same
US7717171Oct 19, 2007May 18, 2010Shell Oil CompanyMoving hydrocarbons through portions of tar sands formations with a fluid
US7730945Oct 19, 2007Jun 8, 2010Shell Oil CompanyUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7730946Oct 19, 2007Jun 8, 2010Shell Oil CompanyTreating tar sands formations with dolomite
US7730947Oct 19, 2007Jun 8, 2010Shell Oil CompanyCreating fluid injectivity in tar sands formations
US7735935Jun 1, 2007Jun 15, 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US7785427Apr 20, 2007Aug 31, 2010Shell Oil CompanyHigh strength alloys
US7793722Apr 20, 2007Sep 14, 2010Shell Oil CompanyNon-ferromagnetic overburden casing
US7798220Apr 18, 2008Sep 21, 2010Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US7798221May 31, 2007Sep 21, 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7831134Apr 21, 2006Nov 9, 2010Shell Oil CompanyGrouped exposed metal heaters
US7832484Apr 18, 2008Nov 16, 2010Shell Oil CompanyMolten salt as a heat transfer fluid for heating a subsurface formation
US7841401Oct 19, 2007Nov 30, 2010Shell Oil CompanyGas injection to inhibit migration during an in situ heat treatment process
US7841408Apr 18, 2008Nov 30, 2010Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US7841425Apr 18, 2008Nov 30, 2010Shell Oil CompanyDrilling subsurface wellbores with cutting structures
US7845411Oct 19, 2007Dec 7, 2010Shell Oil CompanyIn situ heat treatment process utilizing a closed loop heating system
US7849922Apr 18, 2008Dec 14, 2010Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US7860377Apr 21, 2006Dec 28, 2010Shell Oil CompanySubsurface connection methods for subsurface heaters
US7866385Apr 20, 2007Jan 11, 2011Shell Oil CompanyPower systems utilizing the heat of produced formation fluid
US7866386Oct 13, 2008Jan 11, 2011Shell Oil CompanyIn situ oxidation of subsurface formations
US7866388Oct 13, 2008Jan 11, 2011Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US7912358Apr 20, 2007Mar 22, 2011Shell Oil CompanyAlternate energy source usage for in situ heat treatment processes
US7931086Apr 18, 2008Apr 26, 2011Shell Oil CompanyHeating systems for heating subsurface formations
US7942197Apr 21, 2006May 17, 2011Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US7942203Jan 4, 2010May 17, 2011Shell Oil CompanyThermal processes for subsurface formations
US7950453Apr 18, 2008May 31, 2011Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US7986869Apr 21, 2006Jul 26, 2011Shell Oil CompanyVarying properties along lengths of temperature limited heaters
US8011451Oct 13, 2008Sep 6, 2011Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US8016589Mar 9, 2006Sep 13, 2011Shell Oil CompanyMethod of starting up a direct heating system for the flameless combustion of fuel and direct heating of a process fluid
US8027571Apr 21, 2006Sep 27, 2011Shell Oil CompanyIn situ conversion process systems utilizing wellbores in at least two regions of a formation
US8042610Apr 18, 2008Oct 25, 2011Shell Oil CompanyParallel heater system for subsurface formations
US8070840Apr 21, 2006Dec 6, 2011Shell Oil CompanyTreatment of gas from an in situ conversion process
US8083813Apr 20, 2007Dec 27, 2011Shell Oil CompanyMethods of producing transportation fuel
US8113272Oct 13, 2008Feb 14, 2012Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US8146661Oct 13, 2008Apr 3, 2012Shell Oil CompanyCryogenic treatment of gas
US8146669Oct 13, 2008Apr 3, 2012Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US8151880Dec 9, 2010Apr 10, 2012Shell Oil CompanyMethods of making transportation fuel
US8151907Apr 10, 2009Apr 10, 2012Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8162059Oct 13, 2008Apr 24, 2012Shell Oil CompanyInduction heaters used to heat subsurface formations
US8162405Apr 10, 2009Apr 24, 2012Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US8172335Apr 10, 2009May 8, 2012Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8177305Apr 10, 2009May 15, 2012Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8191630Apr 28, 2010Jun 5, 2012Shell Oil CompanyCreating fluid injectivity in tar sands formations
US8192682Apr 26, 2010Jun 5, 2012Shell Oil CompanyHigh strength alloys
US8196658Oct 13, 2008Jun 12, 2012Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US8220539Oct 9, 2009Jul 17, 2012Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8224163Oct 24, 2003Jul 17, 2012Shell Oil CompanyVariable frequency temperature limited heaters
