Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3121292 A
Publication typeGrant
Publication dateFeb 18, 1964
Filing dateJun 1, 1959
Priority dateJun 1, 1959
Publication numberUS 3121292 A, US 3121292A, US-A-3121292, US3121292 A, US3121292A
InventorsButler Stanley C, Marsh De Loss L
Original AssigneeButler Stanley C, Marsh De Loss L
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Rocket toys
US 3121292 A
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

1964 s. c. BUTLER ETAL 3,

United States Patent 3,121,292. ROCKET TGYS Stanley C. Butler, 15272 Penn Ave., San Lorenzo, Calif., ancll fDe Loss L. Marsh, 212 Revere Ava, Hayward, Cai

Filed June 1, 1959, Ser. No. 817,149 7 3 Claims. (CI. 4674) This invention pertains to new and improved rocket toys.

It is well established that children enjoy playing with toys which simulate various modern developments in the rocket and missile field. In the past a number of such toys have been designed and used. These prior toys, however, tend to suffer from inherent limitations and dis advantages. Many of these prior toys are of such a nature that they cannot be operated solely by air pressure. The use of air pressure to actuate rocket toys is desirable for several reasons. Probably the primary one of these reasons is the fact that air as a source of motive power is conveniently available everywhere and costs nothing.

The prior air actuated toy rockets have tended to be comparatively complex; frequently they have been relatively expensive because they have employed completely separate air compressors, separate air chambers and the like. Also the prior air operated toy rockets have suffered from a serious commercial disadvantage inasmuch as they have not been capable of being used with a secondary rocket stage.

An object of the present invention is to provide new and improved toy rockets. Another general object of this invention is to provide toy rockets which may be easily and conveniently constructed at a nominal cost and which are very efficient in their simulating operation of actual rockets. A still further general object of this invention is to provide toy rockets which are capable of being used by virtually any child without danger and which are capable of withstanding the usual physical treatment accorded toys by children.

A more specific object of this invention is to provide air actuated toy rockets which include as an integral part of such toys an air chamber which, in effect, forms a part of the compressor used to compress air so as to operate such toys. A still further object of this invention is to provide air actuated toy rockets having first and second rocket stages which are designed so as to be initially propelled together and which are further designed so that the second stage is propelled from the first stage after both stages have travelled a substantial distance from the point where these stages were launched. A still more specific object of this invention is to provide two stage rocket structures in which the first stage includes an air chamber which holds air under pressure in such a manner that after it is propelled a given distance air from this air chamber serves to propel another secondary stage.

Because of the nature of this invention it is not considered necessary to set forth in this description further objects and advantages of it. Such other objects and advantages of the invention will be fully apparent to those skilled in the art to which this invention pertains from a detailed consideration of the remainder of this descriptions including the appended claims and the accompanying drawings in which:

FIG. 1 is a cross-sectional view of a complete rocket toy of this invention including a launching platform and first and second rocket stages;

FIG. 2 is a cross-sectional view similar to FIG. 1 showing these rocket stages as a toy rocket of this invention is propelled through the air;

FIG. 3 is a cross-sectional view similar to FIG. 2 of a modified toy rocket of this invention;

FIG. 4 is a partial cross-sectional view similar to FIG. 3 showing the position of parts of this modified toy rocket after a second rocket stage has been propelled through the air;

FIG. 5 is a cross-sectional view similar to FIG. 4 of a still further modified two-stage toy rocket of this invention;

FIG. 6 is a cross-sectional view of a hand launching platform of this invention in use with a toy rocket;

FIG. 7 is a partial elevational view taken at line 7-7 of FIG. 6.

The accompanying drawings are primarily intended so as to illustrate several presently preferred embodiments or forms of this invention. Those skilled in the art to which this invention pertains will realize that the features of this invention as herein explained can be embodied in differently appearing structures through the exercise of routine engineering skill.

As an aid to understanding this invention it can be stated in essentially summary form that it includes two stage toy rockets in which the second stage is mounted upon the first and in which the first stage includes an air chamber which is adapted to hold a quantity of air under pressure used to propel the second rocket stage from the first after both rocket stages have been propelled a substantial distance. With this invention either one or both of these rocket stages can be launched from a simple platform serving as an air compressor.

