Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3113623 A
Publication typeGrant
Publication dateDec 10, 1963
Filing dateJul 20, 1959
Priority dateJul 20, 1959
Publication numberUS 3113623 A, US 3113623A, US-A-3113623, US3113623 A, US3113623A
InventorsKrueger Roland F
Original AssigneeUnion Oil Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Apparatus for underground retorting
US 3113623 A
Abstract  available in
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Dec. 10, 1963 RF. K RUEGER APPARATUS FOR UNDERGROUND RETORTING 2 Sheets-Sheet l Filed July 20, 1959 INVENTOR. @OLA/'VD AT K/EUEGE/Q Eifer 2 Dec. 10, 1963 R. F. KRUEGER APPARATUS FOR UNDERGROUND RETORTING' 2 sheets-snaai 2 Filed July 20, 1959 .FIG-,5

23? (ffm ATTORNEY UnitedStates Patent O 3,113,623 APPARATUS FOR UNDERGR RETORTING Roland F. Krueger, Placentia, Calif., assignor to Union @il Company of California, Los Angeles, Calif., a corporation of California Filed July 20, 1959, Ser. No. 828,106 3 Claims. (Cl. 166-59) This invention relates to a novel method and apparatus for uniformly heating an elongated region of mineral deposits located beneath the earths surface, and more particularly concerns a method Iand apparatus for the thermal recovery of hydhocarbon values from subterranean deposits comprising the same.

A number of processes have been proposed whereby heat is employed to facilitate the recovery of hydrocarbon values from subterranean deposits such as bituminous sands, oil shale, bituminous and sub-bituminous coals, oil-soaked diatomite, heavy petroleum deposits, etc. ln most of said processes at least part of the heat is supplied from a burner positioned in a bore hole drilled into the deposit. For example, according to one process which has been `applied to the treatment of tar sand deposits, a plurality of relatively closely-spaced holes is drilled into the deposit, and heat is generated in a selected number of these holes by combustion of gas or other fuel in la suitably positioned burner device. The surrounding sand is thereby heated and the volatile petroleum fractions are driven towards a production bore hole from which they are recovered. .'Ilhe heavier ends which fail to vol-atilize are pyrolyzed by continued heating. As previously practiced, a single burner has been positioned at the base of the formation or at a point along the combustion tube. This technique results in localized heating, which is useful with shallow formations but not readily `applicable where the formation is vertically extended. Attempts to use this localized heating to transmit heat to an elongated zone within subterranean deposits have employed ow reversal methods, alone, or with packed annular zones of coarse inert material around the burner zone, or with `an annular fluidized bed of iinely divided inert solids. In the flow reversal method of heating, a combustion tube is concentrically placed Within the bore hole and extended nearly to the base of the hole. Combustible gases and air are mixed in the tube and ignited at a selected point. The flame front is prevented from rising to the top of the burner by flame arrestors positioned Within the burner upstream from the llame. The combustion gases pass down the extended burner tube to the base of the hole Where they reverse their direction and ilow upwardly through the annulus between the burner Itube and bore casing. lI-t has been found that `a high temperature zone within the shale deposit exists immediately adjacent the burner flame, and that the temperature of the shale at points vertically removed from this high 'temperature zone are substantially less. This type of operation is not entirely satisfactory because the heat is not eicicntly distributed and because the localized thigh temperature zone causes thermal failure of the burner tube. While use of a lfluidized bed of solids within the annulus between the burner and casing improves heat transfer to the shale, it does not completely eliminate the uneven heating along the bore hole and is disadvantageous in that it causes a high erosion rate of the metal surf-aces.

lt is a purpose of `this invention to provide an improved method for subterranean heating. It is also a purpose of the invention to provide a unique burner construction which achieves uniform heating over an extended length and has a long service life.

These purposes are achieved by providing a continuous elongated combustion zone extending the length of an ice elongated portion of the mineral deposits. The elongated combustion zone is achieved by use of a porous metallic, glass or ceramic combustion tube and Will be described by reference to the drawings which form a part of this application.

In the drawings, FIGURES l, 2 5 and 6 shovw the placement of the novel burner construction in the mineral deposits. FIGURES 3 and 4 show alternative features of construction of `the burner tubes. Although FIGURES 1, Zand 5 show a vertical disposition of the burner tubes, it is apparent -that a horizontal or inclined placement could also be employed, if desired.

