Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3151675 A
Publication typeGrant
Publication dateOct 6, 1964
Filing dateMar 31, 1958
Priority dateApr 2, 1957
Publication numberUS 3151675 A, US 3151675A, US-A-3151675, US3151675 A, US3151675A
InventorsLysholm Alf
Original AssigneeLysholm Alf
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Plate type heat exchanger
US 3151675 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Oct. 6, 1964 A. LYSHOLM PLATE TYPE HEAT EXCHANGER 2 Sheets-Sheet 1 Filed March 31, 1958 INVENTOR Z 75190.4?

ATTORNEYS Oct. 6, 1964 A. LYSHOLM Filed March 31, 1958 fiA F A ySflOL/V ATTORNEYS United States Patent 3,151,675 PLATE TYPE HEAT EXCHANGER Alf Lyslrolm, Karlaplan 11, Stockholm, Sweden Filed Mar. 31, 1958, Ser. No. 725,144 Claims priority, application Sweden, Apr. 2, 1957 Claims. (Cl. 165-166) This invention relates to a heat exchanger. It is a well known fact that the transfer of heat between a fluid in motion and a surface is dependent on the thickness of the boundary layer extending along the surface. If this thickness is reduced or the boundary layer is removed as much as possible, the transfer of heat will be considerably improved.

The invention is based on the above consideration and its main object is to improve the transfer of heat between a fluid in motion and a surface by providing for disturbances of flow in the passage for the fluid such as locally to remove or thin the boundary layer. However, since such disturbances cause an increase of the resistance to flow, the improved transfer of heat is often balanced by the increase in the flow losses.

More specifically, the object of the invention is to provide a heat exchanger having one or more passages for a heat emitting or heat absorbing fluid in motion, in which the above inconvenience is eliminated due to the fact that each passage has restricted portions spaced apart along the passage. Still more specifically, the arrangement should be one wherein the following relation holds for the ratio In of the smallest to the largest crosssectional area of each passage and the ratio of the distance L between the restricted portions to the hydraulic diameter D of the passage, namely,

wherein the factor K has a value of between 4 and 20, dependent upon the use for which the heat exchanger is to be constructed. If for a certain use it is desired to secure an efiicient heat transmission while maintaining a comparatively low resistance to flow, the value of the factor K should be between and 20. This holds true in cases where the dimensions of the heat exchanger are of minor importance. If the value of the factor K is reduced to between 6 and 10, the heat exchanger will obtain smaller dimensions as a result of the improved transfer of heat, whereas the resistance to flow is somewhat increased, but is still lying within reasonable limits. Finally, there may be cases in which it is desired to avoid too great variations of the heat transfer along the passage in order to prevent local overheating. In such cases, the value of the factor K should lie between 4 and 6. Such a heat exchanger will obtain comparatively small dimensions as a result of a very effective heat transmission.

The invention is explained more fully hereinbelow with reference to the drawings in which:

FIGURE 1 is a longitudinal sectional view of a passage for a heat exchanger;

FIGURE 2 is a top view, partly broken away, of an element for a heat exchanger according to the invention;

FIGURE 3 is a sectional view of the element taken on the line 3-3 of FIGURE 2;

FIGURE 4 is a sectional view of the element taken on the line 4-4 of FIGURE 2;

FIGURE 5 is a top view of a modified heat exchanger plate; and

FIGURE 6 is a sectional View of the modified plate taken on the line 6--6 of FIGURE 5.

The passage shown in FIGURE 1 is formed between two plates 1 and 2. The last named plate has furrows 3 extending at right angles to the direction of flow indi- "ice cated by an arrow, such as to obtain a varying crosssectional area of the passage. The restricted portions 4 alternate with portions 5 having constant cross-sectional areas. If, by way of example, the distance between the plates 1 and 2 at the restricted portions 4 amounts to 10 millimetres and at the portions 5 amounts to 15 millimetres, the ratio m of the smallest to the largest cross-sectional area will be equal to 0.67. The equivalent diameter is about 30 millimetres. If the distance between adjacent restricted portions is assumed to be 120 millimetres, the ratio of said distance L to the equivalent or hydraulic diameter D will be equal to 4. It has been proved that under these conditions the transfer of heat from the fluid flowing through the passage between the plates 1 and 2 is very satisfactory and that the resistance to flow is comparatively low.

In accordance with a preferred form of the invention, the passage should be devised such that the above named dimensions satisfy the equation wherein the value of the factor K is between 4 and 20.

In the above example of dimensions the factor K amounts to about 7. If the factor K is between 4 and 6, the resistance to flow will be comparatively high, but the coeflicient of heat transmission will vary only slightly along the length of the passage. If the value of the factor K is between 6 and 10, the coeflicient of heat transmission will still be high, but the resistance to flow will be lower. If the value of the factor is between 10 and 20, the resistance to flow will be rather low, while the coefiicient of heat transmission will be considerably higher than for a passage having a constant cross-sectional area. The ratio m of the smallest to the largest cross-sectional area should be between 0.4:1 and 0.911.

