Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3191587 A
Publication typeGrant
Publication dateJun 29, 1965
Filing dateAug 18, 1960
Publication numberUS 3191587 A, US 3191587A, US-A-3191587, US3191587 A, US3191587A
InventorsFred V. Hall
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Device for controlling the hydrocar- bon evaporation losses from automo- tive vehicles
US 3191587 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

F. V. HALL June 29, 1965 ,191,587 ION INVTOR. FRED l- HALL BY A T TORNEY United States Patent 3,191,587 DEVICE FOR CONTROLLING THE HYDROCAR- BON EVAPORATION LOSSES FROM AUTOMQ- TIVE VEHICLES Fred V. Hall, San Francisco, Calif., assignor to Brooks Walker, San Francisco, Calif. Filed Aug. 18, 1960, Ser. No. 50,509 17 Claims. (Cl. 123136) This invention relates to a device to control the hydrocarbon evaporation losses from automotive vehicles. More particularly, it controls the hydrocarbon evaporative loss from the carburetor and gas tank of automobiles and trucks.

It has been established that automobiles constitute a significant source of atmospheric pollution, leading to the smog problem in many cities. In Los Angeles automobiles appear to be the major source. While the bulk of the polluting emissions come from the automobile exhaust, in the form of unburned hydrocarbons and nitrogen oxides, unburned hydrocarbons also pass into the atmosphere from the carburetor and fuel tanks by evaporation. While the amount may not seem to be great enough in one automobile to cause the owner to think he is suffering from this waste, the compounding of the pollution effect by millions of automobiles in such areas as Los Angeles has led to major problems. The present invention is intended to solve this problem of evaporation loss, just as my Patent 2,809,623 solves the problem of keeping the unburned hydrocarbons escaping via the automobile exhaust within allowable limits.

There are several kinds of hydrocarbon loss by evaporation from automobiles:

(l) Carburetor running loss.-This term refers to the loss of hydrocarbon vapors from the carburetor through external vents while the engine is running. Most carburetors are equipped with external vents for the purpose of releasing the vapors boiling off in the carburetor, because if such vapors are not vented, the air-fuel mixture tends to become richer at elevated temperatures. External ventilation results, however, in a loss of fuel by evaporation while the engine is running (hence the term running loss), the amount of loss generally being highest during engine idling at times when the engine is hot after a prolonged run at high speed or high ambient temperature or both. However, significant amounts may also be lost during cruising and other operating phases. Some carburetors are internally vented; these, while not having this problem, have heretofore accentuated the exhaust problem by causing rough engine operation, due to overrich mixtures at high under-hood temperatures, and they have upset the air-fuel ratio that the carburetor is intended to provide.

(2) Carburetor hot soak l0ss.-When an engine stops running after having become hot, the carburetor tends to be heated by the soak back" of engine heat. The temperatures in the carburetor bowl rise substantially after a hot shutdown, and this increase in temperature boils fuel out of the carburetor bowl, (hence the term hot soak loss), the boiled-out fuel passing to the atmosphere via the external vent or the air cleaner in the form of unburned hydrocarbons. This hot soak loss occurs during about the first half-hour after shutdown of a hot engine; after this time, the loss is relatively insignificant, because by that time the more volatile portions of the gasoline in the carburetor bowl have already evaporated and the engine has become cool.

(3) Tank breafihing l0ss.-Temperature fluctuations cause the gasoline tank to breathe, due to expansion and contraction of the gases in the vapor space above the liquid level. Hydrocarbon vapors are forced out til of the tank during expansion, hence the term tank breathing loss. The vapor pressure of the summer grade of gasoline is roughly eight pounds per square inch at F., and therefore the amount of evaporation is significant, especially on a hot day. The evaporated gasoline passes through the vent line of the gasoline tank out into the atmosphere.

(4) Tank filling I0ss.When a gasoline tank is being filled at the filling station, a volume of hydrocarbon vapor and air approximately equivalent to the amount of liquid gasoline added into the tank is displaced and passes into the atmosphere, thereby aggravating the problem.

(5) Overflow [oss.When a gas tank is overfilled or when an automobile is parked in an inclined attitude, as on the hills in many cities, an overflow of liquid gasoline may pass through the vent line, spill on the ground, and subsequently evaporate into the atmosphere.