Referring norw to FIGURE l, a mineral deposit, B, is shown located beneath an upper layer, A, which may comprise gravel, earth or stone or `an unheated portion of the mineral deposit. In accordance with this invention, a hole is bored through the 'earths surtiace and into the mineral deposit. A metal casing 1 is positioned Within `the bore hole in the conventional manner. Disposed within casing 1 are concentric tubes 2 and 3. Casing l, land tubes Z and 3 are closed at their upper ends. Conduit 4 connects with casing 1 to provide for removal of flue gases, conduit '5 communicates Iwith tube 2 for the introduction of `air or gas, and conduit 6 cornmunicates with inner tube =3, also for the entrance of air or gas. The unique construction of this invention is in the use of a gas-permeable tube 7 connected to the lower portion of central tube 3. Permeable tube 7 is sealed at its lower end by plate `fi which may be permeable, but is preferably impermeable to gas llow. Any suitable connection between permeable tube 7 and metal tube 3 may be employed, such as by cementing, threading or by use of a collar joint.

In operation, natural gas or other gaseous fuel is introduced Athrough conduit 6 into central tube 3. rllhe gas flows down into tube 7 `and passes through the Walls thereof into a flowing air stream which is introduced into tube 2 through conduit 5. The llow of gas through tube 7 into the air stream is lachieved by maintaining a higher pressure on the gas stream than on the air stream. Combustion is initiated in a conventional manner in the annular zone between tubes 2 and 7, and takes place along the entire length of tube 7, thereby providing an elongated combustion zone which may be of any suitable length corresponding to the ylength chosen for the permeable tube -7. y'Ille flue gases are discharged from the lower open end of tube 2 and reverse their direction of flow to pass upwardly through the annular zone between casing l and tube 2, and are removed through conduit yt. Heat is transmitted from the combustion zone by radiation to this upwardly flowing stre-am of flue gases and to lthe mineral deposits in zone B throughout the entire length of the burning zone, and heat is transmitted by convection from the flue gases to the mineral deposits. By this method a combustion zone with -a uniform temperature is maintained along the length of the mineral deposit. Although casing yl is shown to extend the length of the bore hole, it may be considerably shorter where the mineral matrix is suiciently consolidated so as not to tall into the hole. Suitable consolidation may occur naturally or be achieved by coking the hydrocarbons in the deposit immediately adjacent the bore hole.y This coking may be 'accomplished by introducing high temperature combustion gases into the hole.

Conventional ignition techniques presently employed to ignite gas burners in oil Wells lean be employed in the annulus surrounding fthe burner to ignite the burners of my invention. These techniques themselves constitute no inventive step in my system; they merely serve for the ignition `of the gas stream after it passes through the porous Wall and enters the annular combustion zone surrounding the porous burner. Among the suitable ignition techniques which are employed in the annular zone surrounding the porous burners are the following:

Dynamite and percussion caps;

Electrically actuated -heating coils and spark plugs which are positioned within the annular combustion zone and which are initiated by a supply of electrical energy from above ground; and

Chemical ignition techniques wherein a capsule of sodium or potassium is dropped into the well bore and followed by injection of water. The sodium or potassium is then released by mechanical breaking or dissolution of the capsule to react with Water and release heat to ignite the gas.

Referring now to FIGURE 2, a modified form of the invention is shown. In this embodiment, a single tube 16 is concentrically disposed within casing 9. The gas and air are introduced into tube 1h via inlets 11 and 12, respectively, and the gas-air mixture flows downwardly through tube into permeable tube 13 which is shown to be connected to the lower end of -tube 10 by a collar joint. The gas and air stream diuses through tube 13 into [the combustion zone which surrounds the same. The gas is ignited by any of the aforedescribed techniques and the resultant combustion occurs on the outside of this ltube and is prevented from backing into the permeable tube 13 by proper adjustment of the gas and air flow rates. lIf desired, central tube 1G may be extended downwardly as indicated so as to insure that the gases from the combustion zone flow to the base of the formation before reversal into an upwardly directed ilow to the flue gas outlet conduit 14.

FIGURE 3 shows an alternative method of construction for the gas permeable tube, and can be used to obtain a burner of greater strength than is possible with glass or ceramic tubes, alone. This construction comprises a central metal tube 15 which is perforated at suitable intervals by holes 16 and is sealed at its lower end by cap 20. A sleeve 17, constructed of a permeable ceramic or sintered glass material, surrounds lthe perforated portion of tube 15. The diameters of tube 15 and gas-permeable sleeve 17 are so chosen to insure a tight iit. The permeable sleeve extends a substantial distance, D, above the perforated portion of tube 15 to prevent gas llow from bypassing the permeable sleeve and flowing between the sleeve rand the tube. A Suitable sealing material 18 is placed above and below the permeable sleeve 17 to insure a gas-tight't, and is suitably held in place by coupling 19. If desired, the perforated portion of tube 15 can be on a separate piece of pipe and thereby permit connection to any suitable length of pipe to position fthe burning zone at any depth in the mineral deposit. Also if desired, several of these burning zones may be provided on a single string of vpipe separated by an impermeable portion of pipe, thereby permitting simultaneous `heating of multiple zones of mineral deposits. The thickness, W, of permeable sleeve 17 is selected to maintain suflicient thermal insulation between the `outer burning zone and metal tube 15. This is to eliminate any difficulties encountered due to the differences in thermal expansion of the dissimilar ceramic sleeve and the tube.

