Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3118011 A
Publication typeGrant
Publication dateJan 14, 1964
Filing dateJul 3, 1962
Priority dateJul 3, 1962
Publication numberUS 3118011 A, US 3118011A, US-A-3118011, US3118011 A, US3118011A
InventorsBreen Alvin Leonard
Original AssigneeDu Pont
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Process for preparing helically crimped composite filaments
US 3118011 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Jan. 14, 1964 A. L- BREEN 3,118,011


INVENTOR ALVIN L. BREEN Jan. 14, BREEN PROCESS FOR PREPARING HELICALLY CRIMPED COMPOSITE FILAMENTS Filed July 3, 1962 2 Sheets-Sheet 2 INVENTOR ALVIN L. BREEN BY Q ATTORNEY United States Patent E RGCESS F912 PREPARING l-ELIQAILLY CRIMPED This invention relates to the preparation of synthetic textile fibers and particulany textile fibers possessing a permanent crimp.

Various methods have been proposed and used to produce crimped synthetic filaments. The principles of these crimping methods comprise mechanical treatment of the filaments spun in normal fashion as well as application of specific conditions of spinning or after-treating which bring about difierential physical properties over the crosssection of the single filaments.

Newer proposals of producing an improved crimp in synthetic fibers comprise the spinning of two or more different materials together so that they form a unitary filament which contains the components in an eccentric relation over the cross-section of the filaments. When, for instance, two materials are used together which possess substantially different physical properties, for example, different residual shrinkage, a crimp is brought about by the application of a suitable after-treatment to the spun and drawn composite filaments. These crimped filaments may be quite satisfactory as long as only relatively small tensions are applied during their use. However, with the application of mgher tensions, the crimped filmnents of the prior art do not possess the optimum properties and the highest possible crimp retention. Perhaps this is the reason that none of these composite crimped filaments have been commercially produced and used.

it is, therefore, an object of the present invention to provide crirnped twoor multi-component composite filaments which have improved recovery properties and higher crimp retention. it is another object of the invention to produce crimped filaments with improved mechanical properties. It is another object to produce crimped filaments havin on application of high tensions, as they occur in practical manufacture of fabrics therefrom, a considerably higher crimp retention than heretofore obtainable. Further objects will appear as the description of the invention proceeds.

The term tensile recovery is well known (cf. US. 2,604,689, Beste wd Hoffman, Textile Research Journal vol. 20, No. 7, July 1950, page 441, and also Textile Fiber Yarns and Fabrics by E. R. Kaswell published by Rheinhold lublishing Corporation in New York City, 1953) and is defined as the extent to which a yarn recovers its original length after being stretched, a stress-strain curve being used to determine tensile recovery under the testing conditions. The determination is usually carried out at a constant rate of elongation. For example, a g'ven sample of yarn may be elongated 5% at a rate of 1% per minute, held 30 seconds at the 5% elongation and then allowed to recover at the same rate which it was extended and the recovered length measured.

The tensile recovery (in this instance for 5% elongation) elongation reooyered X 100 total elongation Since the extent of recovery varies with the elongation, the tensile recovery values me given for a stated total elongation. Typical values of tensile recovery from 5% elongation of some commercial fibers are as follows:

Patented Jan. 14, lfifi l poly(hexamethylene adipamide), 89%; poly(ethylene terephthalate), 65%, and polyethylene,

The objects of this invention are efiected by producing a crimped composite filament, in which the component having the higher tensile recovery properties is the component subjected to the higher strain on straightening the crimp by an external force. This component will be called the load bearing component in the following description of the invention. The new improved crimped filaments of this invention may be obtained by different methods. One method comprises spinning together two or more synthetic polymeric fiber-forming materials, of which the material having the higher shrinkage after drawing has the lower tensile recovery properties, in such a way that the materials form over the cross-section of the single composite filament two or more distinct zones which extend through the entire length of the filament in eccentric fashion, whereby only one, or part of, or all the components take part in forming the surface of the single composite filament, stretching the composite filament, length stabilizing the component or components with the higher shrinkage by the application of heat or 0* er means to the drawn composite filament While it is kept under tension, which results in crystallization of this polymer without afiecting the other component or components substantially, and subjecting the thus treated composite filaments in a substantially tensionless state to a shrinking treatment.

An important characterizing feature of this method of the present invention is the discovery that in composite synthetic crimped filaments wherein the load bearing component has the lower tensile recovery proper-ties, the overall properties and particularly the crimp retention of the filaments can be greatly improved by subjecting the drawn composite filaments prior to the development of crimp to a treatment which results in crystallization and length stabilization of the normally load bearing component and which does not affect or only slightly afiects the other component. Any treatment which meets these requirements may be used. Such treatments are, for instance, a taut heat treatment at a temperature high enough and for a time long enough to provide crystallization of the desired polymeric component. The temperatures applied in this heat treatment will generally be higher than the apparent minimum crystallization temperature (T; of the component which is to be length stabilized. The apparent minimum crystallization temperature (T is defined as the lowest temperature at which the fiber may be treated to produce a substantial degree of crystallinity in its structure. This may be determined by measuring the rate of density change as the temperature is increased or by well known X-ray diffraction methods, both of which techniques will be described more fully hereinafter. In other instances, crystallization and length stabilization can preferably be brought about by a treatment of the taut composite fiber with certain polar organic liquids which are latent solvents for the amorphous regions of the component to be stabilized.

In the spinning, the polymers are not appreciably blended together in the melt but are fed separately to a shaped orifice where they are simultaneously extruded. The orifice is, then, adapted to receive the components separately for simultaneous extrusion to form a filament in which each component is substantially localized but is held to the other component in an eccentric relation. The extrusion can be such that the components are localized and held together in a side-by-side structure in which both components form part of the surface of the composite. The extrusion may also be such that one component forms a core and the other a sheath to form a composite referred to hereinafter as a sheath-core structure. In this structure only the sheath contributes to the surface of the composite. With the spinnerets described herein, melt spinning leads to composites which are generally smooth and have cross-sections which are substantially round with boundary lines that are regular.

The composite filaments are stretched and the resultant stretched filaments are subjected to the length stabilizing treatment and after that treatment they are given a shrinking treatment while they are in a free-to-shrinlr state. The crimp in the new crimped filaments of this invention is brought about not only by a differential in shrink-age in the components of the composite but by positioning the components in respect to helical crimps so that the component with the better tensile recovery properties is the load-bearing component.