The actual nature of this invention is best: more fully described by referring directly to the accompanying drawing. In FIG. 1 there is a complete rocket toy of this in vention which includes a launching platform 10* and a rocket toy consisting of a first rocket stage 12 and a second rocket stage 14. The platform 10 is built so as to include a base 16 upon which is mounted a cylinder 18, the top of which is closed by a plate 20 having a centrally located opening 22 formed thereon. From an examination of FIG. 1 of the drawings it will be seen that .a part 24 of this opening '22 is adapted to serve as a valve seat which forms a seal with a valve body 26. The valve body 26 is attached by means of a rod 28 to a weight 30 adapted to bring the valve body 26 against the seat 24 after the valve body has been lifted during the use of the platform 10. This construction constitutes a check valve leading from the interior of the cylinder 18.

The valve body 26 is. adapted to be moved by means of a piston 32 which fits loosely within the cylinder 18. The piston 32 includes an external annular groove 34 of greater length than depth. A common elastomeric 0 ring 36 positioned within this groove is of such dimension that it extends from the groove 34 so as to hit against the interior of the cylinder 18 so as to form a seal therewith at all times. The dimensions of the groove 34 are such that the O-ring 36 rolls along the length of the groove 34- ifIOIIl one end of the groove 34 to the other end of the groove as the piston 32 is reciprocated.

As the piston is being moved away from the plate 29, the G-ring 36 is in such a position that slots 38 in the side of the piston adjacent to the plate 20' are uncovered, permitting air to be pulled into the cylinder 18 between the piston 32 and the plate 20 from around the sides of the piston. As the piston 32 is moved toward the plate 20 the O-ring 36 moves so as to close off these slots, enabling air to be compressed in this area. Such movement of the piston 32 is obtained through the use of a conventional handle 40 which is pivotally mounted upon an extension 42 of the base 16, and which is pivotally connected to the piston 32. As shown in FIG. 1 this handle extends through a slot 44 in the cylinder 18.

The exterior of the cylinder 18 includes an outer annular groove 46 which holds a conventional elastomeric O-ring 48 in such a manner that this O-ring forms a seal against the cylindrical interior 50 of an open first end 52 of the rocket stage 12. This first rocket stage 12 is adapted to be held inthis position by means of a spring loadedlatch 54 mounted on the exterior of the cylinder so as to engage an annular flange 56 extending completely around the exterior of the first end 52 of this first stage 12.

When the first stage 12 is secured upon the platform 10 as indicated in the preceding discussion a small bracket 58 extending from the cylinder 18 hits against an end 60 of a rod 62, moving this rod away from the platform 10. As this is accomplished a check valve body 64 is moved away from a check valve seat 66 in a wall 68 defining within the first rocket stage 12 a first end of an air chamber 70. A second end of this air chamber 70' remote (from the wall 68 is defined by a cylindrical end 72 of the first rocket stage 12. At least one opening 74 is formed in an end wall 75 of this second end 72.

The check valve body 64 is normally held against the corresponding valve seat 66 by means of a small coil spring 76 located around the rod 62 between the wall 68 and the end 60. Further, the check valve body and the check valve seat 64 and 66, respectively, are preferably formed so as to include means, such as small ribs 78, preventing a complete seal from being formed between these two parts. Thus, when closed the complete check valve, including the valve body 64 and the valve seat 66, define a restricted orifice leading from the interior of the air chamber 70 which permits air under pressure'to bleed out of this air chamber slowly at a controlled rate. If desired, such orifice means may consist solely of a sloppy fit between the valve body 64 and the valve seat 66 or other equivalent structures.

Within the second end 72 of the first rocket stage 12 there is slidably mounted a rod 80 which has secured to its end adjacent to the air chamber 70 a valve body '82. Movement of the rod 80 to within the air chamber 70 is prevented by means of a head 84 located on this rod 80 remote from this air chamber. Around the exterior of the valve body 82 there is located a groove (not separately numbered) holding a conventional elastomeric O-ring 86 which is adapted to form a seal with the interior of the second end 72. When this valve body 82 is held within this second end, the interior of the second end 72 serves as a valve seat for the valve body 82. Normally this valve body 82 is biased in an open position by means of a small coil spring 88 located around the rod 62. When, however, the first rocket stage '12 is positioned upon the platform 10 as indicated in FIG. 1 of the drawing the rod 62 is held as shown so as to hold the valve body '82 against the pressure of the spring 88 so as to form a seal at this second end 72.