FIGURE 4 shows another embodiment of the permeable tube burner. This construction comprises a central tube 21 which is perforated similarly to tube 15 of FIGURE 3, and is similarly closed` at its lower end. Surrounding the perforated portion of tube 21 is a second concentric rtube 22 which is supported by rings 23. Tube 22 Ais also provided with a plurality of perforations. Between tubes 22 and 21 is packed an annular bed of unconsolidated silica, sand or quartz grains, which is permeable to gas ow. These grains fare prevented from falling through 4the perforations in tubes 21 and 22 by outer screen 24 and inner screen 25. Again, these burning zones may be constructed on separate pieces of pipe and connected to any desired length of pipe to permit the proper location within the mineral deposit.

FIGURE 5 illustrates an alternative type of construction. The gas permeable burner 26 in this embodiment is constructed of a gas permeable metal and is connected to a supply of air and `combustible gas. The gas and air ow into this permeable burner and diffuse into the annular lzone between the burner and the casing wall. The gas is ignited by any of the -aforedescribed techniques and the resultant combustion occurs in this annular zone along the entire length of the permeable lburner 26. A second concentric tube 27 may surround the permeable burner to insure that the combustion gases will flow to the base of the formation before reversal to the point of removal above the ground. Use of a permeable metal tube simplies construction and provides a burner which is somewhat easier to install than a glass or ceramic burner.

Another embodiment of the invention is illustrated by FIGURE 6. In this embodiment, a single tube 28 is concentrically positioned within casing 29. A ceramic rod 30, which is of a length corresponding to the depth of the mineral deposit, is supported within inner tube 28. lInlet 32 for the introduction of a combustible gas mixture, and outlet 3l for the removal of ue gas, communicate with tube 28 and casing 29, respectively. Gas and air ilow downwardly (through tube 28 and are Withdrawn through conduit 31. Combustion is initiated by igniting the gas stream flowing out of tube 31. However, any other conventional ignition technique is suitable. This combustion is permitted to back up into the burner until the flame front exists at the lower end of tube 28. The ceramic rod 30 is lowered so that its lower end is within the combustion zone at the base of tube 28. The ceramic rod slowly heats up by conduction, and a red-hot zone progresses up the length of rod 30. As this zone moves up the ceramic rod, the combustion zone follows it until a combustion zone exists within tube 2S along the entire length of the 4ceramic rod. An annular ring 33 may be placed within tube 2S above the ceramic rod to momentarily increase the combustible gas flow rate and thereby prevent the combustion zone from moving up tube 28 to the gas inlets or, if desired, tube 28 may be of a reduced diameter at its upper end to serve the same purpose. Other llame arrestors, such as screens or grids, may also be employed. The ceramic rod 30 is shown to be movable in a vertical direction. However, to simplify construction, particularly where the depth of the mineral formation is known, the ceramic rod may be rigidly supported within tube 28.

Suitable ceramic material for constructing the aforementioned gas-permeable elements may comprise permeable ceramics of alumina, zirconia, sandstone, and aluminum silicates such as sillimanite, or clays. These gas-permeable ceramics are commercially available in a wide rang of permeabilities and in a variety of shapes, including tubular elements.

Gas-permeable glass suitable for use in this invention is made by sintering of glass powders to obtain a shatterproof porous glass permeable to gas flow. This type of glass is also commercially available.

Suitable gas-permeable vmetals for construction of the burners of this invention are made by sintering of metal powders. able in bronze and a wide range of stainless steel alloys, such as 304, 309, 316, 347, nickel, Monel, etc. The permeabilities of these metals may range from a value of cubic feet of air per minute per square foot at 0.01 psi. pressure drop for a one-sixteenth inch thick stock of a highly permeable material to a permeability of 27 cubic feet of air per minute at l0 psi. pressure drop for a oneeighth inch stock of low permeability material.

A typical `example of this Yinvention is as follows: The apparatus shown by FIGURE 5 is employed to supply heat to a tar sand deposit 50 feet below the earths surface. The deposit is 30 feet rthick, and it is desired to supply 31,00() B.t.u.s per hour to the sand. A two and one-half inch bore is drilled -into the deposit and a gaspermeable stainless steel burner made from one-eighth These sintered metals are commercially avail- A one-fourth inch pipe is connected to the top of the metal burner tto supply 310 cubic feet per hour of a combined gas and air stream. In order to insure even diffusion of the combustible mixture into the annulus surrounding the burner, it is necessary to maintain a high pressure drop through the burner walls relative to the gas fiow pressure drop down the porous metal tube. A stainless steel of relatively low permeability is chosen to provide a diffusion pressure drop which is l() to 830 times as great as the gas flow pressure drop within the permeable metal burner. The actual diffusion pressure drop through the tube is 4.15 inches of water. As a result, even distribution of the gas-air mixture is obtained and ya combustion zone surrounds the permeable tube over the entire thickness of the deposit. This example is by way of illustration only and is not to be construed as limiting the scope of the invention which is directed to providing an elongated combustion zone throughout the entire depth of thick mineral deposits.

