US3136424A - Automatic mail sorting system - Google Patents

Automatic mail sorting system Download PDF

Info

Publication number
US3136424A
US3136424A US822623A US82262359A US3136424A US 3136424 A US3136424 A US 3136424A US 822623 A US822623 A US 822623A US 82262359 A US82262359 A US 82262359A US 3136424 A US3136424 A US 3136424A
Authority
US
United States
Prior art keywords
stamp
mail
denomination
magnetic
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US822623A
Inventor
Stanford B Silverschotz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Micronas GmbH
International Telephone and Telegraph Corp
Original Assignee
Deutsche ITT Industries GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche ITT Industries GmbH filed Critical Deutsche ITT Industries GmbH
Priority to US822623A priority Critical patent/US3136424A/en
Priority to BE592240A priority patent/BE592240A/en
Application granted granted Critical
Publication of US3136424A publication Critical patent/US3136424A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C3/00Sorting according to destination
    • B07C3/10Apparatus characterised by the means used for detection ofthe destination
    • B07C3/16Apparatus characterised by the means used for detection ofthe destination using magnetic detecting means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S209/00Classifying, separating, and assorting solids
    • Y10S209/90Sorting flat-type mail

Definitions

  • This invention relates to a system for automatic sorting of mail and more particularly to a system wherein the stamp afiixed to the mail contains material in which can be encoded the denomination information of the stamp and the destination information of the mail.
  • Another object is to provide for an automatic mail sorting system which utilizes this single medium for the automatic sorting and distribution of mail.
  • a feature of this invention is a postage stamp for use on mail which contains magnetically permeable material and having the denomination of the stamp encoded in the magnetic material.
  • Another feature is that the destination information for the mail can be encoded in the magnetic material of the stamp.
  • a further feature is that the denomination information for the stamp is provided in discrete circles of magnetization, each circle denoting a denomination unit and the total encoded circles of the stamp denotes the denomination of the stamp.
  • Another fetaure is a system for automatic sorting of mail having a postage stamp thereon which contains magnetically permeable material and the denomination of the stamp encoded in the magnetic material. Means are provided for sensing the denomination encoding to determine the denomination of the stamp and for determining the actual stamp value required for the mail bearing the stamp. The actual stamp denomination and the required stamp value are then compared to determine whether the mail has the correct stamp value thereon. Pursuant to the information resulting from this comparison, the mail is then routed onward for cancellation and further sorting if the stamp denomination is equal to or more than the actual stamp value required. If the stamp denomination is less than the actual stamp value, then the mail is discarded automatically for manual handling.
  • Another feature of this automatic system is that subsequent to the steps of cancellation, the destination information is encoded in the magnetic material of the stamp and pursuant to this destination information, the mail is auto matically sorted and distributed in conformance with known techniques.
  • FIG. 1 is an illustration of the postage stamp of this lnventlon
  • FIG. 2 is another illustration of the postage stamp of this invention showing the magnetized circles for denoting denomination
  • FIG. 3 illustrates a device for magnetizing the circles
  • FIG. 4 is a side elevation view of the system for automatic sorting of mail
  • FIG. 5 is a plan view of the system
  • FIG. 6 is a view of the screen of the cathode ray tube used in this invention.
  • FIG. 7 is a view illustrating the passage of the letter between the vacuum sensing rollers used in the system of this invention.
  • FIG. 8 is an assembly view partially broken illustrating the construction of the vacuum roller
  • FIG. 9 is a view of the outer cylinder of the vacuum roller.
  • FIG. 10 is a view of the inner cylindrical sealer of the Vacuum roller
  • FIG. 11 is an elevation view of this system for automatic sorting of mail with encoded destination information.
  • FIG. 12 is a section view of the vacuum sensing roller of FIG. 8, rotated approximately degrees to show clearly the relationship of the various elements therein.
  • the addressed faces must be oriented for cancellation of stamps and for reading. Machines have been developed and are being marketed which perform this function automatically. After facing, the mail must be examined to determined whether the actual stamp value required by the weight of the letter has been afiixed to the mail. If the atfixed stamp is found to be of the correct denomination, then the cancelled mail is sorted and prepared for distribution.
  • the stamp 1 comprises the usual material in front surface 2 and the gum 3 on the back surface of the stamp and additionally includes ferromagnetic material 4 disposed under the gum of the stamp across the surface thereof.
  • This ferromagnetic material may consist of finely divided particles dispersed in a vehicle that is insoluble in Water or saliva.
  • Such a coating can be applied during the manufacture of the stamps in a manner not unlike the method now used for applying the gum adhesive.
  • the ferromagnetic coating would of course precede the application of the gum. In effect then, the stamp becomes a segment of magnetic tape.
  • the use of the ferromagnetic stamp transcends the recording of information.
  • the denomination of the stamp will be encoded in the magnetic material 4 at the time of manufacture of the stamp.
  • the denomination can be printed as magnetized circles 6, shown in FIG. 2.
  • Each circle 6 will correspond to a basic denomination unit and the total number of circles will correspond to the total denomination of the stamp.
  • One way of printinn magnetized circles on the stamp is to have a device, such as shown in FIG. 3, wherein a multiplicity of spaced apart bar magnets 7 are disposed above the stamp 1 on a bar 8 of noniagnctic or dielectric material.
  • the bar 8 is fastened to a shaft 9 which is turned by motor means (not shown).
  • the bar magnets 7 are rotated about the shaft 2 and thereby encode magnetic circles 6 in the ferromagnetic material 4 of the stamp.
  • the ends of the bar magnets 7 adjacent to the surface of the stamp 1 have the same pole, either all north or all south, so that there will be substantially a minimum interaction between the magnetic fields of the circles.
  • the spacing between the bars can also be adjusted to minimize the interaction between the magnetic field of the circles.
  • FIGS. 4- and 5 there is shown an automatic mail sorting system using the ferromagnetic postage stamp.
  • the process starts with the culling of the mail as explained above. Any culler ll] may be used which is appropriate.
  • the mail is fed into a facing machine 11 of the types similar to the ones manufactured by Mix 8; Genest, of Germany, or Pitney-Bowes, Inc. it is possible to use the photoelectric cell devices of these machines for performing the facing operations or if desired these photoelectric devices may be replaced by magnetic sensing devices to cooperate with the magnetic postage stamp to accomplish the appropriate facing.