When. the rocket stage 12 is in the position shown on the platform 10 and the handle 40 is reciprocated, air under pressure flows past the valve body .26 into the sealed portion of the first rocket stage 12 beneath the wall 68 and into the air chamber 70. The amount of such air pressure which may be built up Within these spaces will depend upon the preference of an individual. After such air pressure has been built up the first and second rocket stages 12 and 14 may be propelled through the air by the simple expedient of releasing the latch 54.

The moment the latch 54 is released, the air pressure beneath the wall 68 will react against the plate 20 propelling both the rocket stages 12 and 14 into the air. Substantially simultaneously the check valve body 64 will move against the check valve seat 66, entrapping within the air chamber 70 air under pressure. This pressure will gradually decrease as the rocket stages 12 and 14 travel because of the fact that this check valve is formed so as to act as a restricted orifice.

When the air pressure within the chamber 70 drops to a material extent this air pressure will be no longer suificient to hold the valve body '82 against the pressure of the spring 88, and this spring 88 will cause the valve body 82 to move into the air chamber 70. As this occurs a substantial quantity of air under pressure will rush through the second end 72 into the second rocket stage 14. As is seen in FIGS. 1 and 2 of the drawing, this second rocket stage 14 is of essentially a bullet-like shape and includes a cylindrical wall 90 fitting against the exterior of the second end 72 and a domed head 92. The rush of air from within the air chamber 70 will hit against this head 92 causing the second rocket stage 14 to fly a substantial distance ahead of and away from the first rocket stage 12.

In FIGS. 3 and 4 of the drawing there is shown a modified rocket toy of this invention consisting of first and second rocket stages, and 102 respectively. This second rocket stage 102 is built substantially in the same manner as the second rocket stage 14 in the preceding embodiment of the invention so as to include a domed top 104 and a cylindrical Wall 106. This Wall 106 fits closely against a corresponding cylindrical wall 108 forming a second end of the first rocket stage 100.

The first rocket stage 100 is built so as to include a centrally located, generally cylindrical air chamber 110 having a wall 112 separating the interior of it from the interior of the cylindrical wall 108. At least one opening 114 is provided within the wall 112 so as to connect the air chamber 110 with the end of this first rocket stage 100 constituted by the wall 108. Preferably a cylindrical recess 116 is provided within the air chamber 110 adjacent to the Wall 112. Further, a guide rod 118 is secured to the center of the wall 112 so as to extend therefrom along the length of the air chamber 110. This guide rod 118 includes a shoulder 120 leading to a pointed end 122 of less diameter than the remainder of the rod 118. The pointed end 122 fits loosely within a correspondingly shaped opening 124 in a wall 126 closing an end of a cylinder 128 having an open first end 130. A flange 132 similar to the flange 56- is located around the cylinder 128 substantially as indicated in FIG. 3 of the drawing for use in attaching this structure to a launching platform substantially as indicated in the discussion of the preceding embodiment of this invention.

When the first and second rocket stages 100 and 102 respectively are mounted upon a launching platform in this manner the interior of the cylinder 128 is, of course, sealed. As such a launching platform is operated so as to build up air pressure within the interior of the cylinder 128 a comparatively small amount of air under pressure will travel through the opening 124 around the pointed end 122. However, a comparatively large amount of air will travel through another opening 134 in the wall 126 into the interior of the air chamber 110 past a washer 136 serving as a check valve body. This washer 136 I normally fits against a correspondingly shaped portion of the Wall 126 serving as a check valve seat. The washer 136 is biased against the wall 126 by a coil spring 137 pushing against it and a piston 138.

The piston 138 is formed in a similar manner to the piston 32 so as to have an annular groove 140 corresponding to the groove34 extending around the interior of it. The piston 138 fits loosely within the air chamber 110 and includes slots 142 similar to the slots 38 previously described. Air hitting against the end of the piston 138 adjacent to the wall 126 will tend to move an O-ring 144 similar to the O-ring 36 in the groove 140 so as to open the slots 142. As a result of this air under pressure moving into the air chamber 110 the pressure on both sides of the piston 138- will become equalized.