I claim:

1. A burner in combination with a well bore which penetrates an oil sand interval to be heated, a combustible gas and an air supply conduit connected to the upper end of a tubing string, said tubing string extending into said well bore and connected therein to said burner, a casing within the upper extremity of said well bore and -a conduit communicating with said oasing for the removal of ue gases therefrom; said burner comprising an elongated metal tube perforated along its length and connected to said tubing string, a second perforated metal tube concentric with and surrounding said first tube, said second tube being7 of lesser diameter than said well bore to form an annulus therebetween, a first ring laterally positioned between the non-perforated ends of said first and second tubes, and a second ring laterally positioned between the opposite non-perforated ends of said tubes, a cap over the lower end of said first tube, a first metal screen around the outer periphery of said first tube extending from said first ring to said second ring, a second metal screen around the inner periphery of said second tube extending from said first ring to said second ring, and an annular bed of unconsolidated granular material packed between said first and second screens and said first and second rings.

2. The combination of claim 1 wherein said well bore penetrates a plurality of oil sand inten/als to be heated and wherein a plurality of said burners are attached to said tubing string so as to extend substantially the depth of its respective oil sand interval. i

3. The combina/tion of a Well bore penetrating a subterranean oil sand interval which comprises a first tubing string and a second tubing string concentrically disposed within said first tubing string, said first and second tubing strings extending into said well bore, a conduit communieating with the upper end of said well bore for removal of iue gas therefrom, said second tubing string extending to the upper level of said oil sand interval, said first tubing string extending to the lower level of said oil sand interval, a gas permeable tube concentrically disposed within said first tubing string and connected to the lower end of said second tubing string, said gas permeable tube being closed at its lower end and terminating at the lower level of said oil sand interval, said gas permeable tube having an uninterrupted wall of uniform permeability to gases so as to permit diffusion of a gas therethrough, a combustible gas supply conduit connected to the upper end of said second tubing string, an oxidizing gas supply conduit connected to the upper end of said first tubing string, a combustible gas supply means connected to said combustible gas supply conduit and an oxidizing gas supply means connected to said oxidizing supply conduit, said combustible gas supply means being adapted to supply combustible gas lat a pressure greater than the pressure of oxidizing gas supplied by said oxidizing gas supply means so as to cause said combustible gas to diffuse through said gas permeable tube and admix with said oxidizing gas within said first tubing string.

References Cited in the file ot' this patent UNITED STATES PATENTS 71,144 Dean Nov. 19, 1867 444,85() Reed Jan. 20, 1891 1,678,592 Garner et ral. July 24, 1928 2,161,865 Hobstetter et al. June 13, 1939 2,890,754 Hoifstrom et al June 16, 1959 2,913,050 lCrawford Nov. 17, 1959 2,981,332 Miller et al Apr. 25, 1961 3,010,516 Schleicher Nov. 28, 1961 3,050,116 Crawford Aug. 21, 1962 FOREIGN PATENTS 123,137 Sweden Nov. 9, 1948

