Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3179156 A
Publication typeGrant
Publication dateApr 20, 1965
Filing dateJan 17, 1962
Priority dateJan 17, 1962
Also published asDE1454252A1
Publication numberUS 3179156 A, US 3179156A, US-A-3179156, US3179156 A, US3179156A
InventorsKurt W Cornely, Weiss Gerhart
Original AssigneeAmerican Thermocatalytic Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Space heater
US 3179156 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

April 20, 1965 G. WEISS ETAL 3,179,155

' SPACE HEATER Filed Jan. 17, 1962 3 Sheets-Sheet 1 INVENTORS GERHART WEISS KURT W. CORNELY April 1965 G. WEISS ETAL 3,179,156

SPACE HEATER Filed Jan. 17, 1962 3 Sheets-Sheet 2 FIG. 4.

F IG. 5.


GERHART WEISS KURT W. CORNELY United States Patent 3,179,156 SFAQE HEATER Gerhart Weiss, Flushing, and Kurt W. Cornely, Syosset, N.Y., assignors to American Thermocataiytic Corp, Mineola, N.Y., a corporation of New York Filed Jan. 17, 1962, Ser. No. 166,811 8 Claims. (Cl. 158--116) This patent application relates to an improved radiant heater, and in particular, relates to an improved radiant heater which is a flameless gas combustion device and a principal source of radiant energy.

An important object of this invention is to provide a radiant heater having a chemo-thermal convertor or reactor which operates based on the fiameless combustion of fuel and wherein the reaction is sustained on or near the outer surface of the reactor causing it to incandesce and thereby produce an output which is mainly radiant in nature.

Another object of this invention is to provide a radiant heater of the above-described type, having improved means for increasing the radiant proportion of the energy output of said combustion device.

Another object of this invention is to provide a radiant heater which is economical to manufacture, which is highly efiicient in operation and which achieves substantially complete combustion of the fuel so that almost no carbon monoxide or other partial combustion products are produced.

Another object of this invention is to provide a heater of the combustion type which does not require venting and which is extremely safe in operation.

Another object of this invention is to provide a radiant heater employing a combustion element as the source of energy, which may be supplied with gas from an ordinary source of the gas in liquid phase and which may be supplied with air by aspiration, and which at the same time is highly efficient in operation and produces substantially complete combustion of the gases.

In accordance with preferred embodiments of the invention, the combustion device is in the form of a refractory cylindrical wall or tube closed at one end and comprising discrete, amorphous, inorganic, ceramic fibers arranged in a homogeneous, porous wall structure. Suitable rigidifying means are provided to maintain the fibers in their tubular wall structure form. The open end of the tube is mounted on a hollow fitting which extends through a metal reflector. Means are provided for causing an air-gas mixture to flow through the fitting into the tube and hence through the pores of the tube wall. These pores are oriented generally in the direction between the inner and outer surfaces of the tube so as to permit gas flow through the wall. The outer surface of the tube wall is adapted to incandesce and remain mechanically and thermally stable. The tube structure is adapted to remain mechanically thermally stable when the outer wall surface layer is maintained for prolonged periods of time at high operating temperatures.

The combustion reaction is flameless, and because of the low thermal conductivity (K factor) of the fibrous structure, there is no flashback of the reaction into the interior of the tube. Furthermore, a high proportion of the thermal output of the tube is in the form of radiant energy. The reflector is positioned to receive and reflect the energy in selected direction.

As a further feature of the invention, the outer surface of the combustion tube is surrounded by a spaced, coaxial, cylindrical screen or perforated sheet. This screen is mounted in coupled relation to the combustion tube and reflects a certain amount of the energy impinging thereon as well as permitting a certain amount of the energy to pass beyond it to the reflector.

3,l79,l56 Fatented Apr. 2%, i955 Briefly stated, some of the radiant energy emitted by the reactor is reflected by the screen back onto the combustion tube so as to increase its surface temperature; some passes through the openings of the screen directly to the reflector, and some is absorbed by the metal screen and then re-emitted outwardly to the reflector at a longer Wavelength.

With respect to the exhaust gases of the combustion tube having convection energy, they pass through the holes of the screen and strike the reflector; some of the gases strike the screen and are directed back to the surface of the combustion tube and some of the convective energy of the exhaust gases is absorbed by the metal sheath or screen and causes it to emit radiant energy. A portion of this emission is directed back onto the primary emitter (reactor) thus increasing the latters surface temperature while the balance is emitted in the opposite direction away from the reactor surface (outwardly).

It will also be apparent that some of the convective and radiant energy which strikes the reflector is reflected back to the screen. This is so, since an equithermal (or super thermal) surface acts as a reflector to incident radiation. While the total mechanism is relatively complex, the porous sheath aids significantly in increasing the total radiant output of the entire device, by converting a considerable portion of its convection output into radiant energy. screen will depend in part on its porosity or ratio of solid to open area, and in part upon the radiant coupling between the screen and the combustion tube, i.e., the distance btween these two memberathe sheath mass (inertia) and a number of other design factors.

Another object of the invention is to provide an improved combustion tube and improved methods of making such a tube, for use in an aspirated system rather than a pump driven system.

A molding bath is made, for example, by dispersing colloidal alumina in water and adding aluminum nitrate in aqueous solution to form a gel. This gel is diluted with water, and fibers are chopped in the dispersion. These fibers are illustratively formed from a melt of alumina and silica and may, for example, be the fibers described in Properties of B&W Kaowool, published in December 1957, by The Babcock & Wilcox Company, 161 East 42nd Street, New York 17, NY. Methyl meth acrylate is added to complete the bath.

, The inner screen serves as a mandrel and is connected to the suction line of a suitable pump and immersed in the bath for a period of approximately five to twenty seconds, depending upon the thickness of the wall which is to be deposited upon the inner screen or mantle, as well as the vacuum maintained, the viscosity of the bath and other parameters.