US8224164Oct 24, 2003Jul 17, 2012Shell Oil CompanyInsulated conductor temperature limited heaters
US8224165Apr 21, 2006Jul 17, 2012Shell Oil CompanyTemperature limited heater utilizing non-ferromagnetic conductor
US8225866Jul 21, 2010Jul 24, 2012Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8230927May 16, 2011Jul 31, 2012Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US8233782Sep 29, 2010Jul 31, 2012Shell Oil CompanyGrouped exposed metal heaters
US8238730Oct 24, 2003Aug 7, 2012Shell Oil CompanyHigh voltage temperature limited heaters
US8240774Oct 13, 2008Aug 14, 2012Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US8256512Oct 9, 2009Sep 4, 2012Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US8261832Oct 9, 2009Sep 11, 2012Shell Oil CompanyHeating subsurface formations with fluids
US8267170Oct 9, 2009Sep 18, 2012Shell Oil CompanyOffset barrier wells in subsurface formations
US8267185Oct 9, 2009Sep 18, 2012Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US8272455Oct 13, 2008Sep 25, 2012Shell Oil CompanyMethods for forming wellbores in heated formations
US8276661Oct 13, 2008Oct 2, 2012Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US8281861Oct 9, 2009Oct 9, 2012Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US8327681Apr 18, 2008Dec 11, 2012Shell Oil CompanyWellbore manufacturing processes for in situ heat treatment processes
US8327932Apr 9, 2010Dec 11, 2012Shell Oil CompanyRecovering energy from a subsurface formation
US8353347Oct 9, 2009Jan 15, 2013Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US8355623Apr 22, 2005Jan 15, 2013Shell Oil CompanyTemperature limited heaters with high power factors
US8381815Apr 18, 2008Feb 26, 2013Shell Oil CompanyProduction from multiple zones of a tar sands formation
US8434555Apr 9, 2010May 7, 2013Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US8448707Apr 9, 2010May 28, 2013Shell Oil CompanyNon-conducting heater casings
US8459359Apr 18, 2008Jun 11, 2013Shell Oil CompanyTreating nahcolite containing formations and saline zones
US8485252Jul 11, 2012Jul 16, 2013Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8536497Oct 13, 2008Sep 17, 2013Shell Oil CompanyMethods for forming long subsurface heaters
US8555971May 31, 2012Oct 15, 2013Shell Oil CompanyTreating tar sands formations with dolomite
US8562078Nov 25, 2009Oct 22, 2013Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8579031May 17, 2011Nov 12, 2013Shell Oil CompanyThermal processes for subsurface formations
US8606091Oct 20, 2006Dec 10, 2013Shell Oil CompanySubsurface heaters with low sulfidation rates
US8608249Apr 26, 2010Dec 17, 2013Shell Oil CompanyIn situ thermal processing of an oil shale formation
US8627887Dec 8, 2008Jan 14, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8631866Apr 8, 2011Jan 21, 2014Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US8636323Nov 25, 2009Jan 28, 2014Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US8662175Apr 18, 2008Mar 4, 2014Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8701768Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations
US8701769Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US8739874Apr 8, 2011Jun 3, 2014Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US8752904Apr 10, 2009Jun 17, 2014Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8789586Jul 12, 2013Jul 29, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8791396Apr 18, 2008Jul 29, 2014Shell Oil CompanyFloating insulated conductors for heating subsurface formations
US8820406Apr 8, 2011Sep 2, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8833453Apr 8, 2011Sep 16, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US8851170Apr 9, 2010Oct 7, 2014Shell Oil CompanyHeater assisted fluid treatment of a subsurface formation
US8857506May 24, 2013Oct 14, 2014Shell Oil CompanyAlternate energy source usage methods for in situ heat treatment processes
US8881806Oct 9, 2009Nov 11, 2014Shell Oil CompanySystems and methods for treating a subsurface formation with electrical conductors
US9016370Apr 6, 2012Apr 28, 2015Shell Oil CompanyPartial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9022109Jan 21, 2014May 5, 2015Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US9022118Oct 9, 2009May 5, 2015Shell Oil CompanyDouble insulated heaters for treating subsurface formations