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US71144 *Nov 19, 1867 louis
US444850 *Jun 16, 1890Jan 20, 1891 Burner for natural gas
US1678592 *Feb 3, 1923Jul 24, 1928Standard Oil Dev CoArt of treating oil wells
US2161865 *May 29, 1936Jun 13, 1939Wheeling Steel CorpBurner construction
US2890754 *Jan 4, 1954Jun 16, 1959Husky Oil CompanyApparatus for recovering combustible substances from subterraneous deposits in situ
US2913050 *May 12, 1955Nov 17, 1959Phillips Petroleum CoPreventing explosions in bore holes during underground combustion operations for oil recovery
US2981332 *Feb 1, 1957Apr 25, 1961Kumler William LWell screening method and device therefor
US3010516 *Nov 18, 1957Nov 28, 1961Phillips Petroleum CoBurner and process for in situ combustion
US3050116 *May 26, 1958Aug 21, 1962Phillips Petroleum CoMultiple zone production by in situ combustion
SE123137A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3181613 *Apr 23, 1963May 4, 1965Union Oil CoMethod and apparatus for subterranean heating
US3244231 *Apr 9, 1963Apr 5, 1966Pan American Petroleum CorpMethod for catalytically heating oil bearing formations
US3376932 *Mar 4, 1966Apr 9, 1968Pan American Petroleum CorpCatalytic heater
US3420300 *Oct 27, 1966Jan 7, 1969Sinclair Research IncMethod and apparatus for heating a subsurface formation
US3497000 *Aug 19, 1968Feb 24, 1970Pan American Petroleum CorpBottom hole catalytic heater
US3680635 *Dec 30, 1969Aug 1, 1972Sun Oil Co DelawareMethod and apparatus for igniting well heaters
US3680636 *Dec 30, 1969Aug 1, 1972Sun Oil CoMethod and apparatus for ignition and heating of earth formations
US3804163 *Apr 11, 1973Apr 16, 1974Sun Oil CoCatalytic wellbore heater
US4446917 *Mar 12, 1979May 8, 1984Todd John CMethod and apparatus for producing viscous or waxy crude oils
US4640352 *Sep 24, 1985Feb 3, 1987Shell Oil CompanyIn-situ steam drive oil recovery process
US4886118 *Feb 17, 1988Dec 12, 1989Shell Oil CompanyPyrolysis; enhanced oil recovery
US5070533 *Nov 7, 1990Dec 3, 1991Uentech CorporationRobust electrical heating systems for mineral wells
US5082055 *Jan 2, 1991Jan 21, 1992Indugas, Inc.Gas fired radiant tube heater
US5224542 *Jan 6, 1992Jul 6, 1993Indugas, Inc.Gas fired radiant tube heater
US5297626 *Jun 12, 1992Mar 29, 1994Shell Oil CompanyOil recovery process
US5392854 *Dec 20, 1993Feb 28, 1995Shell Oil CompanyOil recovery process
US5404952 *Dec 20, 1993Apr 11, 1995Shell Oil CompanyHeat injection process and apparatus
US5862858 *Dec 26, 1996Jan 26, 1999Shell Oil CompanyFlameless combustor
US6581684Apr 24, 2001Jun 24, 2003Shell Oil CompanyIn Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US6588504Apr 24, 2001Jul 8, 2003Shell Oil CompanyConversion of hydrocarbons to produce hydrocarbons, hydrogen, and/or novel product streams from underground coal formations; pyrolysis
US6591906Apr 24, 2001Jul 15, 2003Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US6591907Apr 24, 2001Jul 15, 2003Shell Oil CompanyPyrolysis
US6607033Apr 24, 2001Aug 19, 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to produce a condensate
US6609570Apr 24, 2001Aug 26, 2003Shell Oil CompanyIn situ thermal processing of a coal formation and ammonia production
US6684948Jan 15, 2002Feb 3, 2004Marshall T. SavageApparatus and method for heating subterranean formations using fuel cells
US6688387Apr 24, 2001Feb 10, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6698515Apr 24, 2001Mar 2, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a relatively slow heating rate
US6702016Apr 24, 2001Mar 9, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US6708758Apr 24, 2001Mar 23, 2004Shell Oil CompanyIn situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US6712135Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a coal formation in reducing environment
US6712136Apr 24, 2001Mar 30, 2004Shell Oil CompanyProviding heat to the formation; controlling the heat from the heat source such that an average temperature within at least a majority of the selected section of the formation is less than about 375 degrees c.
US6712137Apr 24, 2001Mar 30, 2004Shell Oil CompanyHeat exchanging to superimpose heat
US6715546Apr 24, 2001Apr 6, 2004Shell Oil CompanyChemical and/or physical properties of hydrocarbon material within a subterranean formation may need to be changed to allow hydrocarbon material to be more easily removed
US6715547Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US6715548Apr 24, 2001Apr 6, 2004Shell Oil CompanyElectrical heaters may be used to heat the subterranean formation by radiation and/or conduction
US6715549Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US6719047Apr 24, 2001Apr 13, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US6722429Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6722430Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US6722431Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of hydrocarbons within a relatively permeable formation
US6725920Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US6725921Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation by controlling a pressure of the formation
US6725928Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a distributed combustor