After removal of the screen or mandrel from the solu tion, suction is maintained for a short period of time. The

molded tube is then optionally allowed to dry at a temperature of to F. for a period of approximately 10 to 60 minutes. During this time, the residual water evaporates, and there is established, together with the fibers and the methyl methacrylate, an undecomposed salt binder.

After drying, the reactor is baked at relatively high temperature, in order to sublime the methyl methacrylate. At the same time, the aluminum nitrate is chemically changed to alumina which coats the fibers. As the result of the subliming of the methyl methacrylate, the tube is highly porous with a minimum of back pressure, this being the desired condition when the aspiration feed sysi tem is used.

It is important that the metal salt or. other appropriate It will be apparent that the effectiveness of the.

exhibits extremely low back pressure and long life and does not require a pressurized feed.

Alternatively, it is possible to modify the combustion tube structure and use it in a pump system, rather than an aspirated system.

(Ether objects and advantages of this invention will become apparent from the following description, in conjunction with the annexed drawings, in which preferred embodiments of the invention are disclosed.

In the drawings,

FIG. 1 is a perspective view of one embodiment of the heater.

FIG. 2 is an exploded longitudinal section, partly in elevation, of the heater.

FIG. 3 is an exploded longitudinal section of the as pirator.

FIG. 4 is a longitudinal section of the combustion tube and its porous sheath.

FIG. 5 is a block flow diagram of one method of producing the combustion tube.

FIG. 6 is a vertical section of a pressure regulator used in the heater.

MECHANICAL CONSTRUCTION OF HEATER In accordance with one embodiment of the invention, the improved heating system comprises a tank 10 which also serves as a support for the heater, and which is mounted in stand 11. Tank 10 may be any suitable cylindrical container prefilled with a suitable gaseous fuel, such as butane, propane or mixtures in the liquid phase.

Stand 11 may be formed in any suitable way and optionally includes a wire member bent to provide a bottom leg 12a adapted to rest upon a support, and a further bottom leg 12b coplanar with leg 12a. Said leg 12b is connected at one end to one end of leg 12a and extends diagonally across the base of the stand 11. Further legs 12c extend upstandingly from the other end of leg 12a and 12b and are connected at their upper ends by fittings 13 (only one being shown in FIG. 1) to a collar or band 14 which extends frictionally in any suitable way around container 1%). Container Til is removable from band 14 for replacement purposes. The fitting 13 may be pivotally attached to band 14 to permit pivoting of container 10 to any desired inclined or vertical position.

Pressure regulator 15 is fixed to the upper end of container 10 is coaxial relationship therewith. As shown in FIG. 6, pressure regulator 15 has a cylindrical body 42 formed with a plurality of axially successive, communicating bores, as follows: lower end bore 43a of relatively large diameter and internally screw threaded as indicated by the reference number 431), bore 430 reduced diameter and internally threaded adjacent its junction with bore 43a, as designated by the reference numeral 43d, bore 43.? of increased diameter and upper end bore 43 of still greater diameter and internally screw threaded as indicated by the reference numeral 43g.

An outlet is provided by means of radial bore 15b which is screw threaded as designated by the reference numeral 15c and which communicates at its inner end with further radial bore 150, of reduced diameter which in turn communicates with bore 430 intermediate its ends and above screw thread 43d.

'Flat diaphragm 44 is located in bore 43 against the shoulder 43h formed at the junction between bores 43 and'43e. Annular diaphragm retaining nut 45, which is externally threaded, is screwed into bore 43 and clamps diaphrgam 44 against shoulder 4311. Nut 45 has an inturned, transverse, annular flange 45a at its end remote from diaphragm 44.

Knob 46 is externally knurled, as indicated by the reference numeral 46a and is cylindrical and of smaller diameter than bore 43 Knob 46 has a transverse lower end flange 46b of increased diameter which is externally screw threaded at 46c and is thereby screwed into bore 43 The upper end of body 42 is peened over 42:: to prevent removal of flange 46b. Knob 4-6 has an axial bore 46d extending from the free end face of flange 46b toward the other end of knob 46. The upper end of bore 45d is conical, as designated by the reference numeral 46a, and receives a ball 47 which acts as a bearing for tension coil spring 48. This spring 48 is received within bore 46d, and ball 47 extends partly into spring 48.

Diaphragm plate'49 is fixed to the upper face of diaphragm 44 and is received within the opening of nut 45. Plate 49 has an end boss 49a of reduced diameter which extends into the other end of spring 48. As the result of the foregoing, spring 48 exerts a tension upon diaphragm .44, the extent of the tension depending upon the axial position of nut or knob 46 which may be adjusted by screwing it in either direction.

Valve body 5i includes an elongated shank portion 51 which is externally threaded at 51a so that it may be screwed into bore 43 by engagement with threads 43d. Said shank 51 is cylindrical, and is of reduced diameter above thread 51a so as to clear the wall of bore 43c.

Said shank 51 has an end flange 52 of increased diameter which is located in bore 43a. Flange 52 clamps washer 53 and gasket 54 against the shoulder 54a formed at the junction between bores 43a and 430. A further shank 55 is coaxial with shank 51 and extends from flange 52 in the opposite direction from shank 51.

Valve body 5% has an axial bore 55a in shank 55 and an axial bore Sfib of increased diameter in shank 51. The

upper end of bore 51b is screw threaded at 510. A generally cylindrical body 56 which is externally screw threaded is screwed into here Sllz preferably to the extreme end of the screw threads 51c thereof. This body 56 has a tubular extension 57 of reduced diameter extending toward flange 52.

The body 56 has a through axial bore 53 in which spring 59 is located. One end of spring 59 carries a coaxial pin 69 which extends toward diaphragm 44 and which is adapted to engage in a hollow den of a diaphragm plate 61 mounted upon the lower face of diaphragm 4d. The other end of spring 59" rests on lugs 555a extending from extension 57 of body 56 into bore 58, spring 59 surrounding coaxial pin 62 which is affixed at one end to pin as, the other end protruding beyond the end of tubular portion 57 and carrying a valve member 63. Valve member 63 is therefore urged into seating engagement with the end of portion 57 by the force of spring 59 acting against lugs 53a and pin 60.