  • the mail illustrated by a letter 12 is fed out in an upright position onto a conveyor belt 13.
  • the conveyor belt 13 carries the letter 12 onward between guide fences 13a and feeds it between two vacuum rollers 14 and 15. These vacuum rollers are more particularly shown in FIGS. 7, 8, 9, 10 and 12. It is not necessary to have sensing or magnetic heads in each roller since only the roller which is adjacent to the stamp requires the magnetic head.
  • the vacuum roller 14 which contains the magnetic readout heads consists of an outer cylinder 16 fabricated from a thin highly polished nonmagnetic metal or other non-magnetic material having numerous aligned holes 17 on the peripheral surface.
  • the outer cylinder 16 slidably fits over an inner sealer 13 in such a manner that the outer cylinder 16 is free to rotate about the inner sealer 18 which is in a fixed position.
  • the inner sealer 18 is formed in the shape of a cylinder concentric with the outer cylinder 16 but has a comparatively narrow slot 19 extending over the entire length thereof.
  • the segmented magnetic heads 20 are disposed inside of the inner sealer also in a fixed position and in such a manner that the aligned gaps of the magnetic heads are spaced in the center of the slot.
  • the magnetic heads 20 may be of the type described in the publication Ampex FR-100 published by the Ampex Corporation, Redwood City, California, 1956, which describes on page 13 a stacked assembly of interleaved magnetic heads. Another example of multiple magnetic head stacking suitable for use in this invention is disclosed in U.S. Patent No. 2,880,280.
  • covers 21 which may be, for example, force fitted into the top and bottom openings of the outer cylinder 16, so that the whole assembly is air tight except for that portion contiguous to the slot 19.
  • a tube 22 inserted in the top cover 21 leads to an exhaust pump 23 which when in operation provides for a constant partial vacuum within the roller 14.
  • An O-ring seal 60 well known to the art may be provided about the tube 22 to maintain an airtight condition and the whole assembly of the center cylinder 16 and the top and bottom covers 21 is freely rotatable about the inner sealer 18 and the magr. ii i netic heads inside.
  • a spu ar ring 24- is afiixed to the rat d cylinder 1:5 and a matchinner seal 18 can be supported from the tube 22 in a fixed position relative to the outer cylinder 16 so that when the motor 2: is in operation it will rotate the outer cylinder 16 about the inner scale: 18 and the segmented heads 29 and as each vertical alignment of holes 17 of the outer cylinder 16 rotate about the slot 19, air will be exhausted through these holes by the exhaust pump 23.
  • the air being pulled through the holes in the outer cylinders of both vacuum rollers tends to grip the sides of the ct er spreading it apart and also pushing it on- 1 wards progressively between the rollers 14 and 15.
  • the magnetic heads 20 will pick up the encoded information in the magnetic circles in the ferr magnetic material of the stamp atlixed to the letter.
  • the vacuum rollers By using the vacuum rollers and adjusting the space thercbetween in the correct manner, it is possible to pull the sides of the letters towards the rollers so that any magnetic material or steel clips or the like that may be within the letter will be farther away from the magnetic heads 29 and thereby unable to affect the information pick-up operation thereof.
  • the gap between the playback head and the magnetic medium which is being read out must be kept to a minimum.
  • the stamp 1 moves past the magnetic heads 20. Any segmented head 20 which passes over a portion of a magnetic circle and is tangent to that circle will thereby pick up the magnetic information in the form of a pulse. The segmented heads 20 which are not tangent to the circle will not pick up any information. Therefore, for each circle on the stamp two pulses will be generated in the magnetic pick-up heads 20.
  • the position of the stamp on the letter does not affect the pick up of the signal since the relative position of the circles with respect to the pick-up heads 21) is unaffected thereby.
  • the pulses generated in the pick-up heads 20 are then fed to a digitalto-analog converter 27 where the pulse information is converted to an analog voltage.
  • a digital-to-analog converter that may be used in this system is described on pages 485, 486, and 494499 of the publication Digital Computer Components and Circuits, by R. K. Richards, published by D. Van Nostrand Company, Inc., of New York City, New York, 1957.
  • the letter 12 after passing between the vacuum rollers 14 and 15 is then fed onto a weighing machine 28 where it is weighed and a pulse output is derived therefrom indicative of the weight of the letter.
  • a weighing machine can be similar to the Toledo Printweight 400 manufactured by the Toledo Scale Division of Toledo Scale Corporation, Toledo, Ohio, U.S.A. This machine translates the Weight data into digital form for recording as a weight or for transmission to other devices.
  • the digital pulse output of the weighing machine 28 is fed into a digital-to-analog converter 29 to convert the pulse output of the weighing machine 28 to analog form.
  • the analog output of converter 27 is coupled to a vertical deflection plate 39 of a cathode ray tube 31 and the analog output of the converter 29 is coupled to a horizontal deflection plate 32 of the cathode ray tube.
  • the other horizontal and vertical plates are coupled to ground.
  • FIG. 6 there is shown a view of the screen 33 of the cathode ray tube 31.
  • the horizontal and vertical deflection plates are shown therein for the purpose of explaining this invention only and it is to be understood that they do not thus appear.
  • a mask 34 shown as a shaded area covers the screen 33 of the cathode ray tube.
  • the irregular line 35 represents a graph wherein the ordinate represents the denomination required on a letter and the abscissa represents the weight of the letter.
  • the corresponding relationship of weight to denomination is, of course, determined by the Post Oflice so that at any point on that line 35 the weight of the letter must correspond to the stamp denomination required for that weight. It is to be understood that the line 35 is not representative of any actual conditions but merely an illustration for explaining the operation of this invention.
  • the shaded area 34 above the line 35 represents the acceptable stamp denomination versus weight of any letter.
  • the unshaded area 36 below the line 35 represents the unacceptable ratio of stamp denomination versus weight of letter and is therefore indicative of the rejection area.
  • a photoelectric cell 37 is disposed adjacent the screen 33 of the cathode ray tube.
  • the photoelectric cell 37 will respond to any luminous spot appearing in the unmasked area of the screen 33.
  • the output of the photoelectric cell 37 is thereupon fed to an amplifier 38.
  • the output of the amplifier 38 energizes a reversible motor 39 or solenoid, to rotate a gate 40 which is disposed above the conveyor belt 41 to deflect the letter, whose recorded weight value is greater than the denomination of the stamp on the letter, into a discard hopper 42.
  • the recorded weight value is equivalent to or less than the denomination value of the stamp, there will be no output of the photoelectric cell 37, as explained above, to operate the motor 39 and the letter will continue onward on the conveyor belt 41 and enter the cancellation machine 43.