US6729395Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US6729396Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US6729397Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US6729401Apr 24, 2001May 4, 2004Shell Oil CompanySynthesis gas may be produced from the formation. synthesis gas may be used as a feed stream in an ammonia synthesis process. ammonia may be used as a feed stream in a urea synthesis process.
US6732794Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6732795Apr 24, 2001May 11, 2004Shell Oil CompanyProviding heat from one or more heat sources to at least one portion of formation; allowing heat to transfer from the one or more heat sources to a selected section of the formation; controlling the heat; producing a mixture from the formation
US6732796Apr 24, 2001May 11, 2004Shell Oil CompanyHeating section of formation with heat sources to temperature allowing generation of synthesis gas, providing synthesis gas generating fluid to section, removing synthesis gas generated, repeating for second section, blending for desired ratio
US6736215Apr 24, 2001May 18, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US6739393Apr 24, 2001May 25, 2004Shell Oil CompanyIn situ thermal processing of a coal formation and tuning production
US6739394Apr 24, 2001May 25, 2004Shell Oil CompanyProviding heat and a synthesis gas generating fluid to the section to generate synthesis gas
US6742587Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US6742588Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US6742589Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US6742593Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US6745831Apr 24, 2001Jun 8, 2004Shell Oil CompanyMixture of hydrocarbons, h2, and/or other formation fluids may be produced from the formation. heat may be applied to the formation to raise a temperature of a portion of the formation to a pyrolysis temperature.
US6745832Apr 24, 2001Jun 8, 2004Shell Oil CompanySitu thermal processing of a hydrocarbon containing formation to control product composition
US6745837Apr 24, 2001Jun 8, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US6749021Apr 24, 2001Jun 15, 2004Shell Oil CompanyPyrolysis
US6752210Apr 24, 2001Jun 22, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using heat sources positioned within open wellbores
US6758268Apr 24, 2001Jul 6, 2004Shell Oil CompanyHeat exchanging, pyrolysis; monitoring temperature
US6761216Apr 24, 2001Jul 13, 2004Shell Oil CompanyPyrolysis temperature
US6763886Apr 24, 2001Jul 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with carbon dioxide sequestration
US6769483Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US6769485Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ production of synthesis gas from a coal formation through a heat source wellbore
US6789625Apr 24, 2001Sep 14, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US6805195Apr 24, 2001Oct 19, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US6820688Apr 24, 2001Nov 23, 2004Shell Oil CompanyHeat exchanging after pyrolyzation to support synthesis gas generation
US6866097Apr 24, 2001Mar 15, 2005Shell Oil CompanySuperpositioning of heaters for pyrolysis to form mixture of hydrocarbons and hydrogen; controlling pressure; heat exchanging
US6871707Apr 24, 2001Mar 29, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
US6877554Apr 24, 2001Apr 12, 2005Shell Oil CompanyPyrolysis
US6877555Apr 24, 2002Apr 12, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation while inhibiting coking
US6880633Apr 24, 2002Apr 19, 2005Shell Oil CompanyIncludes shutting-in an in situ treatment process in an oil shale formation may include terminating heating from heat sources providing heat to a portion of the formation; hydrocarbon vapor may be produced
US6880635Apr 24, 2001Apr 19, 2005Shell Oil CompanyMethods and systems for production of hydrocarbons, hydrogen, and/or other products from underground coal formations
US6889769Apr 24, 2001May 10, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US6896053Apr 24, 2001May 24, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US6902003Apr 24, 2001Jun 7, 2005Shell Oil CompanyAllowing heat to transfer from heaters to a formation selected for heating using a total organic matter weight percentage of > 5% and recirculating hydrogen
US6902004Apr 24, 2001Jun 7, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a movable heating element
US6910536Apr 24, 2001Jun 28, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US6913078Apr 24, 2001Jul 5, 2005Shell Oil CompanyIn Situ thermal processing of hydrocarbons within a relatively impermeable formation
US6915850Apr 24, 2002Jul 12, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation having permeable and impermeable sections
US6918442Apr 24, 2002Jul 19, 2005Shell Oil CompanyIn situ conversion of hydrocarbons to produce hydrocarbons, hydrogen, and/or novel product streams from underground oil shale formations
US6918443Apr 24, 2002Jul 19, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US6923257Apr 24, 2002Aug 2, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce a condensate
US6923258Jun 12, 2003Aug 2, 2005Shell Oil CompanyIn situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6929067Apr 24, 2002Aug 16, 2005Shell Oil CompanyHeat sources with conductive material for in situ thermal processing of an oil shale formation