In the figures:

FIGURE 1 is a plan view of the spinueret assembly shown in FIGURE 2;

FIGURE 2, taken on line 2 2 of FlGURE 1, is a cross-section of a spinneret of this invention showing the routes of polymer in the formation of sheath-core structures;

FEGURE 3 is taken on line 33 of FIGURE 2;

4 is taken on line 44- of FIGURE 2;

FIGURE 5 is an enlarged section of the bottom portion lo in the vicinity of the orifice;

FIGURE 6 is a cross-section of a spinneret of this invention showing the flow of polymer in the formation of s=ide-by-side structures;

FZGURE 7 is taken on line 77 of FIGURE 6;

FIGURE 8 shows cross-sections of the sheath-core filaments of this invention; and

FIGURE 9 shows cross-sections of the side-by-side filaments of this invention;

FIGURE 10 is a sectional perspective of a fragment of a composite in a crimp form referred to as alpha crimp;

FIGURE ll is a sectional perspective of a fragment of a composite in a crimp form referred to as heta crimp; and

FIGURE 12 is a diagram of apparatus which can be used in applying a process of this invention in a continuous manner.

Referring first to FIGURE 2 it can be seen that the top component or filter pack l of the spinneret has two chamber 2 and 3. Each is fed a different polymer. The chambers are separated by Wall 4 and in the bottom of the top portion are a plurality of holes 5 cooperating with outlets below. The chamber 3 and the holes 5 therein cooperate with the grooves or recesses 6 and 23 in the center portion of adapter 7 and feed the polymer melt to the vertical holes 8 or tubes 31. These tubes 31 extend downwardly into the orifices 9 contained in the bottom portion or spinneret face 1%. The chamber 2 permits the feeding of polymer downwardly through holes 5 which cooperates with holes 11 in center portion 7 to permit the fiow of polymer to grooves or recesses 12 and 29 in the bottom portion 1% The plan views of the top, center and bottom portions may be seen in FEGURES l, 3, and 4, respectively. As shown, gaskets are provided for sealing purposes, the assembly being held together by means of belts or by pressure. 7

As shown in FIGURE 2 and in an enlarged manner in FEGURE 5, polymer 13 coming to the holes 8 or tubes 31 t rom the chamber 3 constitutes the core feed. As this polymer leaves tube 3 which is surrounded by the melt 14 or" polymer coming from chamber 2 and constituting the sheath, bonding occurs so that in the tapered section 3% of orifice 9, polymers l3 and 14 are being extruded simultaneously with polymer L4 completely surrounding the polymer 13. it is to be noted that tube 31 is eccentrically located in the orifice 9. This is done purposely to get the eccentric relation of the polymers, for the more pronounced the eccentricity, the better the crimp results. As can be seen in FIGURE 8, the filaments thus produced by melt spinning have substantially round,

smooth surfaces. Even the core is substantially round and smooth and in all cases the core does not break through the surface. That is, even in such a filament as 15 there is polymer l4 surrounding the core even though the core comes very close to the outer edge at one place.

in the production of eccentric composite filaments such as sheath-core structures, one uses a material 13 and a material 14 which are so related that material 13 has the better tensile recovery properties. If material 14- has a higher shrinkage than material 13, the crimped structure shown in FiGURE 10 wherein the material 14 is located on the inside of the helical coil is obtained. This type of crimp in which the material 14 having the lower tensile recovery properties is located on the inside of the coil is referred to herein as alpha crimp. Since the material on the inside of the helical coil is the load-bearing constituent of the composite, it is desired to have that material be the material having the better recovery properties. By process of this invention, it is possible to produce such crimped filaments as are shown in FIGURE 11. In this figure, material 13 is on the inside of the helical coil and has the better tensile recovery properties. This type of crimp shown in FIGURE ll is referred to herein as beta crimp. As mentioned above, one method of this invention for producing the desired beta crimp involves the conversion of the alpha crimp type to the beta crimp type. V

This is referred to herein as reverse crimp; in this reversal the material 213 has ben converted so that it is now the material having the higher shrinkage while retaining its better tensile recovery properties.

A relatively low tension applied to the crimped filament results in extension of the coils and finally in straightening of the coils because of the very low crimp modulus. Tensions which are higher than the crimp modulus will extend the straightened composite filament whereby the shorter component which forms the inside of the coil bears a relatihcly greater part of the total load applied. It follows therefrom that a relatively higher stra n is applied to the load-bearing component than to the co-acting component a tensioned crimped composite filament. When the load-bearing component has the lower tensile recovery properties, which is the case with the combinations of synthetic high polymers proposed herebefore for the preparation of crimped composite filaments, the degree ti htness of the crimp will be reduced after application or'relatively high loads, because the loadbearing component does not recover as much as its counterpart. The new composite crimped filaments of this invention do not have this disadvantage because the material with the better tensile recovery properties has been made to be the load-hearing component.

It is evident from the foregoing that it is of great importance for evaluating criniped composite filaments to have a reliable method for measuring the crimp retention. A commonly used method is described, e.g., in US. 2,287,699. In this test, relatively low loads, equivalent to 0.03 g./denier are applied to the crimped filaments while immersing them for 36' seconds into water of 60 C. These tensions are much lower than the strain usually imposed on the single filaments in normal use of textile products containing these filaments. Therefore, a more strin ent test has been developed, which simulates more the actual conditions encountered in practical use of the crimped filaments.

The crimped yarn or filaments are formed into a skein the length of which is measured without applying any tension (at, in centimeters). The slrein is then loaded with a weight corresponding to 0.01 g./denier and the straightened length of the skein is measured ([2, in centimeters). The skein is then loaded for 30 seconds with a Weight corresponding to 1.0 g./denier. The filaments are allowed to recover, after removal of the load, for 30 seconds and the length of the skcin is again measured (6, in cent meters).

side-by-side structures, is practically eliminated in sheathcore structures. The latter structures therefore permit a much wider application or" this principle. Other embodiments include composite filaments which are composed of more than two components. Filaments have been produced in the above examples which consist of about equal parts of the two components. However, sometimes it might be preferred to use a relatively higher amount of one component and a correspondingly lower amount of the other component. Good results can usually be obtained with compositions of at least by weight of one component and 80% by weight of the counterpart up to a ratio of 50% by weight of both components. Those composite filaments containing about equal portions of both components are preferred because of the higher tightness and permanence of the crimp achieved.