The spring 137 holds this piston so that a cylindrical valve body 146 attached to it by means of a tube 148 is normally located in the recess 116. An O-ring 150 carried within the groove 152 in the exterior of this valve body 146 forms a seal with the interior of the recess 116.

preventing escape of air under pressure through the openings 114 and the wall 112. The escape of air through these openings 114 will also be prevented by means of a small O-ring 154 located within a groove 156 in the piston 138 around the guide rod 118. A small washer 158 is preferably located between the spring 137 and the piston 138 in order to hold the O-rin-g 154 in the groove 156.

When the first rocket stage 190 is ready for firing air under pressure will be found within. the cylinder 128 and within the air chamber 110 On both sides of the piston 138. When this first rocket stage is fired or released the air pressure within the cylinder 128 will of course be released. Simultaneously some air under pressure will start bleeding out around the pointed end 122 from within the air chamber 110. This is because the pointed end 122 fits Within the opening 124 so as to constitute a restricted orifice means, allowing the fiow of only a small quantity of air. Simultaneously the O-ring 144 around the exterior of the piston 133 will move because of the differential of air pressure so as to seal the interior of the air chamber 116 from the portion of this air chamber adjacent to the wall 126.

As the pressure drops within the portion of the air chamber 110 adjacent to the wall 126 a point will be reached at which a differential in pressure is achieved which is sufficient to move the piston 133 and the attached valve body 146 and the tube 148 toward the wall 126. This movement of the piston 138, the valve body 146 and the tube 148 is related to the pressures on the piston 138 and the valve body 146 and the fact that the area of the piston 138 is greater than the area of the valve body 146 to a sufficient extent so as to move these connected members toward the Wall 126 against the pressure of the spring 137. When the pressure within the air chamber 110 between the wall 126 and the piston 138 is reduced to a sutficient extent so that some movement of the piston 138 and the valve body 146 transpires, the O-ring 154 moves off of the principal portion of the guide rod 118, causing the air pressure within the portions. of the air chamber 11%) adjacent to the wall 127 to substantially simultaneously drop to atmospheric pressure. This sudden change in air pressure within this portion of the air chamber 110 serves to allow the combined piston 138, valve body 146 and tube 148 to move to the position indicated in FIG. 4 of the drawing quite rapidly so that a blast of air held under pressure Within the air chamber 110' is rapidly released out through the openings 114, causing the second rocket stage 102 to be blasted ofi of the first rocket stage 100.

When it is desired to re-use the first and second rocket stages 108 and 102 these stages may be placed together as indicated in FIG. 3 of the drawing on a launching platform in the same manner as indicated in FIG. 1 of the drawing and air pressure can again be built up by the operation of such a launcher.

In FIG. 5 of the drawing there is shown a further modified toy rocket consisting of first and second rocket stages i169 and 162 which are exceedingly similar to the first and second rocket stages 100' and 2 previously described. Because of the similarity those parts of the first and second rocket stages 1-601 and 162 which are identical to or substantially identical to the cor-responding parts of the stages 100 and 102, respectively, are not separately described in this specification and are designated by the primes of the numerals previously used.

The first rocket stage 160' differs from the first rocket stage 100 primarily in that the tube 148 slides upon the guide rod 118 and is formed so that the principal portions of this tube 148' and the attached valve body 146' are spaced from the guide rod 118" in such a manner that an O-ring 164 replacing the O-ring 154 previously described can slide within the tube 148' so as to form a seal directly against the piston 138 when this piston. is moved toward the recess 116 by the spring 137 so as to seal the interior of the air chamber 1'10.

In FIGS. 6 and 7 of the drawing there is shown a modified hand launching platform of the present invention which consists of a handle 172 carrying an elongated cylinder 174 having an open end 176 and a closed end 1 78, these ends being separated by an inner wall 180 carrying a conventional check valve 182 formed so as to permit air flow from within the space between the end 178 and the wall 180 toward the open end 176.

This platform 170 is made so that a cylindrical end 184 of a toy rocket may be held around the open end 176 of the cylinder 174 with an 0-ring 18 45 mounted in a groove 18 8 adjacent to the open end 176 forming a :seal with the end 184, and so that this end 184 may be held in place by means of a small latch type trigger engaging a flange 192 on the end 184. Preferably the trigger 190 is biased away from the handle 172 by means of a small coil spring 194 as indicated in FIG. 6 of the drawing.