US6932155Oct 24, 2002Aug 23, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US6948562Apr 24, 2002Sep 27, 2005Shell Oil CompanyProduction of a blending agent using an in situ thermal process in a relatively permeable formation
US6948563Apr 24, 2001Sep 27, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US6951247Apr 24, 2002Oct 4, 2005Shell Oil CompanyControl the heat exchanging, pyrolyzing hydrocarbons, enhancing oil recovery
US6953087Apr 24, 2001Oct 11, 2005Shell Oil CompanyThermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US6959761Apr 24, 2001Nov 1, 2005Shell Oil CompanyIn situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US6964300Apr 24, 2002Nov 15, 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US6966372Apr 24, 2001Nov 22, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US6966374Apr 24, 2002Nov 22, 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation using gas to increase mobility
US6969123Oct 24, 2002Nov 29, 2005Shell Oil CompanyUpgrading and mining of coal
US6973967Apr 24, 2001Dec 13, 2005Shell Oil Companyhydrocarbons within a coal formation are converted in situ within the formation to yield a mixture of relatively high quality hydrocarbon products, hydrogen, and other products; the coal is heated to to temperatures that allow pyrolysis
US6981548Apr 24, 2002Jan 3, 2006Shell Oil Companyheating and pyrolysis of heavy hydrocarbon sections in subterranean wells to produce light hydrocarbons; reduced viscosity improves movement; fluid removal in liquid and/or vapor phase
US6991031Apr 24, 2001Jan 31, 2006Shell Oil CompanyIn situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US6991032Apr 24, 2002Jan 31, 2006Shell Oil CompanyHeat sources positioned within the formation in a selected pattern raise a temperature of a portion of the formation to a pyrolysis temperature.
US6991033Apr 24, 2002Jan 31, 2006Shell Oil CompanyIn situ thermal processing while controlling pressure in an oil shale formation
US6991036Apr 24, 2002Jan 31, 2006Shell Oil CompanyThermal processing of a relatively permeable formation
US6991045Oct 24, 2002Jan 31, 2006Shell Oil CompanyForming openings in a hydrocarbon containing formation using magnetic tracking
US6994160Apr 24, 2001Feb 7, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US6994161Apr 24, 2001Feb 7, 2006Kevin Albert MaherIn situ thermal processing of a coal formation with a selected moisture content
US6994168 *Apr 24, 2001Feb 7, 2006Scott Lee WellingtonIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US6994169Apr 24, 2002Feb 7, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation with a selected property
US6997255Apr 24, 2001Feb 14, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a reducing environment
US6997518Apr 24, 2002Feb 14, 2006Shell Oil CompanyIn situ thermal processing and solution mining of an oil shale formation
US7004247Apr 24, 2002Feb 28, 2006Shell Oil CompanyConductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US7004251Apr 24, 2002Feb 28, 2006Shell Oil CompanyIn situ thermal processing and remediation of an oil shale formation
US7011154Oct 24, 2002Mar 14, 2006Shell Oil CompanyIn situ recovery from a kerogen and liquid hydrocarbon containing formation
US7013972Apr 24, 2002Mar 21, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a natural distributed combustor
US7017661Apr 24, 2001Mar 28, 2006Shell Oil CompanyProduction of synthesis gas from a coal formation
US7032660 *Apr 24, 2002Apr 25, 2006Shell Oil CompanyIn situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US7036583Sep 24, 2001May 2, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US7040398Apr 24, 2002May 9, 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation in a reducing environment
US7040399Apr 24, 2002May 9, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a controlled heating rate
US7040400Apr 24, 2002May 9, 2006Shell Oil CompanyIn situ thermal processing of a relatively impermeable formation using an open wellbore
US7051807Apr 24, 2002May 30, 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with quality control
US7051808Oct 24, 2002May 30, 2006Shell Oil CompanySeismic monitoring of in situ conversion in a hydrocarbon containing formation
US7051811Apr 24, 2002May 30, 2006Shell Oil CompanyIn situ thermal processing through an open wellbore in an oil shale formation
US7055600Apr 24, 2002Jun 6, 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with controlled production rate
US7063145Oct 24, 2002Jun 20, 2006Shell Oil CompanyMethods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US7066254Oct 24, 2002Jun 27, 2006Shell Oil CompanyIn situ thermal processing of a tar sands formation
US7066257Oct 24, 2002Jun 27, 2006Shell Oil CompanyIn situ recovery from lean and rich zones in a hydrocarbon containing formation
US7073578Oct 24, 2003Jul 11, 2006Shell Oil CompanyStaged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US7077198Oct 24, 2002Jul 18, 2006Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using barriers
US7077199Oct 24, 2002Jul 18, 2006Shell Oil CompanyIn situ thermal processing of an oil reservoir formation