Sometimes it might be desirable to spin a bundle of filaments which comprises composite filam nts containin the components in various ratios through one and the same spinneret. An example is a bundle of two-component composite filaments which comprises filaments consisting of 20% by weight of the load-bearing component and 80% by weight of the other, a %/70% ratio, a %/60% ratio and a %/50% ratio, respectively. Such filament bundles containing composite filaments with various ratios of components can very conveniently be produced by utilizing the spinneret which is shown in FIGURES 6 and 7. The spinneret shown is composed of two parts. In the upper portion 16 are two chambers 1! and 3.8 cooperating with holes 1% in the bottom plate of the top portion. These holes permit the feeding of polymer to grooves or recesses 2%} in the bottom portion 21 of the spinneret. The polymer coming from hole 19 goes into the recesses 22- immediately below it and is fed to a plurality of recesses 213. Each recess contains and cooperates with a s, neret In each spinneret, provision is made for a gasket 25 and conventional means, as by bolting or pressure, can be used to hold the various spinneret elements in place during operation.

However, in the spinneret shown by FIGURES 6 and 7 there is no tube located in the spinneret orifices 2.4 such as are in the spinneret orifices Thus, in this modification polymer coming from chamber 17 and the other polymer coming from chamber 18 meet at the orifices 2 and are extruded simultaneously to form sideby-side structures. Cross-sections of such structures are shown in FIGURE 9, these structures being designated by reference number 26, the parts being 27 and 2%. The apparatus can also be modified to give all composite filaments of the same ratio of components.

The spinning, drawing, and len th stabilization oi the load-bearing component in the composite filament and the after-treatment for bringing about the crimp were described in the foregoing as a discontinuous procedure wherein each treatment was carried out as a separate processing step. The same outstanding results however can be achieved in a fully continuous process. An apparatus especially useiul for the continuous procedure is shown in the schematic drawing of FIGURE 12.

The apparatus comprises a draw pin at which the stretching occurs, a heating medium 33 such as a hot metallic surface, and a draw roll 34. The following Example V is representative of a continuous process for producing the composite filaments having the reversed permanent beta crimp.

Example V through a spinneret like that shown in FIGURE 2 having 34 holes. The filaments 35 are attenuated by drawing them from the spinneret at approximately 500 times the speed with which the polymer leaves the spinneret holes. The bundle of filaments is, after cooling, continually drcwn over a draw pin 32 which is heated to C. On its path to the draw roll the filament bundle is led over a hot plate 33 which is heated to C. The total draw imposed on the yarn is 3.56. The filaments, the thickness of which corresponds to approximately 2 deniers, are substantially uncrimped but they possess the potential crimp. Subsequent tensionless treatment in boiling water by short immersion developed readily a tight helical crimp. The crimp-ed filaments have on an averapproximately 60 crimps per inch and a crimp elongation of 170% and a crimp retention of 90% when measured according to the above-described test with the application of a load of 1 g./denier for 30 seconds. Microscopic inspection of the crimped filaments showed that the filaments have the beta-type crimp wherein the thiclcer portions of the polyamide skin form the inside of the single coils. Monofilaments are prepared oi the components under conditions similar to above. Use of the hot plate following drawing reduces the shrinkage of the polyamide from 9% to about 8% while lowering the shrinkage of the inferior recovering polyester from about 12% to about 4%.

Similar composite filaments produced according to the foregoing method however omitting the length stabilization on th hot plate had a crimp elongation of only 70% and a crimp retention of only 40% when measured by the test used above.

Example VI Poly(Z-methyl-hexamethylene terephthalarnide) of inherent viscosity 0.69 as measured in m-cresol and the poly(hexan1ethylene adipamide) of Example I are cospun as core and sheath respectively to make composite fibers as in Example I. The composite fibers are drawn 3.6 times their original lengt. over a pin heated to 83 C. Upon boiling the drawn yarn in water, the fibers helically crimp wherein the major proportion of the poly(2-methylhexarnethylene terephthalamide) core is on the inner side of the helical coils. Monofilaments spun from the same polymers under similar conditions have shrinkages of i3 and 9% respectively.

When the as-spun filaments produced above are drawn 3.6x over a pin heated to 80 C. and thereafter over a hot plate heated to C., the filaments crimp in the beta configuration upon shrinking in boiling water. The thicker part of the poly(l1examethylene adipamide) sheath is on the inner side of the helical coils. Monofilaments of the two component polymers spun and drawn under the same conditions display shrinkages of 5.3 and 8% and have tensile recovery at 3% elongation of 73 and 86% respectively after the boil-off.

Suitable components for producing the permanently crimpable composite fibers by the process which includes the length stabil zing step can be found in all groups of synthetic fiber-forming materials. Because of their commercial availability, ease of processing and excellent properties, the condensation polymers and copolymers, e.g., polyarnides, polysulfonamides and polyesters and particularly those that can be readily melt spun are preferred for application in this method. Suitable polymers can be found for instance among the fiber-forming polyamides and polyesters which are described, e.g. in US. Patents 2,071,250; 2,071,253; 2,130,523; 2,190,770 and 2,465,319.

Suitable polyamides for use in this invention are those synthetic linear polyamides which are prepared from polymerizable monoamino monocarboxylic acids or their amide-forming derivatives, or from suitable diamine and suitable dicarboxylic acids or from amide-forming deriva tives of these compounds. The --R- group of the intercarbonarrnde linkages C (R) may be hydrogen, halogen, monovalent organic radical, alkylene or the like. Typical of such polyarnides are those formed from a diamine and a diacid containing the repeating unit:

Percent crimp permanence=l Z In the examples parts and percentages are by weight.

Example I Poly(ethylene terephthalate) flakes having an intrinsic viscosity of 0.67 in a solvent mixture of 58.8 parts by weight phenol and 41.2% by weight of trichlorophenol and poly(hexarnethylene adipamide) flakes having an intrinsic viscosity of 1.62 in m-cresol are melted separately and extruded at 285 C. through a multi-hole spinneret assembly shown in FIGURE 2. The extruded filament is air quenched. The polyester melt is extruded through the irmer tube of the spinneret and the polyarnide through the outer space surrounding the tubes, thus forming a sheathcore filament. FIGURE 8 shows a cross-section of a bundle of the eccentric sheath-core filaments thus obtained. This drawing, based on a microphotograph, shows clearly the eccentric position of the polyester cores in the polyamide sheaths over the cross-section of the single filaments forming the fiber bundle.

