Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3185645 A
Publication typeGrant
Publication dateMay 25, 1965
Filing dateSep 28, 1962
Priority dateSep 28, 1962
Publication numberUS 3185645 A, US 3185645A, US-A-3185645, US3185645 A, US3185645A
InventorsJames O Clayton
Original AssigneeCalifornia Research Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Oxidation inhibited lubricants
US 3185645 A
Images(3)
Previous page
Next page
Description  (OCR text may contain errors)

United StatesPatent O I "3,185,645 7 Y OXIDATION INHIBITED LUBRICANTS James 0. Clayton, Berkeley, Calif., assignor to California -Research Corporation, SanFrancisco, Calif., a corporation of Delaware 3N0 Drawing, Filed Sept. 28,1962, Ser. N 227,042

5 Claims. oi.- ass-46.7

This invention pertainsto lubricating oil compositions having incorporatedtherein metal-freedetergents. These particular deter'gentsare also elfectiv'e as oxidation inrumors. H

Present high speeds and high compression ratios. When used in day internal combustion engines operate at the so-called city, stop-and-go driving, which includes the greater part of the driving-conditions for a large percent. age of todays automobiles, the internal combustionengines do not reach the most efficient operating temperature. Under city driving conditions, large amounts ofpartial oxidation products are formed, and reach thedcrankcase ofthe engine by blowing past the. pistonrings. Most of the. partial oxidation products are oil-insoluble, tending ;-to form deposits on the various operating parts of theenffgine, such as-the pistons, piston rings, etc. -For the purpose'of preventing the deposition of these products on the yarious engine,parts ,i it is necessary to incorporatedetergents in the lubricating oil compositions, thus keeping these polymeric products dispersed in a condition un favorable for deposition on metals.

For the most part, the detergents which are added tocrankcase oils to reduce this formation;v of sludges and varnishes are metal organic compounds, particularly those compounds wherein the metal is linked to an organic group through an oxygen atom. Although these metalcontaining organiccompounds have some effectiveness as 1 detergents for dispersing theprecursors of the deposits within the oil itself rather than permitting them to form" as deposits on theengine parts, they have the disadvantage of forming ash deposits in the engine. =These ash deposits lower engine performance by ,fouling spark plugs and valves, and contributing to pre-ignition.

I It is a particular object of this invention to provide lubricating oil' compositions having incorporated therein metal-free detergents which are also effective as oxidation inhibitors. Thus, these new additives inhibit the oxidation of lubricating oil compositions and also disperse the undesirable polymeric products which are formed.

Therefore, in accordance with this invention,it has been found that lubricating oil compositions particularly useful for heavy duty service are obtained by incorporating therein a product-obtained by reacting an alkenyl succinic an- 3,185,645 Patented May 25, 1965 ice atoms. Examples of alkenyl radicals include n-decenyl, n-hexadecenyl, propylene tetramen'butylene trimer, propylene polymers containing from 50 to 200 carbon atoms, and polymers of mixtures of l-butene and isobutene having from 50 to 200 carbon atoms.

The dihydrocarbyl dithiophosphoric acids which are reactants herein can be representedby the formula phosphoric acid, diethyldithiophosphoric acid, di-n-propyl dithiophosphoric acid, di-isopropyldithiophosphoric acid, di-nbutyldithiophosphoric acid, diisobutyldithiophosphoric acid, n-butyl-n-amyldithiophosphoric acid, di-secamyldithiophosphoric acid, methyl n-hexyldithiophosphoric acid, isobutyl-n-hexyldithiophosphoric acid, di-noctyl-dithiophosphoric acid, methylcyclohexyl. dithiophosphoric acid, methylcyclohexyldithiophosphoric acid, dicyclohexyldithiophosphoric acid, methylphenyldithiophos- .phoricacid, diphenyldithiophosphoric acid, di-(amylphenryl)dithiophospho ric. acid, di (hexadecylphenyl)dithiophosphoric acid, etc.