US9033042Apr 8, 2011May 19, 2015Shell Oil CompanyForming bitumen barriers in subsurface hydrocarbon formations
US9051829Oct 9, 2009Jun 9, 2015Shell Oil CompanyPerforated electrical conductors for treating subsurface formations
US9127523Apr 8, 2011Sep 8, 2015Shell Oil CompanyBarrier methods for use in subsurface hydrocarbon formations
US9127538Apr 8, 2011Sep 8, 2015Shell Oil CompanyMethodologies for treatment of hydrocarbon formations using staged pyrolyzation
US9129728Oct 9, 2009Sep 8, 2015Shell Oil CompanySystems and methods of forming subsurface wellbores
US9181780Apr 18, 2008Nov 10, 2015Shell Oil CompanyControlling and assessing pressure conditions during treatment of tar sands formations
US9309755Oct 4, 2012Apr 12, 2016Shell Oil CompanyThermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US9399905May 4, 2015Jul 26, 2016Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US20030079877 *Apr 24, 2002May 1, 2003Wellington Scott LeeIn situ thermal processing of a relatively impermeable formation in a reducing environment
US20030080604 *Apr 24, 2002May 1, 2003Vinegar Harold J.In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US20030098149 *Apr 24, 2002May 29, 2003Wellington Scott LeeIn situ thermal recovery from a relatively permeable formation using gas to increase mobility
US20030098605 *Apr 24, 2002May 29, 2003Vinegar Harold J.In situ thermal recovery from a relatively permeable formation
US20030102126 *Apr 24, 2002Jun 5, 2003Sumnu-Dindoruk Meliha DenizIn situ thermal recovery from a relatively permeable formation with controlled production rate
US20030111223 *Apr 24, 2002Jun 19, 2003Rouffignac Eric Pierre DeIn situ thermal processing of an oil shale formation using horizontal heat sources
US20030116315 *Apr 24, 2002Jun 26, 2003Wellington Scott LeeIn situ thermal processing of a relatively permeable formation
US20030131993 *Apr 24, 2002Jul 17, 2003Etuan ZhangIn situ thermal processing of an oil shale formation with a selected property
US20030131995 *Apr 24, 2002Jul 17, 2003De Rouffignac Eric PierreIn situ thermal processing of a relatively impermeable formation to increase permeability of the formation
US20030131996 *Apr 24, 2002Jul 17, 2003Vinegar Harold J.In situ thermal processing of an oil shale formation having permeable and impermeable sections
US20030136558 *Apr 24, 2002Jul 24, 2003Wellington Scott LeeIn situ thermal processing of an oil shale formation to produce a desired product
US20030136559 *Apr 24, 2002Jul 24, 2003Wellington Scott LeeIn situ thermal processing while controlling pressure in an oil shale formation
US20030141066 *Apr 24, 2002Jul 31, 2003Karanikas John MichaelIn situ thermal processing of an oil shale formation while inhibiting coking
US20030141067 *Apr 24, 2002Jul 31, 2003Rouffignac Eric Pierre DeIn situ thermal processing of an oil shale formation to increase permeability of the formation
US20030142964 *Apr 24, 2002Jul 31, 2003Wellington Scott LeeIn situ thermal processing of an oil shale formation using a controlled heating rate
US20030146002 *Apr 24, 2002Aug 7, 2003Vinegar Harold J.Removable heat sources for in situ thermal processing of an oil shale formation
US20030164239 *Apr 24, 2002Sep 4, 2003Wellington Scott LeeIn situ thermal processing of an oil shale formation in a reducing environment
US20030173081 *Oct 24, 2002Sep 18, 2003Vinegar Harold J.In situ thermal processing of an oil reservoir formation
US20030173085 *Oct 24, 2002Sep 18, 2003Vinegar Harold J.Upgrading and mining of coal
US20030196810 *Oct 24, 2002Oct 23, 2003Vinegar Harold J.Treatment of a hydrocarbon containing formation after heating
US20030201098 *Oct 24, 2002Oct 30, 2003Karanikas John MichaelIn situ recovery from a hydrocarbon containing formation using one or more simulations
US20040040715 *Oct 24, 2002Mar 4, 2004Wellington Scott LeeIn situ production of a blending agent from a hydrocarbon containing formation
US20040185398 *Dec 17, 2003Sep 23, 2004Fina Technology, Inc.Method for reducing the formation of nitrogen oxides in steam generation
US20040211554 *Apr 24, 2002Oct 28, 2004Vinegar Harold J.Heat sources with conductive material for in situ thermal processing of an oil shale formation