The present invention solves all five of the above problems by a novel combination of elements. For example, carburetor running loss is controlled by inducting the vapors into the intake air of the engine while sup plying additional combustion air with a thermal leaning device. This thermal leaning device also operates to prevent rough engine operation that tends to result when the carburetor is internally vented. In the invention, the normally external vents of the carburetor are plugged it there are ample internal vents, or the external vents are diverted so that they vent internally, thus completely eliminating carburetor running loss.

The invention solves the problem of hot soak loss by trapping the vapors in an activated adsorbent or in an absorbent, which is later automatically regenerated by desorbing. A mechanism is provided for actuating the adsorber or absorber system during only the first half hour and then turning the mechanism off automatically. Instead of being timed, however, the mechanism is preferably dcactuated by temperature so that when the englue is cool, this device is turned off.

The invention prevents the evaporative losses due to tank breathing and filling by guiding the vent line from the tank through the adsorbing or absorbing mechanism. Furthermore, the invention provides a novel connection at the tank inlet spout and a filling nozzle adapter, which may be used at the service station to obtain a vapor-tight connection between the service station dispensing pump and the fuel tank.

Finally, the invention prevents the losses that tend to occur when the tank overflows, not only by routing the vent line through the absorbing or adsorbing agent but more particularly by providing an elevated gooseneck with an ample drop-out pot or liquid trap that prevents overflow and spillage loss.

Other objects and advantages of the invention will appear and the above ones will be explained more clearly and understood better from the following description of a preferred embodiment of the invention presented in accordance with the statutes.

In the drawings:

FIG. 1 is a schematic diagram of a system embodying the principles of the present invention for preventing evaporation losses from an automotive engine and fuel system.

FIG. 2 is an enlarged view in elevation and in section of a thermal leaning and idle air device of the type that may be used in this invention.

FIG. 3 is an enlarged view in elevation of a regenerative absorbing or adsorbing filter that may be used in this invention.

FIG. 4 is an enlarged view in elevation of a springloaded check valve of a type that may he used in this invention.

FIG. 1 shows a gasoline engine It) and pertinent portions of a system concerned with this invention. Its fuel system comprises a gas tank 11 provided with a filling spout 12, a vent line 13 and a fuel line 14. The fuel line 14 leads via a fuel pump 14 to a carburetor 15, which has an air cleaner 16 for intake air and is vented internally by a tube 16. Similarly, a circuit diagram of a portion of the engines ignition system is shown, with a battery 17, an on-oif switch 18, a coil 19, a distributor 2t and a spark plug 21.

The present invention provides a duct 22 that leads from the air cleaner 16 to an electrically driven air pump 23 having a motor 24. The motor 24 and air pump 23 are operated only when the ignition. switch 18 is in the off position and only when a bimetallic thermal delay switch 25 is closed. This thermal delay switch 25 is mounted where it will be sensitive to engine heat; it may be on the exhaust manifold (not shown) or some other similarly convenient location. When the manifold (and engine) is hot, the switch 25 is closed, but it opens when the manifold cools, the temperature characteristics of the switch 25 being adjusted to give the proper opening time, usually corresponding to a normal delay of about one-half hour. Thus, it will be evident that the air pump 23 operates only when the engine 10 is both off and hot.

A discharge line 26 from the air pump 23 leads to a filter 27 (FIG. 3) containing suitable absorbent or adsorbent material 28 such as charcoal, oil on crushed fire brick, or any other suitable gasoline-adsorbing or absorbing material. The fuel tank vent line 13 also leads to the same filter 27. One end of the filter 27 is open to the atmosphere through a screen 29. A conduit 30 from the filter 27 leads to a thermal leaning device 31, which is connected by an idle air duct 32 to the carburetor 15. The thermal leaning device 31 may be that shown in my patent 2,809,623 or other means for leaning the carburetor mixture when the temperature gets hotter. It is shown in somewhat more detail in FIG. 2. it will be noted that the line 3t] enters opposite the line 32 and that there is a bimetallic thermally operated pad valve 33 that controls air flow from outside air into a passage 34. The passage 34 is restricted by a needle valve 35, so that the needle valve 35 controls the air flow of supplementary fresh air which is added as the temperature rises. A temperature range screw 36 may be provided to vary the activating temperature of the thermal element 33. The basic idle air requirement of the engine is controlled by an adjustment valve 37.