In assembly, the lower portion of pressure regulator 15 is screwed onto the top of tank It) with threads 43b suitably received by an appropriate fitting of tank T0 (not shown) and with shank 55 protruding into the tank to open its internal valve.

Thus, with pressure regulator 15 assembled in tank in seating engagement on the end of tubular extension 57, and the flow of gaseous fuel from tank 1% is restricted to bores 55a and 5111. To open valve 63, knob 46 is screwed down, thereby compressing spring 48 against diaphragm plate 49 which, in turn, forces diaphragm plate 61 onto pin till, forcing pin 62 downwardly by compressing spring 59 onto lugs 58a, thereby opening valve 63. In the open position, valve 63 is spaced from extension 57 and shoulder 63a, permitting gas flow through bore 55a, bore 5Tb, bore 432, bore 43c and bore 15d to bore 15c.

The pressure regulating operation of pressureregulator 15 is as follows: As the gaseous fuel from tank 143 flows into bore 43a upon opening valve as, pressure build-up on diaphragm 44 opposes the force of spring 4-8, thereby relieving the pressure on spring 59 and tending to close valve 63, decreasing gas flow; likewise, a drop in pressure against diaphragm 44 tends to open valve 63 further, increasing gas flow.

Aspirator 17 is adapted to be connected to the pressure regulator outlet bore 15b and includes an elongated body or fitting 13, as well as tubular members 19 and 26. As shown in FIG. 3, body 18 is elongated and has an intermediate portion 1851 which may be of any suitable cross sectional shape, such as square. Body 18 has end portions 181) and 130 of reduced diameter and which are externally threaded respectively at 13d and 18s. Optionally, the end portion 180 is of greater diameter than the end portion 18b. Body 18 has a through bore 21 extending axially between the extremities thereof. The rear portion 21a of bore 241 is of increased diameter to provide a generally transverse shoulder 21b at the junction between bore portion 21a and the main portion of bore 21. This shoulder 21b is optionally rounded at its outer portion. Body 18 has a plurality of radial bores 22 extending from the outer periphery thereof to the central bore 21, these bores 22 being located in a common plane and communicating with the main bore portion 21 adjacent the shoulder 2111.

Tube 19 is generally cylindrical and is sized to be slidably received within bore portion 21a. However, the outer diameter of tube 19 is preferably greater than the diameter of the main bore portion 21. Tube 19 has a through here comprising bore portions 23a and 2312, the front bore portion 23b being of increased diameter. The end portion 196: of tube 19 adjacent the rear end of bore portion 23:; is optionally of reduced diameter.

Tube 263 has a generally cylindrical shank sized to be received slidably within bore portion 23b and has a head 20a of increased diameter adapted to abut the end of tube 19. The shank of tube 20 has a bore 24 of approximately the same diameter as bore portion 23a. Head 20a has an axial orifice bore 25 of small diameter which communicates with bore 24. In assembly, the shank of tube 20 is extended into bore 23b with head 20a abutting the end of tube 19, and the two tubes 19 and 21) are then inserted into the bore 151] of pressure regulator 15, with the head 2% outermost (in front of tube 1%). The tube portion 1% extends frictionally into bore 150'.

The tube portion 18c is then extended over the tubes 19 and 21) with tube 20 received within bore 21a and with the head 20a then conformingly abutting and sealing against shoulder 21b and tube 19. The rear end of the body portion 180 is screwed into bore 15b.

It will be apparent from the foregoing that when fuel gas is permitted to pass from tank 10 through pressure regulator 15 and hence through bores 23a, 23b, and 24 and orifice 25 of aspirator 17, air is aspirated into bore 21 through boresZZ and is there mixed with the fuel gas. The resulting air-gas mixture is discharged through the outer or front end of bore 21.

Reflector 26 may have any suitable shape, which may be generally parabolic. Optionally, it includes rear transverse base portion 27 transverse to the reflector axis and flat and having a central opening 27a. Insulating bushing insert 28 which is internally and externally threaded is screwed onto aspirator element 18b. Metal collar 2841 may be screwed over bushing 28. Annular shoulder 28b connects with collar 28a in front of bushing 28 and connects at its inner edge with collar extension 280. This extends through opening 27a and retaining nut 29 is then screwed onto extension 280 against base 27. Forwardly of nut 29, the base of combustion device may be screwed onto collar extension 280.

Bushing 28 may be made of any suitable heat-insulating material. Optionally, it may be replaced by a ceramic cement insert of similar shape.

The outer portion of reflector 26, designated by the reference numeral 311, may have any desirable shape and is optionally and preferably generally parabolic in shape. The free edge portion of reflector portion 30 is rolled outwardly and back on itself to provide a bead 31.

Any suitable wire guard may have, by way of example, a circular wire frame member 32 which is transverse to the axis of reflector 26, as well as a plurality of longitudinally extending, circumferentially spaced spring legs 33 fixed to frame member 32 and extending in rearwardly relation therefrom toward reflector 26. These legs 33 are optionally paired and are provided with transverse extensions 3311 which extend across the face of frame member 32 and are integrally joined at 33b, as shown in the drawing, these details being conventional and not requiring extended description. The free extremities 34 of the fingers 33 may be hook-shaped so as to conform in shape to the head 31. The fingers 33 are normally located inwardly of the periphery of bead 31, but may be sprung outwardly (as shown in FIG. 2) so as to extend the books 34 about the outer periphery of bead 31, the spring tension of the head 33 thereby holding the guard releasably mounted upon-bead 31.

The combustion device, shown in detail in FIG. 4, generally includes a disc-like base 35 which has a central forwardly extending cylindrical boss 36. Inner cylindrical screen 37 is mounted upon boss 35 and outer cylindrical screen 33 is mounted on disc 35. Boss 36 has a central extension 39 of reduced diameter, the outer periphery of which is accordingly spaced from screen 37. Screen 37 has a transverse front end wall portion 37a. Screen 38 has a transverse front end wall portion 38:: forwardly spaced from wall 37a. A fibrous wall 40, which will be described in greater detail below, is deposited upon the outside of screen 37, including the transverse end wall 37a thereof. The deposited wall includes a portion 49a which fills the space between boss extension 39 and screen 37.