The eccentric sheath-core filaments are attenuated by pulling them as they are spun away from the spinneret holes with a speed which is about 100 times as high as the speed of the extruded melt. After spinning and cooling, they are drawn over a pin at room temperature to 3.3 times their original length. About 100 yards of the stretched filaments were tightly wound on a bobbin, and the bobbin was heated for 30 minutes in an electric oven, the temperature of which was 115 C. The cooled filaments were then unwound from the bobbin and showed upon inspection no distinct crimp. However, they possess a potential crimp which can be developed immediately after the heat treatment or at any time after the fiber is processed into woven textile materials or into knitted goods or after cutting the fibers into staple lengths.

Example [I A part of the continuous filament of Example I containing the potential crimp was skeined and hung in boiling water for one minute without applying any tension to the filaments. A very tight helical crimp developed instantly. The filaments contained on an average 50 crimps per inch. Microscopic inspection of the filaments showed that the core of poly(ethylene terephthalate) was positioned in the outer portion of the single coil and the thicker parts or" the polyamide skin were situated on the inside of the single coil. Therefore, the filaments contained the beta crimp.

Example 111 Part of the eccentric sheath-core composite filament yarn of Example l was plyed and twisted to a yarn containing 5 6 filaments with a total denier of 180. The twist was 0.5 turn per inch. This yarn was knit into tubing which when flattened to double thickness measured 3%" wide. A piece of this tubing 12 inches long was placed in boiling water containing 0.5% Duponol for 30 seconds. The fabric was then rinsed, centrifuged and dried in the open air. The dry fabric was found to measure 3%" wide and 5 /8" long. The bulk and covering power of the fabric were correspondingly increased. Moderate tension caused stretching of the fabric beyond the original dimensions but the shrunken form returned almost completely upon release of such tensions. This good shape retention of the boiled-off knit fabric is attributed to the good crimp retention of the crimped fibers composing the fabric.

If the spun and drawn filaments of Example I are given the shrinkage treatment of Examples ll or III without applying lint the length stabilization treatment of Example l, highly crimped filaments are obtained. However, microscopic inspection of the cross-section of these crirnped filaments shows that the cores consisting of the polyester are positioned on the inner portion of the coils and the thicker portions of the polyarnide skin are on the outside of the coils. These fibers therefore possess the alpha crimp and do not possess the crimp retention of the beta type of this invention.

Example IV Poly(ethylene terephthalate) flakes having an intrinsic viscosity of 0.67 in a solvent mixture comprising 58.8 parts by weight phenol and 41.2 parts by weight trichlorophenol and polyethylene, having an inherent viscosity (0.5% concentration) of 0.88 in tetralin measured at C., were melted separately and extruded at 296 C. through a spinneret as shown in FIGURE 2. The polyethylene melt was extruded through the inner tube of the spinneret and the polyester through the outer space surrounding the tubes, thus forming a sheath-core filament.

After spinning and winding, the quenched sheath-core filaments were passed through a water bath at 30 C. to a roll heated to 65 C. and then to an unheated roll rotating at a high r speed whereby the yarn was stretched 2.6 times its original lengtl A part of this continuous filament yarn was skeined and hung in boiling water for 1 minute without applying any tension to tie filaments, whereupon the yarn crimped spontaneousy. Microscopic examination of the crimped filaments showed that the heavy part of the polyester skin was situated on the inside of the single filament coil, which corresponds to the alpha crimp described above. These alpha crirnped filaments showed a crimp retentivity of less than 25% when measured according to the new method described above.

Another portion of the freshly spun yarn was wound tightly on a bobbin and immersed in acetone at room tmperature for one rru'nute. This yarn was then skeined and hung in boiling water, tension free, for one minute. Crimp developed readily. Crimp retentivity was found to be higher than O% when measured according to the new method described above. Microscopic inspection of the crimped filaments showed that the crimp was the beta type.

In the forego ng examples the filaments were spun through the spinneret shown in FIGURE 2 which was found to be especially suited and economical to be used for obtaining a random eccentric sheat. -core structure in the single filaments. However, the invention is not limited to the application of this specific spinneret. Any other form of a spin eret which permits production of a composite filament which contains at least two compo nents in an eccentric relationship over the full length of the filament can be used. There are no restrictions with respect to which component forms the core and which component forms the sheath in the sheath-core structures of this invention. Though it is generally preferred to choose the component with the higher tensile recovery properties to form the sheath, other considerations like solubility, spinning technique, appearance and hand, and physical properties may make the reverse order desirable. The invention is further not limited to the eccentric sheath-core filaments. Any other form of a composite filament which contains the components in an eccentric relationship over the cross-section of the single filament may be utilized instead of the sheath-core structure shown in the exarnples. So for instance, the components can also be spun in the so-called side-byside relationship wherein the components are combined at only part of their surface and both components take part of the surface of the composite filament. However, the sheath-core structures are preferred in this invention because the problem of coherence, which exists with many polymer combinations, particularly on drawing the wherein -Y represents divalent aliphatic, alkaryl (such as xylylene cycle-aliphatic or aromatic groups; -Z- represents the II H C N linkage and X- represents divalent aliphatic, cycloaliphatic or alkaryl groups. Polyhexamethylene adipamide, caproamide (i.e., 66 and 6 nylons) and polyhexamethylene terephthalamide are illustrative of such polymers.

Another class of suitable polyamides containing other than aromatic intracarbonamide repeating units are those prepared from piperazine, such as those from piperazine and adipic acid, piperazine and terephthalic acid, and the like. Copolyarnides, condensation copolymers wherein the amide linkage is the predominant linkage and polyamide mixtures are also useful. To form the structures of the present invention, such polyamides must be of high molecular weight.