During the use of the platform 170 it may be held by means of auxiliary handles 196- attached to the cylinder 174 or in other equivalent manners. As it is so held a knob 198 on a piston rod 200 may be pulled. and pushed back and forth so as to move a piston 202 within the cylinder 174' so as to alternatively draw air into the cylinder and then compress this air out past the check valve 182. Since the piston 202 is substantially identical with the piston 32 previously described various individual parts of it are designated by the primes of the numerals used in describing the piston 32.

Those skilled in the art to which this invention pertains will recognize that a complete rocket toy of this invention can be readily used by virtually any child, and that these toys are fairly inexpensive to build and are yet capable of withstanding the abuse normally accorded toys of this type. They will also realize that a complete rocket toy as herein described may be used with a nominal amount of difiiculty so as to achieve results not normally considered possible. They will also realize that a complete toy rocket as shown and described consisting of two rocket stages can be employed with other launching plat forms than the specific launching platforms described in this specification, and that a first rocket stage as herein described can be used alone without being employed with another or secondary rocket stage. Because of the nature of this invention it is to be considered as being limited only by the appended claims forming a part of this disclosure.

We claim:

1. A rocket stage for a two-stage air operated toy rocket which includes: a member having first and second ends; wall means located within said member so as to define within said member an air chamber; pressure responsive valve means capable of being held closed by air pres sure within said air chamber leading from said air chamher to said second end of said member; orifice means leading from said air chamber to the said first end of said member; and check valve means mounted on said member for introducing air under pressure into said air chamber and holding air under pressure within said chamber, second stage rocket means capable of being propelled by air pressure away from said member positioned upon said second end of said member for receiving air passing said pressure responsive valve means so as to be propelled away from said member.

2. A rocket stage for a two-stage air operated rocket toy as defined in claim 1 wherein said check valve means includes a valve seat and a valve body which is movable with respect to said valve seat, and wherein said orifice means comprises means preventing said valve body from forming a seal against said valve seat.

3. A rocket stage for a two-stage air operated toy rocket as defined in claim 1 wherein said air chamber is cylindrical and including a piston movably mounted Within said chamber, and wherein said piston abuts part of said pressure responsive valve means so as to actuate said pressure responsive valve means, said piston dividing said 7 8 air chamber into a part adjacent said orifice means and 559,957 Stoddard May 12, 1896 into another part adapted to hold air under pressure for 2,588,184 Walsh Mar. 4, 1952, release through said pressure responsive valve means. 2,594,627 Endicott Apr. 29, 1952 2,733,699 Krinsky Feb. 7, 1956 References Cited in the file of this patent 5 3,003,490 Deterding et a1 Oct. 10, 1961 UNITED STATES PATENTS FOREIGN PATENTS 409,163 Boekel Aug. 20, 1889 161,579 Australia Mar. 1, 1955