US7086465Oct 24, 2002Aug 8, 2006Shell Oil CompanyIn situ production of a blending agent from a hydrocarbon containing formation
US7086468Apr 24, 2001Aug 8, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US7090013Oct 24, 2002Aug 15, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US7096941Apr 24, 2001Aug 29, 2006Shell Oil CompanyIn situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US7096942Apr 24, 2002Aug 29, 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation while controlling pressure
US7096953Apr 24, 2001Aug 29, 2006Shell Oil CompanyIn situ thermal processing of a coal formation using a movable heating element
US7100994Oct 24, 2002Sep 5, 2006Shell Oil Companyinjecting a heated fluid into the well bore, producing a second fluid from the formation, conducting an in situ conversion process in the selected section.
US7104319Oct 24, 2002Sep 12, 2006Shell Oil CompanyIn situ thermal processing of a heavy oil diatomite formation
US7114566Oct 24, 2002Oct 3, 2006Shell Oil CompanyHeat treatment using natural distributed combustor; oxidation of hydrocarbons to generate heat; pyrolysis
US7121342Apr 23, 2004Oct 17, 2006Shell Oil CompanyThermal processes for subsurface formations
US7128153Oct 24, 2002Oct 31, 2006Shell Oil CompanyTreatment of a hydrocarbon containing formation after heating
US7156176Oct 24, 2002Jan 2, 2007Shell Oil CompanyInstallation and use of removable heaters in a hydrocarbon containing formation
US7165615Oct 24, 2002Jan 23, 2007Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US7182132Oct 15, 2003Feb 27, 2007Independant Energy Partners, Inc.Linearly scalable geothermic fuel cells
US7225866Jan 31, 2006Jun 5, 2007Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US7320364Apr 22, 2005Jan 22, 2008Shell Oil CompanyInhibiting reflux in a heated well of an in situ conversion system
US7353872Apr 22, 2005Apr 8, 2008Shell Oil CompanyStart-up of temperature limited heaters using direct current (DC)
US7357180Apr 22, 2005Apr 15, 2008Shell Oil CompanyInhibiting effects of sloughing in wellbores
US7360588Oct 17, 2006Apr 22, 2008Shell Oil CompanyThermal processes for subsurface formations
US7370704Apr 22, 2005May 13, 2008Shell Oil CompanyTriaxial temperature limited heater
US7383877Apr 22, 2005Jun 10, 2008Shell Oil CompanyTemperature limited heaters with thermally conductive fluid used to heat subsurface formations
US7424915Apr 22, 2005Sep 16, 2008Shell Oil CompanyVacuum pumping of conductor-in-conduit heaters
US7431076Apr 22, 2005Oct 7, 2008Shell Oil CompanyTemperature limited heaters using modulated DC power
US7435037Apr 21, 2006Oct 14, 2008Shell Oil CompanyLow temperature barriers with heat interceptor wells for in situ processes
US7461691Jan 23, 2007Dec 9, 2008Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7481274Apr 22, 2005Jan 27, 2009Shell Oil CompanyTemperature limited heaters with relatively constant current
US7490665Apr 22, 2005Feb 17, 2009Shell Oil CompanyVariable frequency temperature limited heaters
US7500528Apr 21, 2006Mar 10, 2009Shell Oil CompanyLow temperature barrier wellbores formed using water flushing
US7503761 *Jun 10, 2005Mar 17, 2009Fina Technology Inc.Method for reducing the formation of nitrogen oxides in steam generation
US7510000Apr 22, 2005Mar 31, 2009Shell Oil CompanyReducing viscosity of oil for production from a hydrocarbon containing formation
US7575052Apr 21, 2006Aug 18, 2009Shell Oil CompanyIn situ conversion process utilizing a closed loop heating system
US7575053Apr 21, 2006Aug 18, 2009Shell Oil CompanyLow temperature monitoring system for subsurface barriers
US7597147Apr 20, 2007Oct 6, 2009Shell Oil CompanyTemperature limited heaters using phase transformation of ferromagnetic material
US7651331 *Mar 9, 2006Jan 26, 2010Shell Oil CompanyMulti-tube heat transfer system for the combustion of a fuel and heating of a process fluid and the use thereof
US7673786Apr 20, 2007Mar 9, 2010Shell Oil CompanyWelding shield for coupling heaters
US7704070 *Mar 9, 2006Apr 27, 2010Shell Oil CompanyHeat transfer system for the combustion of a fuel heating of a process fluid and a process that uses same
US7793722Apr 20, 2007Sep 14, 2010Shell Oil CompanyNon-ferromagnetic overburden casing
US7798221May 31, 2007Sep 21, 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8016589Mar 9, 2006Sep 13, 2011Shell Oil CompanyMethod of starting up a direct heating system for the flameless combustion of fuel and direct heating of a process fluid
US8192682Apr 26, 2010Jun 5, 2012Shell Oil CompanyHigh strength alloys
US8606091Oct 20, 2006Dec 10, 2013Shell Oil CompanySubsurface heaters with low sulfidation rates
US8608249Apr 26, 2010Dec 17, 2013Shell Oil CompanyIn situ thermal processing of an oil shale formation
USRE35696 *Sep 28, 1995Dec 23, 1997Shell Oil CompanyHeat injection process
CN1756924BDec 18, 2003Jun 9, 2010弗纳技术股份有限公司Method for reducing the formation of nitrogen oxides in steam generation
WO2003036040A2 *Oct 24, 2002May 1, 2003Shell Oil CoIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
WO2004059208A2 *Dec 18, 2003Jul 15, 2004Fina TechnologyMethod for reducing the formation of nitrogen oxides in steam generation
Classifications
U.S. Classification166/59
International ClassificationE21B36/00, E21B36/02
Cooperative ClassificationE21B36/02
European ClassificationE21B36/02