, The polyalkylene polyamines, which contribute the imide and the basic nitrogen atoms of the reaction products herein, are derived from polymers of ethylene or propylene, such as polyethylene polyamine, and polypropylene ,polyamines'. Such polyalkylene polyamines may be represented by the formula wherein the R represents the divalent radical ethylene or propylene, and'x is a number having a value from 1 to 10 or more. Examples of these polyalkylene polyamines include diethylene triamine, triethylene tetramine, tetrahydride, a Tdihydrocarbyl dithiophosphoric acid, and a polyalkylene polyamine p,

' By the use of lubricating oil compositions containing the reaction products described herein, diesel and gasoline engine products remain remarkablyfree of deposits and varnish even under severe operating conditions. 7

, The alkenyl succinic anhydride reactants herein are of the formula I e era-o wherein R is a hydrocarbon radical having from '10 to 200 carbon atoms therein, preferably from 5010 200 carbon ethylene pentamine, pentaethylene hexamine, dipropylene trian'iine, dipropylene tetramine, tetrapropylene pentamine, pentapropylene hexamine, di(trimethylene)triamine, tri(trimethylene) tetramine, tetra-(trimethylene)- V pentamine and penta- (trimethylene)hexamine.

There is no one particular reaction mechanismwhich is used to produce reaction products which are useful herein in lubricating oil compositions as oxidation inhibitors and detergents according to this invention. 'An alkenyl succinic anhydride, a polyalkylene polyamine, and a dihydrocarbyl dithiophosphoric acid can be mixed together in the desired amounts and reacted; or a poly alkylene polyamine may bereacted with a dihydrocarbyl dithiophosphoric acid, and the resulting product then re acted with an alkenyl succinic anhydride, or the alkenyl succinic anhydride may be reacted with the dithiophosphoric acid, followed by the reaction with the polyalkylene polyamine.

The rnol ratio of dithiophosphoric acid to polyamine 7 can vary from (X --l) :1 to 111, wherein X represents the number of titratable amine groups in the .polyalkylene anhydride mol ratio is in the range of 0.8:1 to 1:1.

When the initial reactants are an anhydride and a dithiophosphoric acid, the mol ratio of anhydride to dit-hiophosphoric acid can vary from 0.521 to 1:1. Preferably,

the mol ratio of anhydride to dithiophosphoric acid is 1:1.

In the reaction herein to form the desired reaction prodncts, the reaction temperature can vary from 70 F. to 400 F., preferably from 210 F. to 310 F. In the reaction of polyalkylene polyamine and the dithiophosphoric acid, the preferred reaction temperature is from 70 F. to about 200 F., followed by a temperature sufiicient to evolve H S in the reaction with the alkenyl succinic anhydride. j

No theory is postulated herein as to the structure of the reaction products herein. It is recognized, however, that the final reaction temperature is a temperature sufiicient to evolve hydrogen sulfide from the reaction mixture.

Lubricating oils which can be used asbase oils to form lubricating oil compositions include a wide variety of lubricating oils, such as naphthenic base, paraffin base, and mixed base lubricating oils, other hydrocarbon lubricants, e.g., lubricating oils derived from coal products, and synthetic oils, e.g., alkylene polymers (such as polymers of propylene, butylene, etc., and the mixtures thereof), alkylene oxide-type polymers (e.g., propylene oxide polymers) and derivatives, including alkylene oxide polymers prepared by polymerizing the alkylene oxide in the presence of water or alcohols, e.g., ethyl alcohol, dicarboxylic acid esters (such as those which are prepared by esterifying such dicarboxylic-acids as adipic acid, azelaic acid, 'suberic acid, sebacic aid, alkenyl succinic acid, fumaric acid, maleic acid, etc., with'alcohols such as butyl alcohol, hexyl alcohol, 2-ethyl hexyl alcohol, dodecyl alcohol, 'etc.), liquid esters of acids of phosphorus, alkyl benzenes "(e.g., monoalkyl benzene such as dodecyl benzene, tetradecyl benzene, etc.), and dialkyl benzenes (e.g., n-nonyl 2-ethyl hexyl benzene); polphenyls (e.g., biphenyls and terphenyls), alkyl biphenyl ethers, polymers of silicon (e.g., tetraethyl silicate, tetraisopropyl silicates, tetra (4-rnethyl-2-tetraethyl)silicate, hexyl (4-methyl-2-pentoxy)disiloxane, poly(methyl)siloxane, poly(methyl-phen- 'yl)siloxane, etc. Synthetic oils of the alkylene oxide-type polymers which maybe used include those exemplified by the alkylene oxide polymers.

The products described herein can be used in oils in amounts of 0.1% to 40% by weight, preferably 0.1% to more preferably 1% to 10%.

The following examples illustrate the formation of the reaction product useful herein as oxidation inhibitors and detergents.