The mountingboss 36 has a through axial bore 41 which extends through the disc portion 35, boss 36 and boss extension 39. The rear portion of bore 4-1 is internally screw threaded, as indicated by the reference numeral 41a.

In the assembly of the device, before mounting the guard on the reflector, the base of the combustion device is screwed onto shank 1812 with the threads 18d and 41a interengaged.

MOLDING OF THE COMBUSTION TUBE In accordance with one embodiment of the invention, wherein the aspirator system of feeding the fuel-air mixture is utilized, the combustion tube 401 is molded upon the inner supporting screen 37, after screen 37 has been mounted upon base 35, and before the outer screen 33 has been assembled.

Screen 37 is mounted upon boss 36 and secured thereto by welding 37b. The base 35 is then connected to a source of vacuum, with the base and screen assembly immersed in a molding tank, for the required length of time to vacuum mold the wall material of wall 46 onto the screen.

Illustratively, without limitation thereto, the screen may be 50 x 50 mesh, 0.009 inch diameter wire. The mesh range may be approximately 20 X 20 to 60 x 60. The screen may be made of a suitable rustproof alloy of steel.

As indicated diagrammatically in the flow diagram shown in FIG. 5, fibers are initially prepared in a tank 1%, and a bath prepared in tank 101. the bath are then mixed in a stock-hold tank 102. Optionally, there may be two such tanks 192 which may be used alternatively, so that one tank can be filled while the other is in use. The mixture of fibers and baths is led from tank 102 to molding tank 103 in which the molding operation takes place. i

In this embodiment, the preferred fiber for use in molding the refractory Wall 46 is an amorphous melt of alumina A1 0 and silica, SlGg. One preferred fiber is derived from kaolin and is described in a data sheet pub- The fibers and V savages Use limit:

Continuous, F. 2000 Short periods, F. 2300 Melting point, F. 3200 Fiber diameter:

Microns (average) 2.8 Inches (average) 0.00011 Pressure drop through clean pad, in inches H O:

Air velocity 3 lb. on. it. 4 lb. cu. ft. 51b. cu. ft.

20 I'm/min 0. 20 0. 24 0. 27 50 it./m' 0. 72 0. ss 1. 02 70 ft./min 1. 25 1. 55 1.85

Chemical analysis: Percent Alumina, A1 45.1 Silica, Si0 51.9 Iron oxide, Fe O 1.3 Titania, Ti0 1.7 Magnesia, MgO Trace Calcia, CaO 0.1 Alkalies as Na O 0.2 Boric anhydride, B 0 0.08

Density In bulk form Kaowool may be packed to densities of 3 to 10 lb. per cu. ft.

Fiber length The length of Kaowool fibers varies. The maximum length of fiber is not over eight inches.

Since the fibers are formed as a melt of alumina and silica at very high temperatures, the fibers do not have any crystalline structure; in other words, they are amorphous. The fibers are produced by treatment of a melt of alumina and silica, at a temperature above that at which crystallization takes place, the treatment to produce the fibers being well known.

One of the features of these fibers is their low thermal conductivity, or K. factor.

In the chemical analysis, the alumina may be increased to approximately 53.3%, with corresponding reduction of silica content.

Another fiber which can be used in accordance with this invention is described in a publication entitled Fibrefrax Ceramic Fiber-Bulk Fiber, published by the Carborundum Company, Niagara Falls, New York, in 1959. The fiber length is up to one and one half inches. The mean diameter of the fibers is two and one half microns. The melting point of the fibers is above 3200 F, and the fibers may be used to 2300 F. The detailed approximate chemical analysis is given in said publication and includes 51.2% A1 0 47.4% SiO and trace elements. The bulk fiber, at a density of six pounds per cubic foot, has a K factor at a mean temperature of 2000 F. of 2.92. V

In general, the preferred fiber in accordance with this invention comprises mainly alumina and silica, each in substantial proportions. The silica is desirable in order to obtain the desired fibrous structure, with the fibers having suificient mechanical strength.

The alumina is desired in order to impart to the fiber resistance to high temperatures. While the proportions of alumina and silica can be varied from the two examples given above, it is preferred to use commercially available sources of fibers and the above two examples are illustrative of fibers of this general type which are commercially available.

It should be understood that the invention is not limited to the above described fibers, as quartz fibers, vitreous silica fibers, and other fibers can also be used. The fiber is inorganic, amorphous, and resistant to temperatures of 1800 to 2300 F, and preferably has low density, has a diameter of under approximately 10 microns and has adequate mechanical strength. The fiber is preferably derived from a clay, and is defined as ceramic, it being understoodthat this term also includes quartz, vitreous silica and other fibers suitable for use which are inorganic, amorphous and resistant to high temperature, and which are amorphous melts of refractory oxides, such as oxides of silicon or alumina or both. Certain appropriate fibers are included among those described in Chapter 8 of inorganic Fibres by C. Z. Carroll-Pro czynski, published in 1958 by National Trade Press Limited, London, England.

in one preferred example, the fibers to be molded are coated and bound with an aqueous solution of aluminum nitrate together with colloidal alumina.

The aluminum nitrate solution has a specific gravity of 1.126, the solution including 14.3% by weight anhydrous aluminum nitrate.

The colloidal alumina is described in a publication entitled Dupont Baymal Colloidal Alumina, published by E. I. du Pont de Nemours & Company, Wilmington 98, Delaware, in 1961.

Said colloidal alumina is described in this publication as a white, free-flowing powder consisting of clusters of minute fibriles of boehmite (AlOOH) alumina. The surface of the fibriles is modified by adsorbed acetate ions.

The chemical composition and physical properties of the product are set forth on page 10 of the aforesaid du Pont publication.

In accordance with the preferred example, sufiicient of the aforesaid colloidal alumina is dispersed in water by the procedure set forth on page 31 et seq of the aforesaid du Pont publication, to produce a concentrate by weight of the composition of 11.2%.