  • This cancellation machine can be the one manufactured by Pitney-Bowes, Inc., or similar machines which are now being marketed. It is not necessary to explain the operation of these machines since they are well known to those acquainted with the postal art. From the cancellation machine the letter will then pass vacuum rollers 44 and 45 similar in construction and operation to the vacuum rollers 14 and 15 described above, where the denomination information will be erased by erase heads incorporated in the roller 44.
  • the erase heads may be of similar type as the heads described in Ampex FR-lOO or Patent No.
  • the coding operation is performed by the typewriter operator at station 46 whereby a set of simple mental rules, the code is derived for the destination name(s); the operator types the code on the typewriter and this information is fed into a computer 47.
  • the code information fed into the computer is then translated into digital information which in turn is fed into write-in head 48, such as described in the publication Ampex FR-IOO referred to above and to a distributor 49.
  • the code destination can be similar to the system used by the Canadian Post Office as described in the 1958 IRE National Convention Record, volume 6, part 6, pages 245 to 258, inclusive.
  • the computer 47 can also be similar to the computer described in this article or the Electronic Digital Computer Model 704, manufactured by the International Business Machines Corporation.
  • Another suitable computer is a digital computer Model 220, manufactured by the Burroughs Corporation.
  • the sorting of the mail for different destinations is done in the distributor 49 in accordance with the information transmitted by the computer 47 and can be similar to the sorting system described in the article.
  • the digital information fed into the write-in head 48 is then converted into pulses magnetically encoded in the ferromagnetic material 4 of the stamp 1.
  • FIGS. 4 and 5 there is shown an elevation view of this system for sorting mail received from another post ofiice which has encoded destination information on the stamps after the letter has passed through the system described in FIGS. 4 and 5.
  • the operations here are similar to the operations described above and it is to be understood that the necesasry units described above will be utilized here to the same extent where necessary.
  • Received letters are fed from the facing machine 11 onto a conveyor belt 56 where they move past vacuum roller 51 containing segmented read-out heads similar to the read-out heads in roller 14, and the digital information so read out is fed into a comupter 47.
  • the computer output is then fed into a distributor 52 for sorting the mail into the appropriate areas for distribution to other post ofiices or for manual delivery by mailmen.
  • a postage stamp for use on mail containing magnetically permeable material wherein the denomination of said stamp and the destination information for said mail is encoded in said magnetic material, said denomination information comprising discrete magnetized circles of encoded information in said magnetic material, each discrete magnetized circle denoting a denomination unit and the total encoded circle denoting the total denomination of said stamp.
  • a system for sorting of mail having thereon a postage stamp containing magnetically permeable material and the denomination of said stamp encoded in said magnetic material comprising means for sensing the denomination encoding to determine the denomination of said stamp, means to determine the correct stamp value required for the mail carrying the stamp and means to compare the correct stamp value with the actual stamp denomination determined by said sensing means and means for conveying said mail in a predetermined direction to said sensing means.
  • a system for sorting of mail according to claim 3 further including means for encoding in said magnetic material the destination information of said mail carrying said stamp, said conveying means carrying said mail to said encoding means.
  • a system for sorting of mail having thereon a postage stamp containing a recording medium and the denomination of said stamp encoded in said medium comprising means for sensing the denomination recorded in said medium, means to determine the correct stamp value required for the mail carrying the stamp, means to compare the correct stamp value with the actual denomination, means to route said mail responsive to said comparison, means for encoding in said medium the destina- I tion information of said mail on said stamp and means for conveying said mail in a predetermined direction to said sensing means and said encoding means.
  • a system for sorting of mail according to claim 5 further including means responsive to said encoded destination information and disposed adjacent said conveying means to sort said mail.
  • a system for sorting of mail wherein said medium is magnetic material and said sensing means comprises a pair of oppositely disposed cylinders, said conveying means carrying said mail betwec said cylinders and magnetic means incorporated in at least one of said cylinders for sensing the denomination encoding.
  • a system for automatic sorting of mail having thereon a postage stamp containing magnetically permeable material and the denomination of said stamp encoded in said magnetic material comprising means to convey said mail in an upright position, first and second rollers disposed opposite each other in parallel side-by-side relation adjacent 5 id conveying means and adapted for passage of said mail therebetween, means included in said rollers to exert an attractive force on the sides of said mail thereby urging said sides into contact with said first and second rollers, means to rotate said rollers and urge said mail onward, a plurality of magnetic sensing means disposed within at least one of said rollers for sensing the denomination of said stamp and producing a digital output proportional to said denomination, means to weigh said mail adjacent said conveying means and derive a predetermined digital output proportional to the weight of said mail, means to convert said digital outputs of said sensing means and said weighing means to analog voltages, means to correlate said analog voltages to determine whether said sensed denomination is acceptable for said predetermined weight value and means responsive to said correlation and disposed adjacent said convey
  • a device for gripping and moving a mail envelope and sensing intelligence carried by the envelope comprising first and second rollers disposed in parallel side-byside relation, each of said rollers comprising an outer perforated cylinder, an inner cylinder concentric with said outer cylinder and having a slot extending axially along the periphery thereof, first and second covers enclosing the ends of said outer cylinder, said outer cylinder being adapted ot rotate about said inner cylinder, on exhaust pump, means coupling said exhaust pump to one end of each said roller to evacuate air from said rollers, means for rotating said outer cylinder whereby when said envelope is moved towards the adjacency of said first and second rollers the evacuation of air from said rollers will cause each said roller to grip the sides of said envelope adjacent that roller and urge that side towards said roller spreading apart the sides of said envelope and the rotation of said outer cylinder of said first roller will urge said envelope onward between the outer cylinder of said first and second rollers, and means disposed inside the inner cylinder of one of said rollers adjacent said slot to sense