EXAMPLE I 72 grams (0.38 mol) of tetraethylene pentamine was charged to a reaction vessel with continued agitation, and blanketed with nitrogen To this tetraethylene pentamine there was added 409 grams (0.38 mol) of a 50% lubricating oil solution of di(alkylphenyl)dithiophosphoric acid in which the alkyl radicals were derived from propylene polymers having an average of 13 carbon atoms. The temperatures of the reaction vessel rose from 80 F. to 155 F. The reaction mixture was heated to 200 F., after which there was added 1005 grams (0.47 mol) of a 48% lubricating oil solution of polyisobutenyl succinic anhydride which had been preheated to 200 F. The alkenyl radical of the isobutenyl succinic anhydride con tained an average of 66 carbon atoms. The reaction mixture was heated at temperatures in the range of 305-3 15 F. for 2 hours while a solid stream of nitrogen was blown through the mixture.

' Nos. intermediate in F was blanketed with nitrogen.

from ambient temperatures to F., after which the -mixture was heated to 200 F., after which there was 4 Upon analysis, it was found that the resulting lubricating oil composition contained the following:

Table I Weight percent Basic nitrogen 0.83, 0.83 Nitrogen 1.71, 1.72 Phosphorus 0.84, 0.84 Sulfur 1.16, 1.15 Acid No., mgs. KOH/gram 14.91, 13.08

EXAMPLE II A mixtureof 103 grams (1 mol) of diethylene triamine was reacted at ambient temperature with 270 grams (1 mol) of isobutyl-n-hexyl dithiophosphoric acid. This reaction product was heated with 322 grams of n-hexadecenylsuccinic anhydride to 325 until the water of reaction had been removed. I

EXAMPLE III 818 grams (0.76 mol) of a di(alkylphenyl)dithiophosphoric acid (wherein the alkyl groupwas derived from a polypropylene having an average of 13 carbon atoms) was rapidly added with agitation to 144 grams (0.76 mol) of tetraethylene pentamine wherein the reaction vessel The temperature rose added 1980 grams (0.93 mol) of a polyisobutenyl succinic anhydride wherein the polyisobutenyl radical had a molecular weight of about 1,000, preheated to 200 F. The reaction mixture was heated to 310 F. for a period of 2 hours. Hydrogen sulfide was evolved during the entire 2 hour reaction period.

The following analytical results were obtained on the reaction product.

Wt. percent Phosphorus 0.85 Nitrogen 1.72 Basic nitrogen 0.92 Sulfur -Q. 1.43 Acid No 17.1

EXAMPLE IV 113 grams (0.38 mol) of a mixed dialkyl dithiophosphoric acid, wherein one of the alkyl radicals contained 4 carbon atoms and the second alkyl radical contained 6 carbon atoms, was added to 72 grams of tetraethylene pentamine (0.38 mol) in a reaction vessel blanketed with 'mixture contained 1.09% by weight of phosphorus, and

1.77% by weight of sulfur. The dialkyl dithiophosphoric acid itself originally contained 11.2% phosphorus and 23 .4% sulfur.

Table II hereinbelow presents data obtained with lubricating oil compositions containing the reaction product of Example III hereinabove.

The test was made in a Caterpillar L-1 engine according to the Supplement I conditions (for a period of the hours noted) as described in the Coordinating Research Council Handbook, January 1946.

The PD Nos. refer to the piston discoloration rating. After the engine test, the three piston lands are examined visually. To a piston land which is completely black is assigned a PD No. of 800; to one which is completely clean, a PD No. of 0; to those intermediate between those completely black and completely clean are assigned PD proportion to the extent and degree of darkening.

. The GD Nos. refer to the percentage deposit in the piston ring grooves; that is, a evaluation being a clean groove, and a 100 evaluation being a groove fullof polypropylene having an average of 13 carbon atoms.

Tableli Additive: 1. Reaction product of Example III, wt. percent- 0.0 0.0 2. Dithiophosphate:

(A) mM./kg. (B) mMJkg.

Test results 120 hours V 120 hours Top GD No a9 PD Nos., Land 800, 800, 800

1 Mfllimols of zinc per kilogram of finished lube oil.

Table III hereinbelow presents oxidation test results for lubricating oil compositions describedherein. The oxidation test measures the time (hours) for the agitated oil sample to take up 1 liter of oxygen per grams of oil sample at 340 F. a i

The base oil was a California paraifinic base oil having a viscosity of S00 SSU at 100 F.