US20040211557 *Apr 24, 2002Oct 28, 2004Cole Anthony ThomasConductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US20050016729 *Oct 15, 2003Jan 27, 2005Savage Marshall T.Linearly scalable geothermic fuel cells
US20050092483 *Oct 24, 2002May 5, 2005Vinegar Harold J.In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US20050223643 *Jun 10, 2005Oct 13, 2005Fina Technology, Inc.Method for reducing the formation of nitrogen oxides in steam generation
US20060210468 *Mar 9, 2006Sep 21, 2006Peter VeenstraHeat transfer system for the combustion of a fuel and heating of a process fluid and a process that uses same
US20060210936 *Mar 9, 2006Sep 21, 2006Peter VeenstraMulti-tube heat transfer system for the combustion of a fuel and heating of a process fluid and the use thereof
US20060222578 *Mar 9, 2006Oct 5, 2006Peter VeenstraMethod of starting up a direct heating system for the flameless combustion of fuel and direct heating of a process fluid
US20070045265 *Apr 21, 2006Mar 1, 2007Mckinzie Billy J IiLow temperature barriers with heat interceptor wells for in situ processes
US20070095536 *Oct 20, 2006May 3, 2007Vinegar Harold JCogeneration systems and processes for treating hydrocarbon containing formations
US20070125533 *Oct 20, 2006Jun 7, 2007Minderhoud Johannes KMethods of hydrotreating a liquid stream to remove clogging compounds
US20070127897 *Oct 20, 2006Jun 7, 2007John Randy CSubsurface heaters with low sulfidation rates
US20070131419 *Oct 20, 2006Jun 14, 2007Maria Roes Augustinus WMethods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US20070131420 *Oct 20, 2006Jun 14, 2007Weijian MoMethods of cracking a crude product to produce additional crude products
US20070137856 *Apr 21, 2006Jun 21, 2007Mckinzie Billy JDouble barrier system for an in situ conversion process
US20070221377 *Oct 20, 2006Sep 27, 2007Vinegar Harold JSolution mining systems and methods for treating hydrocarbon containing formations
US20080035346 *Apr 20, 2007Feb 14, 2008Vijay NairMethods of producing transportation fuel
US20080035348 *Apr 20, 2007Feb 14, 2008Vitek John MTemperature limited heaters using phase transformation of ferromagnetic material
US20080035705 *Apr 20, 2007Feb 14, 2008Menotti James LWelding shield for coupling heaters
US20080038144 *Apr 20, 2007Feb 14, 2008Maziasz Phillip JHigh strength alloys
US20080107577 *Oct 20, 2006May 8, 2008Vinegar Harold JVarying heating in dawsonite zones in hydrocarbon containing formations
US20080128134 *Oct 19, 2007Jun 5, 2008Ramesh Raju MudunuriProducing drive fluid in situ in tar sands formations
US20080135244 *Oct 19, 2007Jun 12, 2008David Scott MillerHeating hydrocarbon containing formations in a line drive staged process
US20080135253 *Oct 19, 2007Jun 12, 2008Vinegar Harold JTreating tar sands formations with karsted zones
US20080135254 *Oct 19, 2007Jun 12, 2008Vinegar Harold JIn situ heat treatment process utilizing a closed loop heating system
US20080142216 *Oct 19, 2007Jun 19, 2008Vinegar Harold JTreating tar sands formations with dolomite
US20080142217 *Oct 19, 2007Jun 19, 2008Roelof PietersonUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US20080173442 *Apr 20, 2007Jul 24, 2008Vinegar Harold JSulfur barrier for use with in situ processes for treating formations
US20080173444 *Apr 20, 2007Jul 24, 2008Francis Marion StoneAlternate energy source usage for in situ heat treatment processes
US20080173450 *Apr 20, 2007Jul 24, 2008Bernard GoldbergTime sequenced heating of multiple layers in a hydrocarbon containing formation
US20080174115 *Apr 20, 2007Jul 24, 2008Gene Richard LambirthPower systems utilizing the heat of produced formation fluid
US20080185147 *Oct 19, 2007Aug 7, 2008Vinegar Harold JWax barrier for use with in situ processes for treating formations
US20080217003 *Oct 19, 2007Sep 11, 2008Myron Ira KuhlmanGas injection to inhibit migration during an in situ heat treatment process
US20080217004 *Oct 19, 2007Sep 11, 2008De Rouffignac Eric PierreHeating hydrocarbon containing formations in a checkerboard pattern staged process
US20080217015 *Oct 19, 2007Sep 11, 2008Vinegar Harold JHeating hydrocarbon containing formations in a spiral startup staged sequence
US20080277113 *Oct 19, 2007Nov 13, 2008George Leo StegemeierHeating tar sands formations while controlling pressure
US20090014180 *Oct 19, 2007Jan 15, 2009George Leo StegemeierMoving hydrocarbons through portions of tar sands formations with a fluid