Description

J1me 9, 1964 s. B. SILVERSCHOTZ 3,135,424
AUTOMATIC MAIL SORTING SYSTEM Filed June 24, 1959 4 Sheets-Sheet l INVENTOR. srA/vmno 8. 5a ease-#0 2 BY ATTORNEY Jun 1964 s. B. SILVERSCHOTZ AUTOMATIC MAIL SORTING SYSTEM 4 Sheets-Sheet 2 Filed June 24, 1959 INVENTOR. 5m NFORO a. 5/4 VEQSCl/OTZ BY M 7vvk ATTORNEY www June 9, 1964 s. B. SILVERSCHOTZ AUTOMATIC MAIL SORTING SYSTEM 4 Sheets-Sheet 3 Filed June 24, 1959 EXHA as r PUMP 0 0 Q Q 0 0 o INVENTOR.
READ 007' SHEAO 5/ COMPUTt'R FACING MACH/NE Q) A TTORZVEY June 9, 1964 s. a. SILVERSCHOTZ 3,135,424
' AUTOMATIC MAIL SORTING SYSTEM Filed June 24, 1959 4 Sheets-Sheet 4 EXHA us 7 PUMP INVENTOR.
STANFORD a. 5/1. VERSC/IOTZ BYMZZ ATTORNEY United States Patent Ofiice 3,136,424 Patented June 9, 1964 3,136,424 AUTOMATIC MAIL SORTING SYSTEM Stanford B. Silverschotz, New York, N.Y., assignor to International Telephone and Telegraph Corporation, Nutley, N..I., a corporation of Maryland Filed June 24, 1959, Ser. No. 822,623 12 Claims. (Cl. 209-111.5)
This invention relates to a system for automatic sorting of mail and more particularly to a system wherein the stamp afiixed to the mail contains material in which can be encoded the denomination information of the stamp and the destination information of the mail.
Automation of postal functions is rapidly becoming a necessity because of the requirements for increased efficiency in the handling of greater and greater quantities of mail. Burdensome manual operations, such as culling, facing and sorting, are under study by postal authorities with automation of these functions as a goal. Gross handling methods are also being improved by installation of modern industrial materials handling devices. Postal development work has been done on photoelectric address readers, electromechanical sorting machines, address coding, mechanical facing machines, etc. Fluorescent and magnetic inks for postage discrimination and other applications are also being evaluated. It is desir able to provide automation for those functions, which utilizes a single factor for facing, postage discrimination, cancelling, sorting, and recording of code routing information. It is also desirable that such a method be compatible with electromechanical distributing machines already in use in post offices.
It is therefore an object of this invention to provide a single means factor which can be utilized automatically in most of the functions of mail sorting and distribution.
It is a further object to provide a medium for encoding information relating to a stamp denomination and the destination of the mail on which the stamp is afiixed.
Another object is to provide for an automatic mail sorting system which utilizes this single medium for the automatic sorting and distribution of mail.
A feature of this invention is a postage stamp for use on mail which contains magnetically permeable material and having the denomination of the stamp encoded in the magnetic material.
Another feature is that the destination information for the mail can be encoded in the magnetic material of the stamp.
A further feature is that the denomination information for the stamp is provided in discrete circles of magnetization, each circle denoting a denomination unit and the total encoded circles of the stamp denotes the denomination of the stamp.
Another fetaure is a system for automatic sorting of mail having a postage stamp thereon which contains magnetically permeable material and the denomination of the stamp encoded in the magnetic material. Means are provided for sensing the denomination encoding to determine the denomination of the stamp and for determining the actual stamp value required for the mail bearing the stamp. The actual stamp denomination and the required stamp value are then compared to determine whether the mail has the correct stamp value thereon. Pursuant to the information resulting from this comparison, the mail is then routed onward for cancellation and further sorting if the stamp denomination is equal to or more than the actual stamp value required. If the stamp denomination is less than the actual stamp value, then the mail is discarded automatically for manual handling.
Another feature of this automatic system is that subsequent to the steps of cancellation, the destination information is encoded in the magnetic material of the stamp and pursuant to this destination information, the mail is auto matically sorted and distributed in conformance with known techniques.
The above-mentioned and other features and objects of this invention will become more apparent by reference to the following description taken in conjunction with the accompanying drawings, in which:
. FIG. 1 is an illustration of the postage stamp of this lnventlon;
FIG. 2 is another illustration of the postage stamp of this invention showing the magnetized circles for denoting denomination;
FIG. 3 illustrates a device for magnetizing the circles;
FIG. 4 is a side elevation view of the system for automatic sorting of mail;
FIG. 5 is a plan view of the system;
FIG. 6 is a view of the screen of the cathode ray tube used in this invention;
FIG. 7 is a view illustrating the passage of the letter between the vacuum sensing rollers used in the system of this invention;
FIG. 8 is an assembly view partially broken illustrating the construction of the vacuum roller;
FIG. 9 is a view of the outer cylinder of the vacuum roller;
FIG. 10 is a view of the inner cylindrical sealer of the Vacuum roller;
FIG. 11 is an elevation view of this system for automatic sorting of mail with encoded destination information; and
FIG. 12 is a section view of the vacuum sensing roller of FIG. 8, rotated approximately degrees to show clearly the relationship of the various elements therein.
When the bags of mail arrive at a post ofiice, parcels and letters may be intermixed in each bag. The first process therefore is to cull parcels out of the letter mail. There is also culled out overstuffed envelopes which are called slugs, the large manila-type envelopes called flats and other first class mail not cancellable by machine. Air mail and other letters requiring separate handling are also removed at this point. 7 It is not contemplated that this invention contributes to the automation of the culling process. Systems are now being devised for automatic culling of mail which when perfected can be used with the system of this invention.
After the letters have been culled from the incoming mail, the addressed faces must be oriented for cancellation of stamps and for reading. Machines have been developed and are being marketed which perform this function automatically. After facing, the mail must be examined to determined whether the actual stamp value required by the weight of the letter has been afiixed to the mail. If the atfixed stamp is found to be of the correct denomination, then the cancelled mail is sorted and prepared for distribution.
With reference to FIG. 1, there is shown the ferromagnetic postage stamp 1 that is to be used in the automatic mail sorting system of this invention. The stamp 1 comprises the usual material in front surface 2 and the gum 3 on the back surface of the stamp and additionally includes ferromagnetic material 4 disposed under the gum of the stamp across the surface thereof. This ferromagnetic material may consist of finely divided particles dispersed in a vehicle that is insoluble in Water or saliva. Such a coating can be applied during the manufacture of the stamps in a manner not unlike the method now used for applying the gum adhesive. The ferromagnetic coating would of course precede the application of the gum. In effect then, the stamp becomes a segment of magnetic tape. The use of the ferromagnetic stamp transcends the recording of information. Facing and postage determination operations can also take advantage of the magnetic stamp. The denomination of the stamp will be encoded in the magnetic material 4 at the time of manufacture of the stamp. The denomination can be printed as magnetized circles 6, shown in FIG. 2. Each circle 6 will correspond to a basic denomination unit and the total number of circles will correspond to the total denomination of the stamp. One way of printinn magnetized circles on the stamp is to have a device, such as shown in FIG. 3, wherein a multiplicity of spaced apart bar magnets 7 are disposed above the stamp 1 on a bar 8 of noniagnctic or dielectric material. The bar 8 is fastened to a shaft 9 which is turned by motor means (not shown). The bar magnets 7 are rotated about the shaft 2 and thereby encode magnetic circles 6 in the ferromagnetic material 4 of the stamp. The ends of the bar magnets 7 adjacent to the surface of the stamp 1 have the same pole, either all north or all south, so that there will be substantially a minimum interaction between the magnetic fields of the circles. The spacing between the bars can also be adjusted to minimize the interaction between the magnetic field of the circles.