Each of the compositions described in Table III con- 'tained the same amount of total phosphorus, thatfis,

24.4 n1M./kg. V

, Table III I Oxidation Test,

hours 0.25

Composition:

(1) Base oil (2) Base oil+6.81 wt. percent 1 Prod. of Ex. IV hereinabove (3) Base oil+8.6 wt. percent 1 Prod. of Ex. III hereinabove 10.7 (4) Base oil+3% Succinimide +12 mM./kg. dithiophosphate A (5) Base oil+3% Succinimide +12 mM./kg.

dithiophosphate B 4.5 Equivalent to 3.0% by weight of Succinimide 2 The alkenyl suecinirnide of tetraethylene pentamine, wherein the alkenyl radical contained 66 carbon atoms.

I claim: j 1. A composition of matter comprising a major proportion of an oil of lubricating viscosity and from 0.1% to 40% by weight of a product obtained by reacting (1) an alkenyl succinic anhydride having from 50 to 200 carbon atoms in said alkenyl radical, (2) a polyalkylene polyamine of the formula NH R(NHR) NH wherein R is a divalent radical selected from the group consisting of ethylene and propylene and x i a number having a value from 1 to 10, and (3) a dihydrocarbyl dithiophosphoric acid of the formula n i R-O-$SH wherein R and R are hydrocarbon radicals each having from 4 to 20 carbon atoms with a combined total of to 40 carbon atoms, wherein the mole ratio of said 7 6 i dithiophosphoric acid of said polyamine is from "(X-1) :1 to '1: 1, wherein .X is the number of titratable amine groups in said polyamine, wherein the mole ratio of said wherein R is a divalent radical selected from the group consisting of ethylene and propylene and x is a number having a value from 1 to 10, and a dihydrocarbyl dithiophosphoric acid of the formula wherein R and R are hydrocarbon radicals each having from 4 to 20 carbon atoms with a combined total of 10 to 40 carbon atoms,said reaction being at temperatures from 70 F. to200 F. followed by (2) reacting the product of (1) with an alkenyl succinic anhydride at temperatures'of 210 F. to 400 F. sufiicient for evolution of hydrogen sulfide wherein said alkenyl group contains from 50 to 200 carbon atoms, wherein the mole ratio of said dithiopho sphoric acid to said polyamine is from (X1):1 to 1:1, wherein X is the number of titratable amine groups in said polyamine, wherein the mole ratio of said polyamine to said anhydride is from 015:1 to 1:1. 3. The composition of matter of claim 2 wherein said polyamine is tetraethylene pentamine.

4. A composition of matter comprising a major proportion of an oil of lubricating viscosity and from 1% to 10% by weight of a product obtained by reacting (1) an alkenyl succinic anhydride having from 50 to 200 carbon atoms in said alkenyl radical, (2) a polyalkylene polyamine of the formula wherein R is a divalent radical selected from the group consisting of ethylene and propylene and x is a number having a value from 1 to 10, and (3) a dihydrocarbyl dithiophosphoric acid of the formula 5. The composition of matter of claim 4 wherein said polyamine is tetraethylene pentamine.

References Cited by the Examiner UNITED STATES PATENTS 2,809,934 10/57 Alford et a1 252--32.7 2,973,323 2/61, Millikan et al. 25232.7 2,995,568 8/61 Malz et a1. 260-3265 3,018,247 1/62 Anderson et a1. 252-32] 3,058,910 10/62 Culmer 252-32.7 3,074,990 1/63 Cyba 252-32.7