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US409163 *Sep 13, 1888Aug 20, 1889 William boekel
US559957 *Jan 20, 1896May 12, 1896The bridgeport Brass CompanySamuel g
US2588184 *Aug 18, 1947Mar 4, 1952Remington Walsh WilliamToy rocket bomb
US2594627 *Mar 7, 1949Apr 29, 1952Homer K Endicott EntprJet-propelled device
US2733699 *Nov 6, 1952Feb 7, 1956 Krinsky
US3003490 *Mar 26, 1958Oct 10, 1961DeterdingAir propelled vehicle and launcher
AU161579B * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3445954 *Apr 8, 1966May 27, 1969Edward M ParsenToy rocket
US3936053 *Feb 10, 1975Feb 3, 1976Adolph E. GoldfarbToy vehicle target game
US3937191 *Mar 25, 1974Feb 10, 1976Estes Industries Inc.Rocket launcher including remotely releasable pin latch
US3943656 *Mar 25, 1974Mar 16, 1976Damon CorporationTwo stage rocket with pressure responsive means for frictionally engaging second stage
US4014629 *Jan 5, 1976Mar 29, 1977General Electric CompanyPump for pumping both low viscosity and high viscosity fluids
US4223472 *Apr 24, 1978Sep 23, 1980Mattel, Inc.Toy projectile launching device
US5188557 *Jan 13, 1992Feb 23, 1993Brown Randall LToy rocket apparatus
US5197452 *Feb 3, 1992Mar 30, 1993Johnson Lonnie GLiquid jet propelled transporter and launcher toy
US5381778 *Jul 2, 1993Jan 17, 1995D'andrade; Bruce M.Pressurized toy rocket with rapid action release mechanism
US5415153 *Feb 4, 1994May 16, 1995Johnson; Lonnie G.Pressurized air/water rocket and launcher
US5592931 *Jun 26, 1995Jan 14, 1997Johnson Research & Development Co, Inc.Compressed air gun with magazine indexer
US5596978 *May 15, 1995Jan 28, 1997Johnson Research & Development Co, Inc.Rapid fire compressed air gun
US5626123 *Apr 27, 1995May 6, 1997Johnson Research & Development Co., Inc.Compressed air gun
US5653216 *Mar 20, 1995Aug 5, 1997Johnson Research & Development Co, Inc.Toy rocket launcher
US5699781 *Aug 19, 1996Dec 23, 1997Johnson Research & Development Company, Inc.Rapid fire compressed air gun
US5701879 *May 26, 1995Dec 30, 1997Johnson Research & Development Company, Inc.Compressed air gun with single action pump
US5709199 *Oct 21, 1996Jan 20, 1998Johnson Research & Development Co., Inc.Rapid fire compressed air gun
US5724955 *Jan 27, 1997Mar 10, 1998Johnson Research & Development Company, Inc.For firing projectiles
US5787869 *Feb 11, 1997Aug 4, 1998Johnson Research & Development Corp., Inc.For firing projectiles having a tail bore
US5878734 *Sep 25, 1997Mar 9, 1999Johnson Research & Development Company, Inc.Multiple barrel compressed air gun
US5878735 *Sep 29, 1997Mar 9, 1999Johnson Research & Development Company, Inc.Compressed air toy gun
US5913304 *May 27, 1997Jun 22, 1999Johnson Research & Development Co., Inc.For firing projectiles
US5924413 *Mar 24, 1997Jul 20, 1999Johnson Research & Development Company, Inc.Rapid fire compressed air toy gun
US5951354 *Jul 2, 1997Sep 14, 1999Johnson Research & Development Co., Inc.Toy rocket
US6000386 *Oct 19, 1998Dec 14, 1999Johnson Research & Development Company, Inc.Toy gun with fluid pulsator
US6003503 *Dec 29, 1997Dec 21, 1999Johnson Research & Development Company, Inc.Toy gun with fluid pulsator
US6203397Nov 19, 1999Mar 20, 2001Johnson Research & Development & Company, Inc.convertible air and water toy gun
US6220237Jul 30, 1999Apr 24, 2001Johnson Research & Development Company, Inc.Compressed air toy gun
US6321737Nov 24, 1999Nov 27, 2001Johnson Research & Development Co., Inc.Toy rocket launcher
US6364162Jan 6, 2000Apr 2, 2002Johnson Research & Development Co.Automatic pressurized fluid gun
US6408837Sep 13, 1999Jun 25, 2002Johnson Research & Development Co.Toy gun with magazine
US6679155Oct 24, 2002Jan 20, 2004Johnson Research & Development Co., Inc.Projectile launcher
US7601046 *Oct 19, 2007Oct 13, 2009Ping-Sung ChangLaunching device for toy rocket
US7874892 *Dec 20, 2007Jan 25, 2011Mattel, Inc.Fluid driven vehicle playset
US8627812 *Dec 5, 2011Jan 14, 2014Dallas MurdochEZ-launch two liter pop bottle launcher
US20120090458 *Dec 10, 2011Apr 19, 2012Floyd Brian AGas Strut Separation For Staged Rocket
US20120138037 *Dec 5, 2011Jun 7, 2012Dallas MurdochEz-launch two liter pop bottle launcher
EP2075044A2 *Dec 19, 2008Jul 1, 2009Mattel, Inc.Fluid driven vehicle playset
WO1994000209A1 *Mar 23, 1993Jan 6, 1994Andrade Bruce M DPressurized air/water rocket launcher and rocket
WO1995001544A1 *Jul 5, 1994Jan 12, 1995Andrade Bruce M DPressurized toy rocket with rapid action release mechanism
WO2013179030A1 *May 29, 2013Dec 5, 2013Epc United Kingdom PlcPractice mortar projectile
Classifications
U.S. Classification446/212, 446/231
International ClassificationA63H27/00, A63H27/14
Cooperative ClassificationA63H27/14
European ClassificationA63H27/14