In the vent line 13 between the tank 11 and the filter 27 there is a drop-out pot 40 elevated above the tank 11 in a gooseneek 41 to retain liquid gasoline and return it to the tank 11. There is also a spring-type check valve 42 (FIG. 4).

An opening 43 on the spout 12 of the gasoline tank 11 is connected to and closed by an adapter 44 on the nozzle spout 45 when filling the tank 11 from a conventional automatic shutoff service station nozzle 46, to provide a vapor-tight connection at that point.

Operation When the fuel tank 11 is filled with gasoline, a vaportight connection is provided by the adapter 44, which may have a neoprene seal at both ends. All the gasoline vapors then in the tank 11 are displaced through the vent line 13 rather than passing back up out of the spout 12. Thus, they pass to the filter 27 where the vapors are absorbed or adsorbed to a very large degree.

All gasoline tanks which are normally vented to the atmosphere breathe, and when they breathe they exhale some gasoline vapor. Moreover, since gasoline has a rather high vapor pressure, loss constantly occurs during hot days due to evaporation, and this loss is increased by the breathing action of the tank. In this invention, as has been shown. the exhaling action takes place only through the activated carbon 28 or other adsorbent or absorbent in the filter 27, which sorbs the hydrocarbon vapors with a high degree of efficiency.

Tank overflow loss has heretofore been combatted by simply placing the vent line 13 in the tank 11 at the highest point and by providing an elevated goosencck 41. However, these vents are not elevated enough to prevent overflow loss under all conditions, and frequently vehicles parked in an inclined attitude or speeding around corners have lost gasoline out of the overflow vent. Here, the dropout pot 40 just below the highest point in the gooseneck 41 protects against this. In the event that the liquid gasoline is forced through the vent 13, it col lects in the dropout pot 40 and later drains back into the gasoline tank 11.

During operation of the vehicle, carburetor running loss is prevented by inducting the vapors into the intake air of the engine via the internal vent 16 supplying additional combustion air through the thermal leaning device 31 to prevent abnormal enrichment of the mixture, according to my Patent 2,809,623. This invention also calls for either plugging the normal external vent to the carburetor 15, if there are ample internal vents, or diverting them so that they do vent internally. The carburetor 15, being internally vented by the vent lo has no carburetor running loss, and the thermal leaning device 31 prevents over-rich air-fuel ratio from being furnished to the invention and prevents rough engine operation, which is itself a cause of excessive exhaust pollutants, as explained in Patent 2,809,623.

After the automobile has been run a while and then is parked, the engine heat soaks back to the carburetor 15 and boils off vapors which have heretofore been emitted either through the air born or through external vents of the carburetor. In the present invention the vapors are trapped in the filter 27 and absorbed or adsorbed by the agent 28 therein. Thus, when the engine 10 is shut down, the ignition switch 18 is turned to the engines off position, which is the on position for the motor 24. If the engine manifold is hot, the switch 25 will be closed. The switch 25, a simple bimetallic thermal element adjusted to open when the engine temperature drops below a desired level, will, when the engine is hot, conduct current from the battery 17 and this results in energizing the motor 24 for the air pump 23, which then pumps the air laden with gasoline vapors from the air cleaner 16 and the carburetor vapors into the filter 27 through the conduits 22 and 26. In about one-half hour the exhaust manifold will have cooled to the point (e.g., F.) where the thermal switch 25 opens and shuts oil the air pump 23, it no longer being required. In fact, the thermal switch 25 will open even when the under-hood temperatures are quite hot, as they are when the car is parked in the sun on a hot day, for the temperature of a hot exhaust manifold of an engine that has been running is much hotter than such under-hood temperatures due to the sun.