DANIEL E. WYMAN, Primary Examiner.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2809934 *Oct 1, 1953Oct 15, 1957Standard Oil CoDetergent lubricants and lubricating oil additives and process of making the same
US2973323 *Dec 31, 1956Feb 28, 1961Pure Oil CoLubricating oil composition containing heterocyclic polyamine salts of partial ester of phosphorodithioic acid as antiwear agent
US2995568 *Jan 19, 1959Aug 8, 1961Bayer AgThiophosphoric acid esters
US3018247 *Mar 15, 1960Jan 23, 1962California Research CorpLubricating oil compositions containing metal dithiophosphate-nu-dialkylaminoalkyl alkenyl succinimide blends
US3058910 *Oct 24, 1958Oct 16, 1962Hall StewartOil additive concentrate
US3074990 *Dec 29, 1958Jan 22, 1963Universal Oil Prod CoAlkylthiophosphoric acid salt of polymeric condensation product and use thereof
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3265618 *Jul 26, 1963Aug 9, 1966Shell Oil CoLubricating oil compositions
US3284354 *Dec 12, 1963Nov 8, 1966Exxon Research Engineering CoReaction product of metal dithiophosphate, polyamine and alkenyl succinic acid or anhydride
US3291817 *Jun 20, 1963Dec 13, 1966Exxon Research Engineering CoPolymer coordinated metal compounds
US3294684 *Jul 11, 1963Dec 27, 1966Standard Oil CoLubricant compositions containing detergency additives
US3294816 *Dec 12, 1963Dec 27, 1966Universal Oil Prod CoAcid-amine-phosphate reaction product and use thereof
US3316175 *Dec 10, 1965Apr 25, 1967Universal Oil Prod CoStabilization of organic substances
US3324032 *Dec 22, 1964Jun 6, 1967Exxon Research Engineering CoReaction product of dithiophosphoric acid and dibasic acid anhydride
US3502677 *Jun 17, 1963Mar 24, 1970Lubrizol CorpNitrogen-containing and phosphorus-containing succinic derivatives
US3511780 *Feb 9, 1966May 12, 1970Exxon Research Engineering CoOil-soluble ashless dispersant-detergent-inhibitors
US3844960 *Nov 6, 1970Oct 29, 1974Shell Oil CoLubricant compositions
US4483775 *Oct 28, 1982Nov 20, 1984Chevron Research CompanyLubricating oil compositions containing overbased calcium sulfonates
US4772739 *Jun 25, 1986Sep 20, 1988The Lubrizol CorporationReaction product of acid, amine and acidic phosphorus compound; extreme pressure lubricant; hydraulic fluids; cutting oils
US5019282 *Dec 21, 1989May 28, 1991Mobil Oil CorporationOrganic ester, amide or amine salts of phosphorodithioate substitute carboxylic anhydrides as multifunctional additives
US5041598 *Sep 7, 1989Aug 20, 1991The Lubrizol CorporationNitrogen- and phosphorus-containing compositions and aqueous systems containing same
US5498809 *May 22, 1995Mar 12, 1996Exxon Chemical Patents Inc.Terminal ethylvinylidene groups which can be functionalized, dispersants
US5554310 *Jun 9, 1994Sep 10, 1996Exxon Chemical Patents Inc.Trisubstituted unsaturated polymers
US5629434 *Sep 25, 1995May 13, 1997Exxon Chemical Patents IncReaction product of polymer with at least one ethylenic double bond with carbon monoxide and nucleophilic trapping agent; dispersants, viscosity modifiers
US5643859 *Jun 17, 1994Jul 1, 1997Exxon Chemical Patents Inc.Fuel dispersant
US5646332 *Jun 17, 1994Jul 8, 1997Exxon Chemical Patents Inc.Batch Koch carbonylation process
US5650536 *Jun 17, 1994Jul 22, 1997Exxon Chemical Patents Inc.Continuous process for production of functionalized olefins
US5652201 *Jul 11, 1995Jul 29, 1997Ethyl Petroleum Additives Inc.Lubricating oil compositions and concentrates and the use thereof
US5663130 *Mar 11, 1996Sep 2, 1997Exxon Chemical Patents IncPolymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives
US5696064 *Aug 23, 1995Dec 9, 1997Exxon Chemical Patents Inc.From carbon monoxide and a nucleophilic trapping agent
US5698722 *Jun 6, 1995Dec 16, 1997Exxon Chemical Patents Inc.Blend of addition polymer, carbon monoxide and nucleophilic trapping agent
US5703256 *Dec 16, 1996Dec 30, 1997Exxon Chemical Patents Inc.Functionalization of polymers based on Koch chemistry and derivatives thereof
US5717039 *Jun 6, 1995Feb 10, 1998Exxon Chemical Patents Inc.Functionalization of polymers based on Koch chemistry and derivatives thereof
US5767046 *May 15, 1997Jun 16, 1998Exxon Chemical CompanyPrepared by reacting an olefin, carbon monoxide, an acid catalyst and a nucleophilic trapping agent selected from hydroxy- and thiol-containing compounds
US6030930 *May 14, 1997Feb 29, 2000Exxon Chemical Patents IncUseful in lubricating oils, and to concentrates containing the oil-soluble dispersant additives
US7947636Feb 27, 2004May 24, 2011Afton Chemical CorporationPower transmission fluids
EP0399764A1May 21, 1990Nov 28, 1990Ethyl Petroleum Additives LimitedLubricant compositions