US20090014181 *Oct 19, 2007Jan 15, 2009Vinegar Harold JCreating and maintaining a gas cap in tar sands formations
US20090053660 *Jul 18, 2008Feb 26, 2009Thomas MikusFlameless combustion heater
US20090071652 *Apr 18, 2008Mar 19, 2009Vinegar Harold JIn situ heat treatment from multiple layers of a tar sands formation
US20090078461 *Apr 18, 2008Mar 26, 2009Arthur James MansureDrilling subsurface wellbores with cutting structures
US20090084547 *Apr 18, 2008Apr 2, 2009Walter Farman FarmayanDownhole burner systems and methods for heating subsurface formations
US20090090509 *Apr 18, 2008Apr 9, 2009Vinegar Harold JIn situ recovery from residually heated sections in a hydrocarbon containing formation
US20090095476 *Apr 18, 2008Apr 16, 2009Scott Vinh NguyenMolten salt as a heat transfer fluid for heating a subsurface formation
US20090095477 *Apr 18, 2008Apr 16, 2009Scott Vinh NguyenHeating systems for heating subsurface formations
US20090095479 *Apr 18, 2008Apr 16, 2009John Michael KaranikasProduction from multiple zones of a tar sands formation
US20090095480 *Apr 18, 2008Apr 16, 2009Vinegar Harold JIn situ heat treatment of a tar sands formation after drive process treatment
US20090126929 *Apr 18, 2008May 21, 2009Vinegar Harold JTreating nahcolite containing formations and saline zones
US20090189617 *Oct 13, 2008Jul 30, 2009David BurnsContinuous subsurface heater temperature measurement
US20090194269 *Oct 13, 2008Aug 6, 2009Vinegar Harold JThree-phase heaters with common overburden sections for heating subsurface formations
US20090194282 *Oct 13, 2008Aug 6, 2009Gary Lee BeerIn situ oxidation of subsurface formations
US20090194329 *Oct 13, 2008Aug 6, 2009Rosalvina Ramona GuimeransMethods for forming wellbores in heated formations
US20090194524 *Oct 13, 2008Aug 6, 2009Dong Sub KimMethods for forming long subsurface heaters
US20090200025 *Oct 13, 2008Aug 13, 2009Jose Luis BravoHigh temperature methods for forming oxidizer fuel
US20090200031 *Oct 13, 2008Aug 13, 2009David Scott MillerIrregular spacing of heat sources for treating hydrocarbon containing formations
US20090200854 *Oct 13, 2008Aug 13, 2009Vinegar Harold JSolution mining and in situ treatment of nahcolite beds
US20090260823 *Apr 10, 2009Oct 22, 2009Robert George Prince-WrightMines and tunnels for use in treating subsurface hydrocarbon containing formations
US20090260824 *Apr 10, 2009Oct 22, 2009David Booth BurnsHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US20090272533 *Apr 10, 2009Nov 5, 2009David Booth BurnsHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US20090272535 *Apr 10, 2009Nov 5, 2009David Booth BurnsUsing tunnels for treating subsurface hydrocarbon containing formations
US20090272578 *Apr 10, 2009Nov 5, 2009Macdonald Duncan CharlesDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US20100089586 *Oct 9, 2009Apr 15, 2010John Andrew StaneckiMovable heaters for treating subsurface hydrocarbon containing formations
US20100096137 *Oct 9, 2009Apr 22, 2010Scott Vinh NguyenCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US20100101783 *Oct 9, 2009Apr 29, 2010Vinegar Harold JUsing self-regulating nuclear reactors in treating a subsurface formation
US20100101784 *Oct 9, 2009Apr 29, 2010Vinegar Harold JControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US20100108310 *Oct 9, 2009May 6, 2010Thomas David FowlerOffset barrier wells in subsurface formations
US20100108379 *Oct 9, 2009May 6, 2010David Alston EdburySystems and methods of forming subsurface wellbores
USRE35696 *Sep 28, 1995Dec 23, 1997Shell Oil CompanyHeat injection process
CN1756924BDec 18, 2003Jun 9, 2010弗纳技术股份有限公司Method for reducing the formation of nitrogen oxides in steam generation
WO2003036040A2 *Oct 24, 2002May 1, 2003Shell Internationale Research Maatschappij B.V.In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
WO2003036040A3 *Oct 24, 2002Jul 17, 2003Shell Oil CoIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
WO2004059208A2 *Dec 18, 2003Jul 15, 2004Fina Technology, Inc.Method for reducing the formation of nitrogen oxides in steam generation
WO2004059208A3 *Dec 18, 2003Sep 10, 2004Fina TechnologyMethod for reducing the formation of nitrogen oxides in steam generation
Classifications
U.S. Classification166/59
International ClassificationE21B36/00, E21B36/02
Cooperative ClassificationE21B36/02
European ClassificationE21B36/02