The adsorber or absorber 28 connects and retains the hydrocarbons from the hot soak loss, the tank breathing loss, and the tank filling loss. In order for the absorber or adsorber to continue to function efficiently, it might be thought that fresh activated carbon would be required periodically, but this would be undesirable both from an expense and convenience standpoint; so the present invention provides a system for automatically regenerating the carbon or other agent 28 after each engine startup and during the subsequent normal operation of the vehicle. This is accomplished by a reverse-flow process in which the idle air requirement is drawn into conduit 30 through the carbon absorber in the reverse direction. Thus, by connecting the tube 30 to the absorber or adsorber filter 27, a portion of the engine air requirement flows in reverse through the carbon adsorber during all part-throttle operation, passing through the thermal leaning device 31, and then through the conduit 32 to the carburetor 15. During such operating cycles as low-power cruise or idle, Whenever a relatively high partial vacuum exists in the intake manifold, this reverse air flow through the conduit 30 will result. The air flow requirement of the engine is very large in comparison with the small quantities of vapors adsorbed on the carbon and so this large quantity of air passing through the adsorber desorbs the hydrocarbon vajors from the carbon and these are subsequently burned in the engine. The engine fuel requirement being very large in comparison with the small amount and low rate at which these vapors are introduced into the engine, no significant change in the air fuel ratio occurs in the engine, yet these materials are used.

Thus, the present invention, especially when used in combination with the thermal leaning device 31 of my Patent 2,809,623, cuts down the evaporation losses from automobiles to a negligible amount. Thereby it can considerably alleviate the smog problem if the device is installed on a substantial number of automobiles in an area.

If desired, in place of the filter 27 a device for catalytic or glow-plug-type combustion may be provided or, if desired, a non-regenerative system may be used by changing the filter cartridge 28 periodically, although, as said before, this is somewhat less desirable, being more expensive and also more wasteful.

To those skilled in the art to which this invention relates, many change in construction and widely differing embodiments and applications of the invention will suggest themselves Without departing from the spirit and scope of the invention. The disclosures and the description herein are purely illustrative and are not intended to be in any sense limiting.

I claim:

1. A device for the control of evaporation losses from an automobile having an engine, an engine ignition switch, a carburetor, an air cleaner therefor, and a gasoline tank with a vent line and with a fuel line connected to the carburetor, including in combination: thermally actuated leaning means for sending additional intake air into said carburetor for leaning the fuel mixture as the temperature rises; means to vent the gasoline vapors evaporated from said carburetor into said air cleaner; filter means for withdrawing gasoline from air, said gasoline tank vent line being connected to said filter means; air conduit means from said air cleaner to said filter means; air pump means for said air conduit; thermally actuated means connected to said engine ignition switch for operating said air pump when said engine ignition switch is off and said engine is hot and until said engine cools; and filter-regenerating means, comprising means for taking in atmospheric air through said filter into said thermal leaning device for supply to said carburetor.

2. A device for the control of gasoline evaporation losses from an automobile having an engine, an engine ignition switch, a carburetor, an air cleaner therefor, and a gasoline tank with a vent line and with a fuel line connected to the carburetor, including in combination: thermally actuated leaning means connected to said carburetor for sending additional intake air into said carburetor for leaning the fuel mixture as the temperature rises; filter means for withdrawing gasoline from air, said gasoline tank vent line being connected to said filter means; air conduit means from said air cleaner to said filter means; air pump means for said air conduit means; and thermally actuated means for operating said air pump when said engine ignition switch is off and said engine is hot and until said engine cools to a desired temperature.

3. A device for the control of evaporation losses from an automobile having an engine, a carburetor, a fuel tank, a fuel line connecting said fuel tank to said carburetor, and a breather line for said fuel tank, including in combination a fuel-vapor absorbing device ceonnected in said breather line, and means for conducting the fuel vapors from said carburetor to said fuel-vapor absorbing device after said engine is shut off and until said engine cools.

4. The device of claim 3 having means connecting said fuel-vapor absorbing device to said carburetor to suck fuel from said absorbing device when said engine is run- S. A device for the control of evaporation losses from an automobile having a gasoline engine, an engine ignition switch, and a carburetor with an air cleaner, comprising the combination of: filter means for withdrawing gasoline from air; vapor conduit means from said carburetor and air cleaner to said filter means; pump means for said vapor conduit, thermally actuated means for operating said pump when said engine ignition switch is off and said engine is hot and until said engine cools considerably below its running temperature; and thermal leaning means connected to said carburetor for providing additional intake air to said carburetor for leaning the fuel-air mixture as the ambient temperature rises.