Referring now to FIGS. 4- and 5, there is shown an automatic mail sorting system using the ferromagnetic postage stamp. The process starts with the culling of the mail as explained above. Any culler ll] may be used which is appropriate. From the culler 1Q, the mail is fed into a facing machine 11 of the types similar to the ones manufactured by Mix 8; Genest, of Germany, or Pitney-Bowes, Inc. it is possible to use the photoelectric cell devices of these machines for performing the facing operations or if desired these photoelectric devices may be replaced by magnetic sensing devices to cooperate with the magnetic postage stamp to accomplish the appropriate facing. From the facing machine, the mail illustrated by a letter 12 is fed out in an upright position onto a conveyor belt 13. The conveyor belt 13 carries the letter 12 onward between guide fences 13a and feeds it between two vacuum rollers 14 and 15. These vacuum rollers are more particularly shown in FIGS. 7, 8, 9, 10 and 12. It is not necessary to have sensing or magnetic heads in each roller since only the roller which is adjacent to the stamp requires the magnetic head. The vacuum roller 14 which contains the magnetic readout heads consists of an outer cylinder 16 fabricated from a thin highly polished nonmagnetic metal or other non-magnetic material having numerous aligned holes 17 on the peripheral surface. The outer cylinder 16 slidably fits over an inner sealer 13 in such a manner that the outer cylinder 16 is free to rotate about the inner sealer 18 which is in a fixed position. The inner sealer 18 is formed in the shape of a cylinder concentric with the outer cylinder 16 but has a comparatively narrow slot 19 extending over the entire length thereof. The segmented magnetic heads 20 are disposed inside of the inner sealer also in a fixed position and in such a manner that the aligned gaps of the magnetic heads are spaced in the center of the slot. The magnetic heads 20 may be of the type described in the publication Ampex FR-100 published by the Ampex Corporation, Redwood City, California, 1956, which describes on page 13 a stacked assembly of interleaved magnetic heads. Another example of multiple magnetic head stacking suitable for use in this invention is disclosed in U.S. Patent No. 2,880,280. The bottom and top surfaces are sealed with covers 21, which may be, for example, force fitted into the top and bottom openings of the outer cylinder 16, so that the whole assembly is air tight except for that portion contiguous to the slot 19. A tube 22 inserted in the top cover 21 leads to an exhaust pump 23 which when in operation provides for a constant partial vacuum within the roller 14. An O-ring seal 60 well known to the art may be provided about the tube 22 to maintain an airtight condition and the whole assembly of the center cylinder 16 and the top and bottom covers 21 is freely rotatable about the inner sealer 18 and the magr. ii i netic heads inside. A spu ar ring 24- is afiixed to the rat d cylinder 1:5 and a matchinner seal 18 can be supported from the tube 22 in a fixed position relative to the outer cylinder 16 so that when the motor 2: is in operation it will rotate the outer cylinder 16 about the inner scale: 18 and the segmented heads 29 and as each vertical alignment of holes 17 of the outer cylinder 16 rotate about the slot 19, air will be exhausted through these holes by the exhaust pump 23. As the letter ll, starts to pass between the vacuum rollers 14 and 15, the air being pulled through the holes in the outer cylinders of both vacuum rollers tends to grip the sides of the ct er spreading it apart and also pushing it on- 1 wards progressively between the rollers 14 and 15. As the letter then moves onward, the magnetic heads 20 will pick up the encoded information in the magnetic circles in the ferr magnetic material of the stamp atlixed to the letter. By using the vacuum rollers and adjusting the space thercbetween in the correct manner, it is possible to pull the sides of the letters towards the rollers so that any magnetic material or steel clips or the like that may be within the letter will be farther away from the magnetic heads 29 and thereby unable to affect the information pick-up operation thereof. In any magnetic recording and playback machine, the gap between the playback head and the magnetic medium which is being read out must be kept to a minimum. B; pulling the letter apart at opposite sides, the stamp will ride closely adjacent the head but the iron material, if any, in the letter will be too far from the playback head to substantially affect any information transfer from the stamp to the readout head. As the letter 12 passes between the rollers 14 and 15 and is moved onward by the rotation of the perforated cylinder 16, the stamp 1 moves past the magnetic heads 20. Any segmented head 20 which passes over a portion of a magnetic circle and is tangent to that circle will thereby pick up the magnetic information in the form of a pulse. The segmented heads 20 which are not tangent to the circle will not pick up any information. Therefore, for each circle on the stamp two pulses will be generated in the magnetic pick-up heads 20. The position of the stamp on the letter does not affect the pick up of the signal since the relative position of the circles with respect to the pick-up heads 21) is unaffected thereby. The pulses generated in the pick-up heads 20 are then fed to a digitalto-analog converter 27 where the pulse information is converted to an analog voltage. A digital-to-analog converter that may be used in this system is described on pages 485, 486, and 494499 of the publication Digital Computer Components and Circuits, by R. K. Richards, published by D. Van Nostrand Company, Inc., of New York City, New York, 1957. The letter 12 after passing between the vacuum rollers 14 and 15 is then fed onto a weighing machine 28 where it is weighed and a pulse output is derived therefrom indicative of the weight of the letter. Such a weighing machine can be similar to the Toledo Printweight 400 manufactured by the Toledo Scale Division of Toledo Scale Corporation, Toledo, Ohio, U.S.A. This machine translates the Weight data into digital form for recording as a weight or for transmission to other devices. The digital pulse output of the weighing machine 28 is fed into a digital-to-analog converter 29 to convert the pulse output of the weighing machine 28 to analog form. The analog output of converter 27 is coupled to a vertical deflection plate 39 of a cathode ray tube 31 and the analog output of the converter 29 is coupled to a horizontal deflection plate 32 of the cathode ray tube. The other horizontal and vertical plates are coupled to ground. Referring to FIG. 6, there is shown a view of the screen 33 of the cathode ray tube 31. The horizontal and vertical deflection plates are shown therein for the purpose of explaining this invention only and it is to be understood that they do not thus appear. A mask 34 shown as a shaded area covers the screen 33 of the cathode ray tube. The irregular line 35 represents a graph wherein the ordinate represents the denomination required on a letter and the abscissa represents the weight of the letter. The corresponding relationship of weight to denomination is, of course, determined by the Post Oflice so that at any point on that line 35 the weight of the letter must correspond to the stamp denomination required for that weight. It is to be understood that the line 35 is not representative of any actual conditions but merely an illustration for explaining the operation of this invention. The shaded area 34 above the line 35 represents the acceptable stamp denomination versus weight of any letter. The unshaded area 36 below the line 35 represents the unacceptable ratio of stamp denomination versus weight of letter and is therefore indicative of the rejection area. When the voltage outputs of converters 27 and 29 are fed to the deflection plates 3t) and 32, they determine a luminous spot and if this occurs in the acceptable area 34, this luminous spot will not be visible because of the presence of the mask 34. However, if a spot appears in the unmasked area 36, it will, of course, be visible on the face of the cathode ray tube. A photoelectric cell 37 is disposed adjacent the screen 33 of the cathode ray tube. The photoelectric cell 37 will respond to any luminous spot appearing in the unmasked area of the screen 33. The output of the photoelectric cell 37 is thereupon fed to an amplifier 38. The output of the amplifier 38 energizes a reversible motor 39 or solenoid, to rotate a gate 40 which is disposed above the conveyor belt 41 to deflect the letter, whose recorded weight value is greater than the denomination of the stamp on the letter, into a discard hopper 42. If the recorded weight value is equivalent to or less than the denomination value of the stamp, there will be no output of the photoelectric cell 37, as explained above, to operate the motor 39 and the letter will continue onward on the conveyor belt 41 and enter the cancellation machine 43. This cancellation machine can be the one manufactured by Pitney-Bowes, Inc., or similar machines which are now being marketed. It is not necessary to explain the operation of these machines since they are well known to those acquainted with the postal art. From the cancellation machine the letter will then pass vacuum rollers 44 and 45 similar in construction and operation to the vacuum rollers 14 and 15 described above, where