To three parts of the aforesaid dispersion of the colloidal alumina, is added optionally one part by weight of the aforesaid aluminum nitrate solution. The proportions may be varied. The resulting mixture is a highly thixo-tropic gel. This gel is diluted with water in the ratio of three parts by weight of water to one part weight of the gel. 7

it is within the scope of the invention to omit the colloidal alumina and use only the solution of aluminum nitrate. However, in that case, methyl cellulose is first dissolved in water, the methyl cellulose being of 4000 cps. and made by Dow Chemical Company, Midland, Michigan under the trademark Methocell.

3.4 grams of said methyl cellulose are dissolved in 600 cc. of water held at a temperature of 180 F. to F, agitated for a period of five minutes. To this solution is added 3400 cc. of the aforesaid aluminum nitrate solution. a

The advantage of the use of the preferred mix of aluminum nitrate and colloidal alumina is that the methyl cellulose can be eliminated. Also, the presence of the colloidal alumina is desired in the final product.

Optionally, it is possible to use entirely colloidal alumina and omit the aluminum nitrate.

In the preferred example, 3 grams by weight of the aforesaid amorphous refractory fibers are chopped in 500 cc. of the dispersion of aluminum nitrate and colloidal alumina, in tank The fibers are chopped in a high speed shear-type mixer, the mixer being operated first at high speed for approximately 30 seconds and then at low speed for approximately 30 seconds.

In order to complete the bath, preferably in molding tank 103, a weight of methyl methacrylate is added so as to adjust the ratio of fibers to methacrylate to selected value. The methyl methacrylate is preferably approximately 20 to 40 mesh. The proportion of methyl methacrylate in the solution is adjusted dependent upon the desired porosity of wall 40, the thickness thereof, the

mesh of the deposit screen and other parameters. I1- lustratively, and without limitation thereto, the porosity may be adjusted by varying the methyl methacrylate: fiber ratio from 2:1 to 24:1.

1200 cc. of the aforesaid bath may be maintained in molding tank 103, under agitation except during the molding operation. A tube 103a, shown diagrammatically in FIG. 5, has an end screw coupling 1031) which may be screwed into bore 41 of base 35. The screen 37 may then be immersed vertically in the solution in tank 103, and tube 103a may be connected to any suitable source of vacuum (not shown), such as a pump, so as to suck solution through the screen and into the tube in the direction of arrow 103s. The screen may be maintained in the molding tank for approximately one to approximately ten seconds depending upon the thickness of wall 40 which is desired. Thus, if the Wall thickness is to be approximately 1 inch, then the screen or mantle 37 is illustratively kept under vacuum in the solution for a period of about one second. If the Wall thickness is to be approximately /8 inch, then the screen is illustratively kept under vacuum in the solution for approximately ten seconds. The vacuum times depend upon various parameters. Optionally, a liquid pump can be used instead of a vacuum pump.

Initially, under the vacuum, some of the slurry passes through the openings of the screen. Some of the slurry is sucked up through bore 41, and some of the slurry is deposited as the wall portion 40a referred to above. Pores of the screen are then fairly well coated with the fibrous slurry, and during the remainder of the vacuum period, very little of the slurry is drawn through the screen. Instead, the slurry is deposited relatively uniformly to form a substantially uniform wall 40.

After the mantle is withdrawn from the solution in tank 103, suction is maintained on it for a period of approximately one minute, at which time the fitting 10312 is removed. The resulting reactor or combustion device is then dried in any suitable drying apparatus 104, at a temperature of 100 F. to 150 F., for a period of one hour. During this time, residual Water in the wall 40 evaporates, and there is established a concentration gradient on the fibrous structure, from the outer to the inner surface theerof, of undecomposed aluminum nitrate and colloidal alumina.

After drying, the reactor is placed in kiln 105 at a temperature of 150 F. The temperature is increased at the rate of approximately 10 F. to 50 F., preferably 10 to 20, per minute to a temperature of approximately 1 100 F. During this time, the methyl methacrylate sublimes leaving an extremely uniform and highly porous wall structure comprising the refractory fibers coated with alumium oxide formed from the aluminum nitrate as the result of chemical decomposition thereof and also comprising the colloidal alumina. As an important feature of the invention, there is a concentration gradient on the fibrous structure, from the outer to the inner surface, of the alumina coating. If the firing operation is carried out to temperature less than 1800" F., the alumina consists of a mixture of gamma alumina and theta alumina. If the firing operation is carried out at temperature greater than 1800" F. the alumina will consist primarily of alpha alumina.

In ordinary cases, the phase character of the alumina is of little consequence in terms of the operational characteristics of the combustion device. In certain applications, however, catalytic agents are added to the bath for deposit on the surface of the fibers, and in that case the gamma phase of the alumina is preferable because of its higher surface to mass ratio.

The following table shows the production of both standard reactors and thin walled reactors, each set of figures being the average of ten molding operations. The thicker walled reactor, which was denser, had a wall thickness of approximately one-eighth inch and the thin walled reactor,

which was more porous, had a wall thickness of one sixtyfourth inch or less. There is no necessary relationship, however, between density and wall thickness.

TABLE Denser More Parameter reactors porous reactors FiberM: ethacrylate. 1:12 1: 18 Molding time (seconds). 6-7 1-2 Liquid passage (00.). 250 60- Air fiow rates (discharge side) (l./n1.)

(1) No load 131 131 100 560 (3) Dry suction 183 Element parameters:

(1) Wt. fibers deposited (g) 0.75 0.10 (2) Wt. methacrylate deposited (g.) 7. (i 0. 2O (3) Percent fiber deposited of total fiber content 25 3. 33 (4) Percent methacrylate deposited of total methacrylate 211 0. 370 (5) Fiber/Methacrylate Ratio (wt./wt.) 1:108 1:2 (6) Slant gauge pressure at 30 l./m. flow (mm. Hg. 1) Fibers and mandrel back pressure 0. 095 0. 025 (2) Mandrel back pressure 0. 019 0.019 (3) Fibers only back pressure 0. 076 0. 006

1 Could not be determined due to too rapid a deposition rate.

In the above table, the initial figures give the starting ratio by weight of fiber to methyl methacrylate, the molding time and the amount of liquid which passed through the base and was discharged.