As will be seen from FIGURE 1, diffuser-shaped portions are provided in front of as well as behind the smallest cross-sectional area of the restricted portions, the result being a reduction of the flow losses. It has proved that the succeeding difluser-shaped portion is highly important, whereas a comparatively abrupt transition may be permitted at the upstream side between the largest and the smallest cross-sectional areas.

The furrows 3 which cause the restricted portions may be located at an angle with respect to the direction of flow, said angle amounting to between 25 and and preferably between 60 and 90.

FIGURES 2 to 4 illustrate part of a heat exchanger built up by plates in accordance with the invention. In this case, the furrows 3 of the plates 2 project in opposite directions and are separated by flat portions 3a. There are no plane plates in this embodiment. Restricted portions 4 alternate with portions having constant crosssectional areas 5 and portions having enlarged crosssectional areas 6. The plates 2 bear against spacing plates 7 which have oppositely projecting ridges 8 extending in the direction of flow and abutting against the inwardly projecting furrows 3 of the plates 2. The ridges 8 are separated by flat portions 8a. Thus, fluid flow channels are formed between adjacent plates, each channel having side walls formed by confronting plate portions 3a and 8a and each channel having lateral walls formed in part by the ridges 8 and in part by those portions of the furrows 3 which are immediately adjacent the ridges 8.

From FIGURE 2 it will be seen that the furrows 3 of the plates 2 extend obliquely With respect to the direction of flow of the fluid indicated by an arrow, whereas the ridges S of the plates 7 are parallel to the direction of flow. In the modification shown in FIGURES 5 and 6 a spacing plate 7 having parallel spacing ridges 8' is illustrated which has in addition flow-restricting furrows 9. The furrows 9 extend obliquely between the ridges 8' and are somewhat lower than the furrows 3 of the plates 2 in FIGURES 24 a p The invention is not limited 'to the above described and illustrated embodiments which may be modified within the scope of the appending claims.

What I claim is: Y I

1. A heat exchange plate structure comprising a pack of spaced, opposed plates, each of said plates being in contact with adjacent plates at least partially along parallel spacing ridges which are integral with and project from one of the plates, the spaces between adjacent plates forming a plurality of parallel straight channels for flow of gaseous heat exchanging fluid between adjacent plates, each of said channels having spaced side walls'formed by confronting portions of adjacent plates and lateral walls formed at least. partially by adjacent ridges and the width of said side walls being several times that of said lateral walls, and a plurality of furrows extending obliquely across and integral with at least one of the confronting portions which form said side walls of each of said channels, saidfurrows being relatively narrow and shallow as compared with/the width and depth of said channels and said furrows being separated by intervening plane side wall surfaces each several times the width of the. adjacent furrows.

7 2. A heat exchanger element for gaseous media comprising a pack of plates forming passages for gas flow on b oih sidesof each plate, said pack being composed of spacing plates having integral parallel ridges extending in the main direction of the gas flow and projecting on both sides of each plate, said ridges being separated by fiat plate portions, said spacing plates alternating with intermediate plates and engaging the same along said ridges, said intermediate plates having integral parallel furrows projecting transversely to said main direction of flow on both sides of each plate and extending at an'angle to said main direction of flow, said furrows being sepa rated by flat plate portions extending in the main direction of flow, the length of said flat plate portions between said furrows when measured in said direction being larger than the distance between adjacent plates.

3. A heat exchanger element as claimed in claim 1, wherein the furrows are straight and extend over the whole distance between adjacent ridges of the spacing plates.

4. A heat exchanger element as claimed in claim 1, wherein spaced parallel oblique furrows are alsoprovided in the fiat plate portions between the ridges of the spacing plates. V V

5. A heat exchanger'element as claimed in claim 4, wherein the furrows of thespacing plates are lower than the furrows of the intermediate plates.