the denomination information will be erased by erase heads incorporated in the roller 44. The erase heads may be of similar type as the heads described in Ampex FR-lOO or Patent No. 2,880,280, and in accordance with standard magnetic reproducing technique an erasing current of the correct frequency is fed thereto. The erase operation is optional since it is possible to write in on the magnetizable material of the stamp the destination information even though the denomination information is still present therein since the destination information will be written in at a different frequency and a dilterent form. From the vacuum rollers 44 and 45, the letter passes onward on the conveyor belt 41 past a typewriter station 46 where a typewriter operator will scan the address on the letter. To machine handle the mail, the destination of the letter written on the envelope must be translated into machine language: This is done by coding. Once coded, letters can be sorted or resorted by several automatic machines located at various post offices. The coding operation is performed by the typewriter operator at station 46 whereby a set of simple mental rules, the code is derived for the destination name(s); the operator types the code on the typewriter and this information is fed into a computer 47. The code information fed into the computer is then translated into digital information which in turn is fed into write-in head 48, such as described in the publication Ampex FR-IOO referred to above and to a distributor 49.
6 The code destination can be similar to the system used by the Canadian Post Office as described in the 1958 IRE National Convention Record, volume 6, part 6, pages 245 to 258, inclusive. The computer 47 can also be similar to the computer described in this article or the Electronic Digital Computer Model 704, manufactured by the International Business Machines Corporation. Another suitable computer is a digital computer Model 220, manufactured by the Burroughs Corporation. The sorting of the mail for different destinations is done in the distributor 49 in accordance with the information transmitted by the computer 47 and can be similar to the sorting system described in the article. The digital information fed into the write-in head 48 is then converted into pulses magnetically encoded in the ferromagnetic material 4 of the stamp 1. With reference to FIG. 11, there is shown an elevation view of this system for sorting mail received from another post ofiice which has encoded destination information on the stamps after the letter has passed through the system described in FIGS. 4 and 5. The operations here are similar to the operations described above and it is to be understood that the necesasry units described above will be utilized here to the same extent where necessary. Received letters are fed from the facing machine 11 onto a conveyor belt 56 where they move past vacuum roller 51 containing segmented read-out heads similar to the read-out heads in roller 14, and the digital information so read out is fed into a comupter 47. The computer output is then fed into a distributor 52 for sorting the mail into the appropriate areas for distribution to other post ofiices or for manual delivery by mailmen.
While I have described above the principles of my invention in connection with specific apparatus, it is to be clearly understood that this description is made only by way of example and not as a limitation to the scope of my invention as set forth in the objects thereof and in the accompanying claims.
I claim:
1. A postage stamp for use on mail containing magnetically permeable material wherein the denomination of said stamp and the destination information for said mail is encoded in said magnetic material, said denomination information comprising discrete magnetized circles of encoded information in said magnetic material, each discrete magnetized circle denoting a denomination unit and the total encoded circle denoting the total denomination of said stamp.
2. A postage stamp according to claim 1 wherein said circles are disposed concentrically in said magnetic material.
3. A system for sorting of mail having thereon a postage stamp containing magnetically permeable material and the denomination of said stamp encoded in said magnetic material comprising means for sensing the denomination encoding to determine the denomination of said stamp, means to determine the correct stamp value required for the mail carrying the stamp and means to compare the correct stamp value with the actual stamp denomination determined by said sensing means and means for conveying said mail in a predetermined direction to said sensing means.
4. A system for sorting of mail according to claim 3 further including means for encoding in said magnetic material the destination information of said mail carrying said stamp, said conveying means carrying said mail to said encoding means.
5. A system for sorting of mail having thereon a postage stamp containing a recording medium and the denomination of said stamp encoded in said medium comprising means for sensing the denomination recorded in said medium, means to determine the correct stamp value required for the mail carrying the stamp, means to compare the correct stamp value with the actual denomination, means to route said mail responsive to said comparison, means for encoding in said medium the destina- I tion information of said mail on said stamp and means for conveying said mail in a predetermined direction to said sensing means and said encoding means.
6. A system for sorting of mail according to claim 5 further including means responsive to said encoded destination information and disposed adjacent said conveying means to sort said mail.
7. A system for sorting of mail according to claim 5 wherein said medium is magnetic material and said sensing means comprises a pair of oppositely disposed cylinders, said conveying means carrying said mail betwec said cylinders and magnetic means incorporated in at least one of said cylinders for sensing the denomination encoding.
8. A system for automatic sorting of mail having thereon a postage stamp containing magnetically permeable material and the denomination of said stamp encoded in said magnetic material comprising means to convey said mail in an upright position, first and second rollers disposed opposite each other in parallel side-by-side relation adjacent 5 id conveying means and adapted for passage of said mail therebetween, means included in said rollers to exert an attractive force on the sides of said mail thereby urging said sides into contact with said first and second rollers, means to rotate said rollers and urge said mail onward, a plurality of magnetic sensing means disposed within at least one of said rollers for sensing the denomination of said stamp and producing a digital output proportional to said denomination, means to weigh said mail adjacent said conveying means and derive a predetermined digital output proportional to the weight of said mail, means to convert said digital outputs of said sensing means and said weighing means to analog voltages, means to correlate said analog voltages to determine whether said sensed denomination is acceptable for said predetermined weight value and means responsive to said correlation and disposed adjacent said conveying means to reject said mail when said sensed denomination is unacceptable for said predetermined Weight value.
9. A device for gripping and moving a mail envelope and sensing intelligence carried by the envelope comprising first and second rollers disposed in parallel side-byside relation, each of said rollers comprising an outer perforated cylinder, an inner cylinder concentric with said outer cylinder and having a slot extending axially along the periphery thereof, first and second covers enclosing the ends of said outer cylinder, said outer cylinder being adapted ot rotate about said inner cylinder, on exhaust pump, means coupling said exhaust pump to one end of each said roller to evacuate air from said rollers, means for rotating said outer cylinder whereby when said envelope is moved towards the adjacency of said first and second rollers the evacuation of air from said rollers will cause each said roller to grip the sides of said envelope adjacent that roller and urge that side towards said roller spreading apart the sides of said envelope and the rotation of said outer cylinder of said first roller will urge said envelope onward between the outer cylinder of said first and second rollers, and means disposed inside the inner cylinder of one of said rollers adjacent said slot to sense the intelligence carried by said envelope.
10. A postage sta 1p for use on mail containing magnetically permeable material adapted to carry intelligence disposed over the surface of said stamp on the side opposite the face thereof and underlying the adhesive material of said stamp.
11. A postage stamp according to claim 10 wherein the denomination of said stamp is encoded in said magnetic material.
12. A postage stamp according to claim 10 wherein the destination information for said mail is encoded in said magnetic material.
References Cited in the file of this patent UNITED STATES PATENTS