Particularly suitable polyamides include polyhexamethylene adipamide, poly(epsilon-aminocaproarnide), po '{p-xylylene azalamide), p0ly(m-Xylylene adipamide) 'l" he preferred polyesters to be used in this invention are those wherein at least about 75% of the recurring structural units of the polyester are glycol terephthalate structural units. These should be fiber-forming and have a relative viscosity of at least about 12. Such polymers may be represented in a more general way by the formula HOG-(GGCACOOG) OH where -G-- and --A- are divalent organic radicals corresponding, respectively, to the radicals in the initial glycol, G(OH) and to the initial dicarboxylic acid, A(COOH) and y is a number suthicent that the polymer is of fiber-forming molecular weight; at least about 75 of the --A radi cals being terephthalate radicals. The terephthalate radical may be the sole dicarboxylate constituent of the recurring structural units, or up to about 25% of the re curring structural units may contain other dicarboxylic radicals, such as the adipate, sebacate, isophthalate, 5- (sodium sulfo)-isophthalate, bibenzoate, hexahydroterephthalate, diphenoXyethane-4,4-dicarboxylate, or p,psulfonylbibenzoate radicals, derived from the corresponding dicarboxylic acids or ester-forming derivatives t ereof. Suitable glycols include ethylene glycol, tetramethylene glycol, hexamethylene glycol, decamethylene glycol, 2,2- dirnethylpropanediol, trans-p-hexahydroxylylene glycol, diethylene glycol, bis-p-(,d-hydroxyethoxy)benzene, bis-l, 4-(fl-hydroxyethoxy)2,5-dichlorobenzene, or bis-[p-(B- hydroxyethoxy)phenyl]difiuoromethane. The glycols may be used alone or in mixtures, e.g., ethylene glycol plus up to about mol percent of the above-mentioned glycols.

Fiber-forming polysulfonamides can be produced by reacting at an interface between two immiscible phases orgarlic sulionic acid halides, e.g., dichlorides, which form or are contained in one phase, with primary or secondary organic diamines which form or are contained in the other phase, whereby preferably one of the phases is dispersed in the other while the reaction takes place. Such a method is described, for instance, in U.S. Patent 2,667,468.

Another group of condensation polymers which can be used in this invention, comprises the polymers which contain sulfonamide groups as well as carbonamide groups. These polymers are conveniently produced by the same method as described above, however, substituting the disulfonic acid halides by the corresponding organic monocarboxylic, sulfonic acid dihalides.

The above-described interfacial polymerization methods may also be used for producing the polyarnides, when organic dicarboxylic acid halides are used instead of the sulionic acid halides. When dicarboxylic acid halides are reacted with glycols in the above reactions, the fiberforming polyesters are obtained. Other groups of polymers useful as components in the filaments of the present invention can be found among the polyurethanes or polyureas which may be made either by conventional methods or by the above-described interfacial methods as well as among the polyvinyl compounds including such polymers as polyethylene, polyacrylonitrile, polyvinyl chloride, polyvinylidene chloride, and similar polymers. Copolymers may also be used. Numerous monomers, including ethylenically unsaturated sultonic acids as the methallyl sulfonic acids and others disclosed in U.S. Patents 2,527,- 300 and 2,601,256, can be copolymerized with acrylonitrile as disclosed in lacobson U.S. 2,436,926 and in Arnold U.S. 2,456,360 using the techniques of U.S. Patents 2,628,223 and 2,546,238 to produce copolymers useful herein.

The new higher melting, higher density forrm of polyhydrocarbons as polyethylene and polypropylene having a decreased amount of chain branching and/or isotatic structures are particularly suitable in this invention.

In addition to the polymers and copolymers discussed above, polymers can be used that have been grafted with another monomer, e.g., N-vinyl pyrollidone on 66 nylon as disclosed in Belgian hatent 572,577 granted April 30, 1959. It is evident from the foregoing description that the compounds are operative in the method comprising the length stabilization step only when the materials are combined in the composite filaments in such a way that the normally load-bearing component which is compomom with the higher shrinkage can be length stabilized under conditions which do not substantially reduce the residual shrinkage of the other component so that a differential in shrinkage of at least 2% and preferably 5% or more is acmeved. Actually, after the length stabilizing treatment, the normally load-bearing component has a lower shrinkage than the other component and reversal of crimp results. The physical properties and particularly those properties as residual shrinkage, tensile recovery, or permanent set by extension among others of the fiberr'orrning polymers are well known md can easily be determined. Therefore, by comparing the physical property data of the desired components, the operability of any given combination according to the present invention can easily be determined by following the teach ngs given herein.

The fiber-forming high polymeric materials can be length stabilized by crystallizing the polymer under conditions wherein no shrinkage can occur. In other words the crystallization is efiected under conditions of tension which equals the forces developed in the filaments during the treatment. Crystallization or length stabilization respectively of many of the fiber-forming high polymeric materials can therefore be accomplished preferably by a heat treatment of the taut filaments. The temperature applied should generally be hig ier than he apparent minimum crystallization temperature of the normally loadbearing component which is well known or can easily be determined for each polymer. A convenient method for determining the apparent minimum crystallization temperature (T is described, e.g., in U.S. 2,578,899. Preferably, however, the apparent minimum crystallization temperature is determined by X-ray diffraction measurements on samples of cold drawn filaments which have been subjected to taut heat treatment at progressively increasing temperatures. Filament ezposures are suitably made on a Hilger semi-micro-focus diifraction unit using a fiat plate Norelco micro-camera simi ar in design to that described by Fankuchen and Mark, 3. Applied Physics 15, 364 (1944). The degree of crystallinity may be judged by direct examination of the diffraction pattern or from radical densitometer traces along the equator of the X-ray diagram. Such a trace will show two dist nct peaks for fibers having a well developed crystalline structure whereas with an amorphous structure or with very low degrees of crystallinity the peaks cannot be resolved. The apparent minimum crystallization temperature by this method is the minimum temperature of heat treatment at which a defin te crystalline structure is detectable from direct exann'nation oi the X-hay diagram or at which two dist t peaks are observable in the densitorneter trace.

The X-ray diffraction technique for determining the apparent minimum crystallization temperature is preerred since it is a dire-ct method and is subject to fewer errors than in rect menhods such as the change in density method described above. For a given type of polymer the apparent mini. .urn crystallization temperature will vary to some extent depending on the molecular weight of the polymer and upon other factors such as orientation, etc.