References Cited in the file of this patent UNITED STATES PATENTS. f V V 1931 1,823,481 Zander Sept. 15, 7 1,991,555 Holmes Feb.'19, 1935 2,017,201 Bossart et al. Oct. 15, 1935 2,023,965; Lysholm Dec. 10, 1935 2,596,642 Boestad May 13, 1952 2,696,976 Boestad et a1. Dec. 14, 1954 2,737,446 Ljungstrom Apr. 2, 1957 2,940,736 Odn an June 14, 1960 V FOREIGN PATENTS 359,276 France Jan. 16, 1906 679,285 Germany Aug. 2, 1939 209,993 Great Britain Jan. 24, 1924 684,602 Great Britain Dec; 24, 1952 Great Britain Jan;.'13, 1954 OTHER REFERENCES V Bulletin No. 633, The Air Preheater Corp., June 1933.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1823481 *Oct 2, 1928Sep 15, 1931Ljungstroms Angturbin AbHeat exchange device
US1991555 *Oct 31, 1932Feb 19, 1935Gen Motors CorpOil temperature regulator
US2017201 *Nov 27, 1931Oct 15, 1935Modine Mfg CoCondenser tube
US2023965 *May 28, 1931Dec 10, 1935Ljungstroms Angturbin AbHeat transfer
US2596642 *May 15, 1946May 13, 1952Jarvis C MarbleHeat exchanger
US2696976 *May 17, 1950Dec 14, 1954Jarvis C MarbleElement set for air preheaters
US2787446 *Mar 11, 1953Apr 2, 1957Rosenblads Patenter AbPlate type heat exchanger
US2940736 *May 11, 1950Jun 14, 1960Svenska Rotor Maskiner AbElement set for heat exchangers
DE679285C *Apr 12, 1936Aug 2, 1939Carl SenssenbrennerRohrfoermiger Waermeaustauscher fuer Fluessigkeiten mit in der Wandung des Rohres quer und nach innen gerichteten Vorspruengen
FR359276A * Title not available
GB209993A * Title not available
GB684602A * Title not available
GB702137A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3252510 *Aug 14, 1964May 24, 1966Stewart Warner CorpHeat exchanger using brazed joints
US3554273 *Sep 3, 1969Jan 12, 1971Rothemuehle Brandt KritzlerElements for regenerative heat exchangers
US3887664 *Apr 18, 1973Jun 3, 1975Ulrich RegehrContact body for the transfer of heat and/or substances
US4171334 *Mar 17, 1978Oct 16, 1979Balcke-Durr AktiengesellschaftApparatus for securing assembly plates in spraying installations of heat exchangers
US4176713 *Feb 7, 1977Dec 4, 1979Helmut FisherPlate-type heat exchanger
US4385012 *Jan 26, 1981May 24, 1983Ronald PriestleyPhase-contacting apparatus
US4407357 *Apr 22, 1980Oct 4, 1983Hultgren Karl S HThin sheet metal heat exchanger
US4420039 *Jan 15, 1981Dec 13, 1983Dubrovsky Evgeny VCorrugated-surface heat exchange element
US4563314 *Mar 25, 1985Jan 7, 1986Gunter ErnstApparatus for cooling cooling water
US4579693 *Feb 1, 1984Apr 1, 1986Wigley Albert FLiquid/gas contact means
US4622183 *May 29, 1985Nov 11, 1986Gea Luftkuhlergesellschaft Happel Gmbh & Co.Device for transferring cooling water of a wet or wet/dry cooling tower to recirculation means
US5009263 *Dec 11, 1985Apr 23, 1991Mitsubishi Denki K. K.Heat-exchanger utilizing pressure differential
US5052889 *May 17, 1990Oct 1, 1991Pratt & Whintey CanadaOffset ribs for heat transfer surface
US5063000 *May 3, 1989Nov 5, 1991Mix Thomas WPacking elements
US5407607 *Nov 9, 1993Apr 18, 1995Mix; Thomas W.Structured packing elements
US5578254 *Apr 14, 1995Nov 26, 1996Mix; Thomas W.Structured packing elements
US6406260Oct 22, 1999Jun 18, 2002Pratt & Whitney Canada Corp.Heat transfer promotion structure for internally convectively cooled airfoils
US9065158 *May 28, 2010Jun 23, 2015GM Global Technology Operations LLCCorrugated fin and frame assembly for battery cooling
US20110293982 *May 28, 2010Dec 1, 2011Gm Global Technology Operations, Inc.Corrugated fin and frame assembly for battery cooling
US20120138266 *Jul 9, 2010Jun 7, 2012Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)Heat exchanger
CN102119315BJul 8, 2009Apr 9, 2014S·M·尼尔松通道系统
DE4431413C2 *Aug 24, 1994Oct 10, 2002Rehberg MichaelPlattenwärmetauscher für flüssige und gasförmige Medien
EP0184944A2 *Dec 13, 1985Jun 18, 1986Mitsubishi Denki Kabushiki KaishaHeat exchanger
EP0424677A1 *Sep 24, 1990May 2, 1991Abb Air Preheater, Inc.Heat transfer element assembly
WO1990013354A1 *May 1, 1990Nov 15, 1990Thomas W MixPacking elements
WO2000049357A1 *Dec 20, 1999Aug 24, 2000Air Preheater AbbHeat and mass transfer element assembly
WO2010016792A1 *Jul 8, 2009Feb 11, 2010Sven Melker NilssonChannel system
U.S. Classification165/166, 165/DIG.394, 261/112.2
International ClassificationF28F3/04
Cooperative ClassificationY10S165/394, F28F3/04
European ClassificationF28F3/04