The part of the table relating to air flow rates shows the rate of flow of air through the screen and into the suction tube, prior to molding, during molding and during the one minute of suction after molding was concluded.

The vacuum readings are given under similar conditions.

The final part of the table gives the final composition of the tube. Thus, in the case of the denser walled reactor, the ratio by weight of fiber to methyl methacrylate was one to 10.8 while in the case of the more porous reactors, the corresponding ratio was one to two.

'In accordance with this invention, it is important to use in the bath a metal salt, such as a chloride or nitrate, which will break down into the oxide during the firing operation, or a colloidal metal oxide, or a combination of both, which will have refractory properties and which will coat the fibers. The coating of alumina on the fibers increases their strength and refractory properties. At the same time, the formation of a gel which would plug the pores is undesirable.

In this embodiment, while other fillers than methyl methacrylate can be used, this is preferred because of the uniformity of results obtained with the use thereof. In particular, this material sublimes and leaves no carbon deposit. The filler should be relatively low in cost, safe to use and usable with an aqueous bath, if the filler granules should be larger than the molding screen openmgs.

Camphor or menthol are other examples of suitable fillers.

The filler should sublime or decompose in such a way as to leave no residue. Thus, if a carbon residue were left, after the heating step, such residue could only be removed by heating to at least 1,400 F., which could damage the combustion device.

The provision of Wall portion 40a is important, because in operation screen 37 expands under the influence of heat While the wall 40 does not expand to the same extent. This would, after a number of cycles of operation, tend to cause the development of a leakage path between the outer surface of the screen and the inner surface of the wall 40, down to the base portion 35. It is necessary to permit freedom of movement of the fibrous wall 40 at the base of the screen, since if the fibrous coating were i. I cemented to the screen, the fibrous coating 46 would crack at some point along its surface. The wall portion 4% serves as a flexible seal offering greater resistance to gas flow than the main portion of wall 49, and prevents the escape of gas except through the wall ill even after repeated expansions of screen 37.

The fibers anchor on the screen and form a mechanically stable wall, but with sufiicient flexibility and low enough K factor (thermal conductivity) to accommodate expansion and contraction of screen 37 during operation of the combustion device.

After the final formation of wall 4%, the previously mentioned screen 38 may be placed over the base 35 and secured in place by spot welds 38b, Optionally and preferably, screen 38 has a plurality of holes 380, as illustratively shown, for reception of a match or other means for ignition.

OPERATION After assembly of the device, knob 46 may be turned so as to admit gas to the aspirator and hence cause the admission of the fuel gas/air mixture into the interior of screen 37. The mixture then flows through the wall .49. Upon insertion of a lighted match through a hole sec, ignition occurs.

The wall 46 serves as a refractory wall comprising discrete, amorphous, inorganic fibers arranged in a homogeneous, porous wall structure having opposed inner and outer surfaces, the fibers being intermeshed and supported upon screw 37. The fibers are also coated and bonded to each other with a refractory aluminum compound. The porosity and thermal conductivity of wall 4i) is such, in conjunction with the rate of flow of gas/ air mixture therethrough, that the fibers on the outer surface layer of wall 40 incandesce and the combustion reaction is flameless and complete. The wall surface remains mechanically and thermally stable when the wall surface layer is maintained for prolonged period of time at high operating temperature.

' A high proportion of the energy emitted as the result of the combustion reaction is radiant energy. However, the exhaust gases emitted from Wall also carry a certain amount of convection energy. As an important feature of the invention, a good deal of the convection energy of the exhaust gases is converted into radiant energy.

7 Some of the radiant energy emitted by wall 4t strikes the Wall of screen 38 and is reflected thereby back onto the outer surface of wall dtl, thus raising the temperature of wall ll). Some of the radiant energy emitted by wall strikes the screen 38 and is absorbed thereby and screen 38 re-radiates energy at a lower frequency. Some of the radiant energy emitted by wall 40 passes through the openings of screen 38. Some of the exhaust gases emitted by wall 4t strike screen 38, and energy is absorbed by screen 38 and converted into radiant energy, and then reradiated in either direction, thus reducing enthalpy losses of the exhaust gases. Some of the exhaust gases pass through the screen, as losses. However, the parameters such as open area of screen 38, diameter of the wires thereof (or diameter of the closed area and thickness of the element if it is a sheath) and radial distance between wall itl and screen 33 are adjusted so as to minimize such losses.

The space between wall 4d and screen 38, designated by the reference numeral 9, serves as a partially resonant chamber for conversion of a good deal of the convection heat energy of the exhaust gases into radiant energy. The degree of resonance will depend upon a large number of factors, including the dimensions of chamber 9 and other parameters mentioned in the previous paragraph. The radiant energy and exhaust gases which leave screen 38 strike reflector 2e and are reflected thereby. It will be apparent that in a similar manner, there is a certain amount of coupling between reflector 26 and screen 33, but this coupling is less than the coupling between outer surface of wall 4'19 and said screen 35.

As the result of the absorption and re-radiation of energy by screen 38, it also incandesces.

While it has been known to interpose a screen over a source of flame, said screen thereby absorbing a certain amount of the energy of the gases and re-emitting it as radiant energy and thereby incandescing, in such case there is no resonant coupling between the flame source and the screen since the flame source is not itself incandescent. In contrast, in the present application, the use of the screen 38 is highly advantageous because it increases the radiant output of the device significantly, particularly since much of the energy incident upon the screen 33 is already radiant.