Claims (1)

1. A POSTAGE STAMP FOR USE ON MAIL CONTAINING MAGNETICALLY PERMEABLE MATERIAL WHEREIN THE DENOMINATION OF SAID STAMP AND THE DESTINATION INFORMATION FOR SAID MAIL IS ENCODED IN SAID MAGNETIC MATERIAL, SAID DENOMINATION INFORMATION COMPRISING DISCRETE MAGNETIZED CIRCLES OF ENCODED INFORMATION IN SAID MAGNETIC MATERIAL, EACH DISCRETE MAGNETIZED CIRCLE DENOTING A DENOMINATION UNIT AND THE TOTAL ENCODED CIRCLE DENOTING THE TOTAL DENOMINATION OF SAID STAMP.
US822623A 1959-06-24 1959-06-24 Automatic mail sorting system Expired - Lifetime US3136424A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US822623A US3136424A (en) 1959-06-24 1959-06-24 Automatic mail sorting system
BE592240A BE592240A (en) 1959-06-24 1960-06-24 Automatic station transfer sorting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US822623A US3136424A (en) 1959-06-24 1959-06-24 Automatic mail sorting system

Publications (1)

Publication Number Publication Date
US3136424A true US3136424A (en) 1964-06-09

Family

ID=25236534

Family Applications (1)

Application Number Title Priority Date Filing Date
US822623A Expired - Lifetime US3136424A (en) 1959-06-24 1959-06-24 Automatic mail sorting system

Country Status (2)

Country Link
US (1) US3136424A (en)
BE (1) BE592240A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3368672A (en) * 1966-01-17 1968-02-13 Fmc Corp Article classifying apparatus
US3473111A (en) * 1965-04-29 1969-10-14 Nederlanden Staat Thin metal marking and method for detecting the same
US3553440A (en) * 1967-11-09 1971-01-05 Dennison Mfg Co Control ticket
US3774758A (en) * 1971-02-24 1973-11-27 H Sternberg Method and aid for the automated sorting of mail by zip code
US3793112A (en) * 1972-10-18 1974-02-19 Sontag J Hand held label attaching iron
US4561352A (en) * 1984-11-05 1985-12-31 Bell & Howell Company Rotatable print mechanism for printing on front or back of media
US4606660A (en) * 1984-07-12 1986-08-19 System Development Corporation Printer kit for letter sorting machines
US5149139A (en) * 1985-04-24 1992-09-22 Gao Gesellschaft Fur Automation Und Organisation Mbh Stamp such as a postage stamp and a method for producing it
US5267754A (en) * 1985-04-24 1993-12-07 Gao Gesellschaft Fuer Automation Und Organisation Mbh Stamp such as a postage stamp and a method for producing it
US5397623A (en) * 1993-01-26 1995-03-14 Moore Business Forms, Inc. Magnetic toner offsetting spot
WO1996027179A1 (en) * 1995-02-27 1996-09-06 Darryl Paes Stamp with message on its rear side
US5685570A (en) * 1992-04-10 1997-11-11 Sprintpak Pty Ltd Postage stamps
US20030105730A1 (en) * 1999-05-19 2003-06-05 Rhoads Geoffrey B. Postal meters and systems employing watermarking
US20030130954A1 (en) * 1998-07-31 2003-07-10 Carr J. Scott Postal applications including digital watermarks
US6804379B2 (en) * 1994-03-17 2004-10-12 Digimarc Corporation Digital watermarks and postage
US8162214B1 (en) 2007-07-17 2012-04-24 Tritek Technologies, Inc. Ballot processing method and apparatus