To achieve the results of the present invention, namely, length stabilizing one component and not affecting to a substantial extent the residual shrinkage of the other component, a temperature may chosen which is lower than the apparent minimum crystallization temperature of the counterpart. However, depending on the nature of the other component or components in the combination and the of time of exposing the composite filaments to the taut heat treatment, a h gher or lower tempenature can be chosen to achieve 111111 results and the tightest possible crimp.

ar es, the other component may have a lower crystallization tem erature than the normally loadbearing component but have a substantially higher shrinkage after crystallization than does the normally load-bearing component after crystallization. In this case both components will be crystallized after e heat treatment but the normally load-bearing component having the lower tensile recovery properties will be on the outside of the crimp helix.

The temperature range for the taut heat treatment may vary in wide limits and may be up to about 180 C. or more above T of the normally load-bearing component. Usually, however, best results are obtained when applying a temperature in the range of 5 C. to 70 C. above T, or" the normally load-bearing component. The lo er temperatiues in this range are applied when the composite fila cuts are exposed to the taut heat treatment for longer eriods of time, e.g., for 30 to 60 minutes, while the higher temperature range is applied with shorter heat treatments, e.g., or" some minutes or seconds or less. The temperature of as heat treatment should in any event, however, be lower than the softening or melting temperature of the lower melting component in the cou p osite filament. For a given combination with a given set of processing conditions, however, the temperature of the taut heat treatment is very critical usually should be kept in a range of plus or minus to plus or minus of its optimum temperature in order to achieve maximum results. in the continuous process shown in Example V the temperature of 140 C. at the hot plate should be maintained within the limits of approximately plus or minus 10 C. in order to produce a yarn with maximum crimp retention and crimp tightness. lf optimum properties are not desired, the temperature of the hot plate could be varied in limits of about plus or minus 15 to C. Even though the temperature of the draw pin is not as critical as the temperature of the hot plate, it should not vary more than approximately C. and preferably 15 C. from the temperature of C. used the foregoing example. As already pointed out with varying spinning and processing conditions and w th diiierent combinations of materials, th optimum \ternperat ares may vary in wide limits.

it is known that only or vated temperatures bring about crystallization and len th stab ization of a given polymer but also oth r special con ens under whic. the material is treated. Thus, for instance, the presence of plasticizers has a great effect on the temperatures necessary to achieve crysta nation and reduction of residual shrinkage. This can be utilized in the present invei. ion by adding a plasticizer to the normally load-bearing component. This can be an organic plus icizer as commonly used in polymer applications which may be subsequently removed. Water may take the function of a plasticizerespeciali" when the two polymers (litter in their ability to absorb moisture.

On the other hand, for instance, when poly(hexamethylene adipamide) and poly(ethylcne terephthalate) are used in a combination wherein the polyamide forms at east part i the outer skin of the composite filament, it is advantageous to remove most of the moisture from the polyamide before or while applying the taut heating step of this invention. The reverse situation may be true with other combinations. By varying these conditions, as Well as the lengths of time of the heat treatment and/ or the temperature of the treatment, the tightness of crimp and crimp permanence can be varied. In order to obtain a crimp as tight as possible, optimum conditions for the stabilizin treatment are generally observed.

With some combinations of high polymeric materials it is not possible to avoid fully the reduction of residual shrinkage of the co-acting compound or compounds in the composite filaments when the length stabilization is brougit about by heating to a temperature higher than the apparent minimum crystallization temperature of the normally load-bearing component. This is true, for instance, when the "normally-load-bearing component has a higher apparent crystallization temperature than its counterpart. in these instances and also for other reasons, sometimes other methods might be preferred for crystallizing or length stabilizing the normally load-bearing component. A very convenient method comprises the expo sure of the composite filament, while in taut condition, to the action of certain polar organic liquids which are latent solvents for the amorphous regions of the load-bearing component and which therefore promote crystallization of the normally load-bearing component but do not aiiect the other component or components substantially. A suitable liquid will be chosen depending on the specific combination of polymeric materials. in a combination of polyethylene and poly(ethylene terephthalate), for instance, acetone has proven to be an excellent material to promote crystallization of the poly(ethylene terephthalate). Other suitable polar liquids are, for instance, chloroform, methylene chloride, tetrachloroethane, phenol, m-cresol among others. In those liquids having too great swelling ction, dilution with water or other less active liquids may be necessary. Temperatures and other conditions of the liquid treatment may be varied in wide limits with various combinations of polymers to achieve every desired result with respect to the tightness, permanence and appearanec of the beta crimped filaments. Example IV above shows the preparation of a composite filament from polyethylene and poly(ethylene terephthalate), using a liquid treatment for length stabilization.

The conditions applied for drawing the spun multicomponent filaments of this invention may vary in wide limits. instead of using a pin as mentioned in Example 1, other convenient means for drawing the filaments may be ap plied, for instance, rolls being driven at different speeds. Also, the temperatures at which the filaments are drawn may vary in wide limits and depend mostly upon the properties or" the single materials forming the composite filament and of the final desired results. As is the case in the production of conventional unitary filaments, the preferred drawing temperatures for the composite filaments of this invention may vary between room temperature or slightly elevated temperatures and temperatures of about C. up to relatively high temperatures which may be in some cases as high as about 70 C. below the melting point of the lower melting material. Since in the present invention combinations of at least two different materials are employed, the specific drawing characteristic of each material used should be considered in order to obtain best results. Drawing temperatures which are lower than the apparent minimum crystallization temper- 13 ature (T of the normally load-bearing component may be employed where a separate plasticizing step is provided. However, if desired the drawing and taut heat treatment may be combined to achieve the desired stabilization of the normally load-bearing component.

The composite filaments have been prdouced in the examples by the melt spinning technique. Naturally, also any ot er spinning method like plasticized melt spinning, dry spinning, wet spinning, can be employed successfully. In some instances, particularly when the melting behavior or the solubility of the components in a combination would not permit spinning the components by similar methods, a combination of dissimilar methods is indicated. Thus, for instance, one component, preferably the component forming the sheath can be spun as a solution in a high boiling solvent or as a plasticized melt, while the core-forming component is extruded as the molten polymer. Similar combinations of spinning methods can be used for spinning side-by-side structures. In these instances, the solvents or plasticizers may be wholly or partially removed subsequently, preferably by washing them out by the help of low boiling solvents.