While we have disclosed a preferred embodiment of the invention, and have indicated various changes, omissions and additions which may be made therein, it will be apparent that various other changes, omissions and additions may be made in the invention without departing from the.

scope and spirit thereof. 7

What is claimed is:

1. In a combustion system, a combustion tube comprising a tubular metal support screen, and a tubular combustion wall deposited and bonded on the outside of said screen, said combustion wall comprising discrete, amorphous, inorganic, ceramic fibers arranged in a homo geneous, porous wall structure, said fibers crossing each other randomly, inorganic refractory rigidifying means mechanically linking said fibers at their crossovers, the fibers on the outer surface layer of said combustion wall being adapted to incandesce and remain mechanically and thermally stable when said Wall surface layer is maintained for a prolonged period of time at high operating temperature, said pores permitting gas flow through said com bustion tube generally in a direction from said screen t the outer surface of said combustion wall, and means for conducting an air-fuel mixture into said combustion tube and causing fiow through said wall in said direction, whereby upon ignition a combustion reaction is maintained on the outside of said wall causing the fibers on said oute surface layer to incandesce, said fibers being anchored on said screen, said fibers and said wall structure having sufiicient flexibility and low enough thermal conductivity to accommodate expansion and contraction of said screen resulting from the combustion reaction and cessation thereof.

2. In a combustion system according to claim 1, said fibers being alumina-silica fibers.

3. In a combustion system, a metal support comprising a base having an axis and having an axially extending cylindrical boss, said boss having on its free end an axial extension of decreased diameter, said support having a through axial bore, a cylindrical metal support screen frictionally mounted on the main portion of said boss and extending beyond said extension, said screen being radial ly spaced from said extension, and a cylindrical combustion wall deposited and bonded on the outside of said screen, said combustion wall comprising discrete, amorphous, inorganic ceramic fibers arranged in a homo: geneous, porous wall structure, said fibers crossing each other randomly, inorganic refractory rigidifying means mechanically linking said fibers at their crossovers, the fibers on the inside of said combustion wall being anchored to said screen, said fibers also being deposited in a mass porously filling the space bounded by said base, said screen and said extension, the fibers on the outer surface layer of said combustion wall being adapted to incandesce and remain mechanically and thermally stable when said Wall surface layer is maintained for a prolonged period of time at high operating temperature, the pores of said combustion wall permitting gas flow through said wall generally in a direction from said screen to the outer surface thereof, the flow path through the fiber mass in said space being of at least comparable length as and offering at least comparable resistance to gas flow, as the flow path through said combustion wall, and means for conducting an air-fuel mixture to the inside of said screen and causing flow through said Wall in said direction, Whereby upon ignition a combustion reaction is maintained on the outside of said Wall causing the fibers on said outer surface layer to incandesce, said fibers being anchored on said screen, said fibers and said Wall structure and said mass having suflicient flexibility and low enough thermal conductivity to accommodate expansion and contraction of said screen resulting from the combustion reaction and cessation thereof.

4. In a combustion system according to claim 3, said fibers being alumina-silica fibers.

5. In a combustion system according to claim 4, said rigidifying means comprising a refractory metal oxide coating said fibers.

6. In a combustion system according to claim 5, said refractory metal oxide being alumina.

7. A tubular structure for forming a flameless combustion heater tube consisting of a closed, hollow metal support provided With an inlet for a gas-ai combustible mixture, said support having a portion formed of a metal screen body, said screen being coated with a homogeneous layer of discrete, randomly-oriented, amorphous, inorganic ceramic fibers to form a porous wall layer adherent on said screen, said homogeneous layer including uniformly distributed particles of organic material removable from the porous Wall layer by heating and being impregnated with inorganic material to form a refractory metal oxide binder to rigidity said layer of fibers, which tubular structure upon heating forms a rigid, porous 3O homogeneous wall member adherent on said screen, said fibers and wall structure having suificiently low thermal conductivity relative to said screen to accommodate ex- 14 pansion and contraction of said screen and Wall structure during use.

8. A tubular structure as claimed in claim 7 in which the refractory binder is selected from the group consisting of the oxides of aluminum, zirconium, beryllium, cobalt, hafnium, titanium, barium, magnesium and strontium.

References Cited by the Examiner UNITED STATES PATENTS 868,277 10/07 Kneuper 162-105 1,396,834 11/21 Hall 162-405 1,427,371 8/22 Garbarini 12692 1,707,976 4/29 Cox 15899 X 2,033,805 3/36 Arentsen 162--105 2,521,538 9/50 Rees.

2,568,144 9/51 Cremer Et al 264-128 2,610,957 9/52 Steinman et a1. 2,895,544 7/59 Parsons 1584.5 2,917,426 12/59 Bugosh. 2,966,945 1/61 Downs 158-96 3,029,802 4/62 Webster 126-93 3,061,416 10/62 Kazokas. 3,107,720 10/63 Van SWinderen l58-116 FOREIGN PATENTS 27,040 12/23 France.

387,313 12/23 Germany.

777,618 6/57 Great Britain.

559,179 3/57 Italy.

JAMES W. WESTHAVER, Primary Examiner.


UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No 3 ,179 ,156 April 20 1965 Gerhart Weiss et al It is hereby certified that error appears in the above numbered patent requiring correction and that the said Letters Patent should read as corrected, below Column 1 line 68, for "sheet" read sheath column 5 lines 65 and 66, for "Annular shoulder 28b connects with collar 28a" read Annular shoulder 28b of collar 28a connects with collar 28a column ll, line 29, for "screw" read screen Signed and sealed this 5th day of October 1965 (SEAL) Attest:

ERNEST W. SWIDER EDWARD J. BRENNER Aitesting Officer Commissioner 01f Patents

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US868277 *May 16, 1905Oct 15, 1907George KneuperProcess of making filters.
US1396834 *Dec 1, 1920Nov 15, 1921 Process fob
US1427371 *Apr 22, 1922Aug 29, 1922Andre GarbariniRadiator for gas heating by incandescence
US1707976 *Oct 31, 1922Apr 9, 1929John Cox FrederickHeating appliance
US2033805 *Jun 16, 1933Mar 10, 1936Handel En Exploitatie Mij In OMethod of and machine for the manufacture of continuous sheets of asbestos cement reenforced with wire netting
US2521538 *Jun 20, 1945Sep 5, 1950Texaco Development CorpProcess for synthesis of hydrocarbons and the like
US2568144 *Dec 5, 1945Sep 18, 1951Union Asbestos & Rubber CoFelted material and method of making the same
US2610957 *Jan 9, 1947Sep 16, 1952Owens Corning Fiberglass CorpInterbonded fibrous glass
US2895544 *Jul 19, 1954Jul 21, 1959Chicago Fire Brick CoRadiant wall furnace
US2917426 *Sep 26, 1958Dec 15, 1959Du PontFelted products and processes containing fibrous boehmite
US2966945 *Mar 26, 1959Jan 3, 1961Downs Edgar SLiquid fuel burning heater
US3029802 *Oct 15, 1958Apr 17, 1962Otto Bernz Company IncAutomobile heater
US3061416 *Nov 22, 1957Oct 30, 1962George P KazokasCatalytic muffler
US3107720 *Feb 21, 1961Oct 22, 1963Antargaz Sa De Distrib De GazGas-fired radiant heaters
DE387313C *Mar 30, 1922Dec 28, 1923Reich & Co SHeizvorrichtung, bei der im Innern eines Reflektors ein Heizkoerper zum Gluehen gebracht wird
FR27040E * Title not available
GB777618A * Title not available
IT559179B * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3269449 *Sep 21, 1964Aug 30, 1966American Radiator & StandardBurner apparatus
US3336716 *Jul 10, 1963Aug 22, 1967Johns ManvilleFurnace combustion chamber with a transverse composition differential
US3383159 *Feb 3, 1966May 14, 1968American Thermocatalytic CorpCombustion elements
US3472601 *Dec 12, 1967Oct 14, 1969Sango TokiRadiant gas burner element
US3494713 *Jun 18, 1968Feb 10, 1970Dow Chemical CoFuel gas supply and dispensing kit
US3590806 *Aug 21, 1969Jul 6, 1971Bernzomatic CorpPortable l. p. gas space heater
US3785362 *May 10, 1972Jan 15, 1974Kodama Brothers Co LtdRadiating system for body warming devices
US4276017 *Sep 11, 1979Jun 30, 1981Julien Earl WGas torch
US4381913 *Oct 15, 1980May 3, 1983Craig Laurence BCombustion heating system
US4388063 *Oct 16, 1980Jun 14, 1983Craig Laurence BCombustion heating system
US4400152 *Oct 14, 1980Aug 23, 1983Craig Laurence BCombustion heating system
US4416619 *Aug 20, 1981Nov 22, 1983Thermocatalytic Corp.Porous ceramic combustion reactor
US4555232 *Aug 13, 1982Nov 26, 1985Raccah Edward RHair drying apparatus
US4599066 *Oct 25, 1985Jul 8, 1986A. O. Smith Corp.Radiant energy burner
US4749303 *May 8, 1986Jun 7, 1988Keizer Gregory JHeater for asphalt pavement or the like
US4878837 *Feb 6, 1989Nov 7, 1989Carrier CorporationInfrared burner
US4883423 *May 8, 1989Nov 28, 1989Carrier CorporationCeramic fiber coating
US5165887 *Sep 23, 1991Nov 24, 1992SolaronicsBurner element of woven ceramic fiber, and infrared heater for fluid immersion apparatus including the same
US5470222 *Jun 21, 1993Nov 28, 1995United Technologies CorporationHeating unit with a high emissivity, porous ceramic flame holder
US5595816 *Jun 6, 1995Jan 21, 1997Alzeta CorporationUnsintered perforated ceramic fiber plates useful as burner faces
US5711661 *May 3, 1994Jan 27, 1998Quantum Group, Inc.High intensity, low NOx matrix burner
US5720456 *Sep 17, 1996Feb 24, 1998Szybura; William S.For a gas torch
US5749721 *Jul 22, 1994May 12, 1998Gossler Thermal Ceramics GmbhCeramic combustion support element for surface burners and process for producing the same
US5979432 *Jan 19, 1999Nov 9, 1999Grove; David F.Portable gas heater
US6183241 *Feb 10, 1999Feb 6, 2001Midwest Research InstituteUniform-burning matrix burner
US6213757Jun 7, 1995Apr 10, 2001Quantum Group Inc.Advanced emissive matrix combustion
US6295979 *Jul 22, 1999Oct 2, 2001All Day Outdoor Products Group Inc.Pedestal mount personal heater
US7631640 *Jun 28, 2005Dec 15, 2009Advanced Propulsion Technologies, Inc.Radiant burner
US7717175Apr 13, 2007May 18, 2010Nexen Inc.Methods of improving heavy oil production
DE1529169B1 *Aug 16, 1966Sep 24, 1970American Thermocatalytic CorpPoroeses,aus Fasern,einem Binder und einer Unterlage bestehendes Brennerelement fuer einen flammenlosen Infrarotgasbrenner
EP0245084A1 *May 5, 1987Nov 11, 1987Aos Holding CompanyCombustion element for a radiant energy burner
EP0382674A2 *Jan 18, 1990Aug 16, 1990Carrier CorporationMethod of making an infrared burner
EP0397591A1 *Mar 15, 1990Nov 14, 1990Carrier CorporationMethod for making an infrared burner element
EP0694735A1Jul 21, 1995Jan 31, 1996Alzeta CorporationCombustive destruction of noxious substances
WO2006017003A1 *Jun 28, 2005Feb 16, 2006Advanced Propulsion TechnologiRadiant burner
U.S. Classification431/329, 501/153, 264/635, 126/92.00R, 431/344, 431/343, 126/92.00B, 431/347
International ClassificationF23D14/16, F24C3/06, F24C3/14, F23D14/28, F23C99/00
Cooperative ClassificationF24C3/14, F23D14/28, F23C99/00, F24C3/062, F23C2700/043, F23D14/16
European ClassificationF23C99/00, F24C3/06A, F23D14/28, F23D14/16, F24C3/14
Legal Events
Apr 15, 1983ASAssignment
Effective date: 19810512