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1217092A (en) * 1914-02-11 1917-02-20 Emil G Hopp Mail-sorting, postmarking, and stamp-canceling device.
US2244723A (en) * 1936-07-30 1941-06-10 Smithe Machine Co Inc F L Envelope machine
GB540600A (en) * 1940-02-15 1941-10-23 Ncr Co Improvements in or relating to record media for use in accounting and like statistical machines
US2609928A (en) * 1946-12-31 1952-09-09 Doust James Frederick Apparatus for sorting postal packets
US2612994A (en) * 1949-10-20 1952-10-07 Norman J Woodland Classifying apparatus and method
US2625265A (en) * 1947-04-01 1953-01-13 Electric Sorting Machine Compa Photoelectric sorting apparatus
US2697514A (en) * 1952-07-03 1954-12-21 Walter A Stahl Mail sorting device
US2719629A (en) * 1951-09-01 1955-10-04 Roy O Robinson Mail sorting and cancelling means
US2759603A (en) * 1953-02-18 1956-08-21 Toledo Scale Co Dynamic classifier with gate selecting device
US2950005A (en) * 1956-08-10 1960-08-23 Burroughs Corp Card sorter

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1217092A (en) * 1914-02-11 1917-02-20 Emil G Hopp Mail-sorting, postmarking, and stamp-canceling device.
US2244723A (en) * 1936-07-30 1941-06-10 Smithe Machine Co Inc F L Envelope machine
GB540600A (en) * 1940-02-15 1941-10-23 Ncr Co Improvements in or relating to record media for use in accounting and like statistical machines
US2609928A (en) * 1946-12-31 1952-09-09 Doust James Frederick Apparatus for sorting postal packets
US2625265A (en) * 1947-04-01 1953-01-13 Electric Sorting Machine Compa Photoelectric sorting apparatus
US2612994A (en) * 1949-10-20 1952-10-07 Norman J Woodland Classifying apparatus and method
US2719629A (en) * 1951-09-01 1955-10-04 Roy O Robinson Mail sorting and cancelling means
US2697514A (en) * 1952-07-03 1954-12-21 Walter A Stahl Mail sorting device
US2759603A (en) * 1953-02-18 1956-08-21 Toledo Scale Co Dynamic classifier with gate selecting device
US2950005A (en) * 1956-08-10 1960-08-23 Burroughs Corp Card sorter

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3473111A (en) * 1965-04-29 1969-10-14 Nederlanden Staat Thin metal marking and method for detecting the same
US3368672A (en) * 1966-01-17 1968-02-13 Fmc Corp Article classifying apparatus
US3553440A (en) * 1967-11-09 1971-01-05 Dennison Mfg Co Control ticket
US3774758A (en) * 1971-02-24 1973-11-27 H Sternberg Method and aid for the automated sorting of mail by zip code
US3793112A (en) * 1972-10-18 1974-02-19 Sontag J Hand held label attaching iron
US4606660A (en) * 1984-07-12 1986-08-19 System Development Corporation Printer kit for letter sorting machines
US4561352A (en) * 1984-11-05 1985-12-31 Bell & Howell Company Rotatable print mechanism for printing on front or back of media
US5267754A (en) * 1985-04-24 1993-12-07 Gao Gesellschaft Fuer Automation Und Organisation Mbh Stamp such as a postage stamp and a method for producing it
US5149139A (en) * 1985-04-24 1992-09-22 Gao Gesellschaft Fur Automation Und Organisation Mbh Stamp such as a postage stamp and a method for producing it
US5685570A (en) * 1992-04-10 1997-11-11 Sprintpak Pty Ltd Postage stamps
US5397623A (en) * 1993-01-26 1995-03-14 Moore Business Forms, Inc. Magnetic toner offsetting spot
US6804379B2 (en) * 1994-03-17 2004-10-12 Digimarc Corporation Digital watermarks and postage
WO1996027179A1 (en) * 1995-02-27 1996-09-06 Darryl Paes Stamp with message on its rear side
US20030130954A1 (en) * 1998-07-31 2003-07-10 Carr J. Scott Postal applications including digital watermarks
US20030105730A1 (en) * 1999-05-19 2003-06-05 Rhoads Geoffrey B. Postal meters and systems employing watermarking
US8162214B1 (en) 2007-07-17 2012-04-24 Tritek Technologies, Inc. Ballot processing method and apparatus

Also Published As

Publication number Publication date
BE592240A (en) 1960-12-27

Similar Documents

Publication Publication Date Title
US3136424A (en) Automatic mail sorting system
EP0477169B1 (en) Postal stamp, process, apparatus, and metering device thereof
CA2072041C (en) Method and apparatus for determining the orientation of a document
US4792249A (en) Vacuum paper transport system for printer
US3895220A (en) Selectively encodable envelope insert and related apparatus
US3000000A (en) Automatic reading system
US2254931A (en) Control record for accounting machines
US3266626A (en) Document handling system
US3757942A (en) Article sorting apparatus and method
US4201339A (en) Article sorting apparatus and method
US7301115B2 (en) System and method of identifying and sorting response services mail pieces in accordance with plural levels of refinement in order to enhance postal service revenue protection
US4106062A (en) Apparatus for producing magnetically encoded articles
US20060080266A1 (en) Mailer detection and manifest system
US5098130A (en) Postal stamp, and metering device thereof
US3040323A (en) Magnetic coding means
US3652828A (en) Selective insertion machine having selective document marking
US3246751A (en) Sorting means
USRE25998E (en) Automatic sorting system
US3315805A (en) Magnetic sorting means
EP0481569A2 (en) Mail sorting apparatus and method
US3015389A (en) Feeding mechanism and method for flat articles
US3609694A (en) Coding means
US3143649A (en) Information coding and sensing by means of beta-ray backscattering
JP2827555B2 (en) Luggage slip for courier service with OMR card
US3368208A (en) Information carriers for magnetic destination recording in conveying systems