In the method involving length stabilization, as shown in Example I, the composite filaments are substantially uncrimped after the application of the length stabilization treatment but contain, however, a potential crimp. The crimp can be developed in these filaments very readily by a suitable after-treatment. The filaments containing the potential crimp can be processed as any ordinary uncrimped continuous filaments or staple fibers to worsted or knitted goods. The crimp can then be imposed on the filaments at any time by a suitable relaxing or shrinkage treatment. This shrinkage treatment was performed in the foregoing examples by exposing the composite filament containing the potential crimp to boiling or hot water. Good results, however, may also be obtained, for instance, by the application of moist heat or steam, which of these after-treatments for bringing about the crimp are chosen depends mostly on the properties of the components forming the composite filaments and on the final properties which are desired in the crimped filaments. In general, t e temperature applied in the crimping procedure should be hi her than the apparent second-order transition tem eratures (T of the polymers forming the composite filament in order to achieve the favorable results of the invention. The apparent second-order transition temperature (T of a polymer is defined as the temperature at which a discontinuity occurs in the curve or" a first derivative thermodynamic quantity with temperature. A convenient method for measuring this temperature is shown in US. Patent No. 2,578,899. Since water acts as a plasticizer in many polymers, thus lowering the apparent second-order transition temperature (T this should also be considered in measuring T and in selecting the appropriate crimping method and temperature. Other factors influencing the optimum condition for crimping the composite filaments of this invention are, for instance, the spinning, drawing and length stabilizing conditions used and also other factors, for instance, whether the composite filament is processed as continuous filament or as staple or as a woven or knitted textile fabric. Therefore, by varying the after-treating conditions for bringing about the crimp, also the properties and appearance of the crimped filaments can be varied to a great extent in any desired way.

In general, the composite filaments are drawn from about 2 times to about 8 times their original lengths. Prior to drawing the filaments are attenuated; that is, they are slenderized by pulling the freshly extruded filaments away from the orifice at a rate faster than the extrusion rate. The drawing or orientation step is in addition to attenuation, but also has a slenderizing eficct. The extent of drawing will, of course, also depend somewhat upon the nature of the particular polymers used in the composite filament and upon the type of eccentric i i relationship between those polymers in the composite filament.

In the hot relaxing treatment of this invention used to develop the crimp, the medium may be any inert atmosphere capable of being heated to a temperature of about C. Thus, the filaments may be heated in air, nitrogen, hot or boiling water, carbon dioxide or any gaseous or liquid media inert to the polymers in the composite filaments. The temperature used is generally in the neighborhood of 100 0., but it may be lower or higher. In general, any temperature above about 50 C., but below the melting point of the lowest melting polymeric constituent in the composite fiber, may be used. With certain combinations of polymers, however, there may be a tendency for the shrinkage characteristics to change as the temperature is increased and at relatively high temperatures the crimp may be reversed. For this reason, a temperature in the range of about 50 C. to about C. is preferred.

The length of time that the composite filaments are subjected to the hot, relaxing treatment is not critical, because the crimp develops immediately and spontaneously. Thus, the time may be very short, as, for example, a matter of seconds, although it may be desired in some cases to continue the length of treatment for a longer period of time such as 30 minutes, or even for several hours.

Further, the spinnerets described herein may be simplified in certain respects. To illustrate, the tube 31 in the spinneret shown in FIGURE 2 may be dispensed with, for hole 8 in the adapter is eccentrically located above and in respect to orifice 9, and the jetting of polymer l3 into the melt of polymer 14 and the polymer flow thereafter leads to a sheath-core structure. Also, the provision of recesses 23 of relatively large area in conjunction with channels 6 of smaller area, as shown in the spinneret assembly given in FEGURE 2, results in the formation of ridges between the channels. These ridges can be removed both in the adapter or spinneret plate. That is, one very large recess is provided, the orifices being appropriately placed, and the polymer fed under pressure fiows to the various orifices.

The crimped two-component filaments of this invention show a tight permanent crimp. The crimp obtainable in this invention corresponds usually to more than 10 crimps per inch and up to 300 crimps per inch. The crimp permanence is 50% up to 100% when measured and calculated by the test described above, and those composite filaments having a crimp permanence of about 80% or more are preferred.

It is well known that, in many applications of the continuous or staple-length crimped filaments in textile materials, sometimes relatively high tensions are applied to the fabrics and thus to the single filaments in daily use of these materials. Therefore, high crimp retention, also under high tensions, which is necessary for dimensional stability of the worsted or knitted goods from these crimped filaments is very important for practical application of the crimped filaments.

The characteristic of the new crimped filaments containing the beta crimp to retain the original high crimp also after the application of high tensions or high loads to the filaments makes them especially usful for many textile applications Where bulky highly crimped filaments are desired and where high crimp retention under high stress is of great importance. This applies also to the crimped filaments which are cut to staple length and which are usually spun into yarns and processed according to known textile processing methods to knitted or woven goods. The new staple filaments of this invention can be crimped before they are further processed or in any state of processing, for instance, after they are spun into yarns or after the Woven or knitted goods are made from these yarns. Another important application comprises the processing of the continuous filaments into bulky fabrics which again can be carried out with the continuous filaments in the crimped or uncrimped state. In the latter case, the crimp can be developed after weaving or knitting the yarns obtained therefrom or in any stage of the processing. Very interesting applications of the continuous yarns are, for instance, the preparation of worsted fabrics which may be woven from the un crimped yarns containing the potential crimp and which re crimped after weaving and finishing. These worsted fabrics have an appearance and hand very similar to those obtained from staple yarns. However, they do not possess the disadvantages in processing and use of these fabrics. Another very important application of the fibers of this invention comprises the use in carpets and other heavy textile goods where again the fibers containing the potential crimp can be lmitted or woven and the crimp is developed in the finished goods.

This application is a continuation-in-part of copending application Serial No. 856,572, filed December 1, 1959.

Any departure from the above description which conforms to the present invention is intended to be included within the scope of the claims.

I claim:

1. A process for preparing improved helically crimped composite filaments having a component of higher tensile recovery properties located at the inner portion of the helical coils, said process comprising the steps of (1) simultaneously extruding a plurality of dififerent synthetic fiber-forming polymeric materials through an orifice to form a unitary filament in which said difi'erent materials extend as distinct filamentary components along the length of the filament'in adhering relationship, one of said components having for a predetermined degree of orientation higher shrinkage and lower tensile recovery properties than the remainder of said components,

(2) stretching said filament to provide said predetermined degree of orientation in said components,

(3) stabilizing the length of said higher shrinkage component by selectively crystallizing it while holding said filament under tension,

(4) releasing the tension on said filament and thereafter heating said filament in an unrestrained condition at an elevated temperature above the second order transition temperature but below the melting temperature of all of said components whereby said filament develops a helically coiled configuration. 2. The process of claim 1 in which said one component is a polyethylene terephthalate component and said other diiierent component is polyhexamethylene adipamide.

3. The process of claim 2 wherein said elevated temperature is between about 50 C. and about 150 C.

4. A process for preparing improved composite filaments which are readily crimpable to form helically crimped filaments having a component of highest tensile recovery properties positioned at the inner portions of the helical coils of the crimped filament which comprises (1) simultaneously extruding a plurality of different synthetic fiber-forming polymeric materials through an orifice to form a unitary filament in which said dii 'erent materials extend as distinct filamentary components along the length of the filament in adhering relationship, one of said components having for a predetermined degree of orientation higher shrinkage and lower tensile recovery properties than the remainder of said components, (2) stretching said filament to provide said predetermined degree of orientation in said components, and (3) stabilizing the length of said higher shrinkage component by selectively crystallizing it while holding said filament under tension. 5. The process of claim 4 in which said one component is a polyethylene terephthalate component and said other diiierent component is polyhexamethylene adipamide.

References Cited in the file of this patent UNETED STATES PATENTS 1,978,163 Megow Oct. 23, 1934 2,209,919 Herrmann July 30, 1940 2,289,377 Miles July 14, 1942 2,307,846 Miles Jan. 12, 1943 2,439,815 Sisson Apr. 20, 1948 2,615,784 McLellan Oct. 28, 1952 FOlZElGN PATENTS 198,876 Australia July 25, 1958 744,112 Germany Jan. 10, 1944 837,555 France Nov. 12, 1938

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1978163 *Sep 16, 1931Oct 23, 1934Allen Bradley CoMethod of making electrical resistance units
US2209919 *Nov 5, 1937Jul 30, 1940North American Rayon CorpProcess for the manufacture of upholstering material
US2289377 *Aug 26, 1938Jul 14, 1942Du PontSynthetic polymer
US2307846 *May 6, 1939Jan 12, 1943Du PontProduction of synthetic structures
US2439815 *Apr 3, 1945Apr 20, 1948American Viscose CorpComposite thermoplastic fibers
US2615784 *Dec 20, 1949Oct 28, 1952Du PontPolyethylene terephthalate monofils drawn and heat set for use as bristles
AU198876B * Title not available
DE744112C *Jul 28, 1939Jan 10, 1944Ig Farbenindustrie AgVorrichtung zur Ausfuehrung des Verfahrens zur Herstellung von Kunstfaeden beliebiger Feinheit
FR837555A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3404710 *Jul 14, 1966Oct 8, 1968Du PontPlain-weave unidirectional stretch fabric
US3446005 *Aug 3, 1966May 27, 1969Mitsubishi Rayon CoHigh elastic crimped filament yarn and its manufacturing method
US3488251 *Feb 13, 1967Jan 6, 1970Ici LtdSide-by-side self-crimping conjugate filaments
US3489641 *Feb 15, 1967Jan 13, 1970Ici LtdHeterofilaments from polyamides and polyesters
US3509013 *Sep 26, 1966Apr 28, 1970Hercules IncComposite polypropylene filament
US3511749 *Oct 24, 1967May 12, 1970Kanebo LtdPolyamide composite filament having a latent highly elastic and highly recoverable crimp
US3526571 *Nov 15, 1966Sep 1, 1970Kanebo LtdHighly shrinkable polyamide fibres
US3642568 *Jul 17, 1969Feb 15, 1972Kanegafuchi Spinning Co LtdPolyamide composite filaments having an improved latent crimpability
US3664914 *Jan 26, 1967May 23, 1972Bayer AgBifilar compound filaments of polyamides
US4150081 *Jun 21, 1976Apr 17, 1979Rhone Poulenc TextileProcess for producing polyester fibers having wool-like hand
US4186168 *Dec 7, 1977Jan 29, 1980Rhone-Poulenc-TextileProcess for producing bicomponent filaments with special cross-section
US4321854 *Jun 1, 1979Mar 30, 1982Berkley & Company, Inc.Composite line of core and jacket
US4645442 *May 2, 1983Feb 24, 1987California Institute Of TechnologyShell forming apparatus
US4740054 *Jul 30, 1984Apr 26, 1988U.S. Philips CorporationOptical fiber cable including irreversibly preshrunk supporting element and method of making same
US5162074 *Aug 7, 1989Nov 10, 1992Basf CorporationMethod of making plural component fibers
US5344297 *Jun 4, 1992Sep 6, 1994Basf CorporationApparatus for making profiled multi-component yarns
US5466410 *May 11, 1994Nov 14, 1995Basf CorporationProcess of making multiple mono-component fiber
US5551588 *Jun 6, 1995Sep 3, 1996Basf CorporationProfiled multi-component fiber flow plate method
US5562930 *Jun 6, 1995Oct 8, 1996Hills; William H.Distribution plate for spin pack assembly
US6287689Dec 28, 1999Sep 11, 2001Solutia Inc.Low surface energy fibers
US6630087Nov 16, 2001Oct 7, 2003Solutia Inc.Process of making low surface energy fibers
US8153253 *Feb 28, 2007Apr 10, 2012Teijin Fibers LimitedConjugate fiber-containing yarn
US20090004469 *Sep 2, 2005Jan 1, 2009Teijin Fibers LimitedComposite Fibers
US20090029164 *Feb 28, 2007Jan 29, 2009Teijin Fibers LimitedConjugate fiber-containing yarn
DE2846720A1 *Oct 26, 1978May 3, 1979Du PontHerstellung von garn
EP1788127A1 *Sep 2, 2005May 23, 2007Teijin Fibers LimitedComposite fiber
U.S. Classification264/168, 264/172.18, 264/172.14, 264/210.8, 264/289.6, 264/172.16, 264/172.15, 264/172.17, 264/DIG.260, 264/230, 264/172.11
International ClassificationD01F8/04
Cooperative ClassificationD01F8/04, Y10S264/26
European ClassificationD01F8/04