6. The device of claim 5 having conduit means for taking in air for said carburetor through said filter, thereby regenerating said filter.

7. A device for control of evaporation losses from an automobile, comprising a carburetor, a gasoline tank with a fuel line connected to the carburetor and a vent line, and filter means for withdrawing gasoline from air, connected to said gasoline tank vent line.

8. The device of claim 7 having filter-regenerating means, comprising means to take in air for said carburetor through said filter means.

9. A device for control of evaporation losses from an automobile having a carburetor and a gas tank with a fuel line connected to the carburetor, comprising the combination of: means for venting all the gasoline evaporated in said carburetor into a conduit returning to said carburetor, and means connected to said carburetor for leaning the fuel-air mixture in said carburetor as the temperature rises.

10. A fuel system for an internal combustion engine comprising an intake manifold, a carburetor for supplying a combustible mixture to said intake manifold, said carburetor including a fuel reservoir, a fuel tank, a pump for delivering fuel from the fuel tank to the carburetor fuel reservoir, vent conduit means communicating with the fuel reservoir and fuel tank above the fuel level, said vent conduit means being adapted to communicate with said intake manifold, a fuel vapor storing device disposed in said vent conduit means intermediate the carburetor and intake manifold, said device including means for causing fuel vapors to flow through said conduit means for a predetermined period after said engine has been rendered inoperative.

11. A fuel system for an internal combustion engine comprising an intake manifold, a carburetor for supplying a combustible mixture to said intake manifold, said carburetor including a fuel reservoir, a fuel tank, a pump for delivering fuel from the fuel tank to the carburetor fuel reservoir, vent conduit means communicating with the fuel reservoir, and fuel tank above the fuel level, said vent conduit means being adapted to communicate with said intake manifold, means for reducing the vacuum in the conduit means whereby the reservoir and fuel tank are maintained under a light vacuum during normal engine operation, a fuel vapor storing device disposed in said vent conduit means intermediate the carburetor and intake manifold, said device including means for causing fuel vapors to flow through said conduit means for a predetermined period after said engine has been rendered inoperative.

12. A fuel system for an internal combustion engine comprising an intake manifold, a carburetor for supplying a combustible mixture to said intake manifold, said carburetor including a fuel reservoir, :1 fuel tank, a pump for delivering fuel from the fuel tank to the carburetor fuel reservoir, vent conduit means communicating with the fuel reservoir and fuel tank above the fuel level, said vent conduit means being adapted to communicate with said intake manifold, a fuel vapor storing device disposed in said vent conduit means intermediate the carburetor and intake manifold, said device including means for causing fuel vapors to flow through said conduit means for a predetermined period after said engine has been rendered inoperative, said device being substantially inoperative to store fuel vapor during normal engine operation.

13. A fuel system as set forth in claim 10 in which said fuel flow causing means includes a pump.

14. A fuel system as set forth in claim ltl which includes a venting mechanism disposed in said vent conduit means posterior of said fuel vapor storing device whereby fuel free air from said device is discharged to the atmosphere when said engine is inoperative.

15. A fuel system as set forth in claim 10 in which the vapor storing device includes a container filled with a desiccant material through which the fuel vapor laden air from the reservoir and fuel tank is adapted to pass.

16. A fuel venting system for an internal combustion engine comprising an intake manifold, a carburetor mounted on said intake manifold and adapted to supply a fuel-air mixture thereto, said carburetor including a fuel reservoir, a fuel tank, means for delivering fuel from said fuel tank to said reservoir, conduit means communieating with said fuel tank and said reservoir above their respective fuel levels to the intake manifold through a fuel-vapor-absorbing filter having a restricted portion open to the atmosphere, said fuel tank and carburetor reservoir respectively including restricted atmospheric bleeds, the bleed for said fuel tank comp-rising said filter and means for controlling the manifold depression in said conduit means.

17. A fuel venting system for an internal combustion engine comprising an intake manifold, a carburetor mounted on said intake manifold and adapted to supply a fuel-air mixture thereto, said carburetor including a fuel reservoir, a fuel tank, means for delivering fuel from said fuel tank to said reservoir, conduit means communieating with said fuel tank and said reservoir above their respective fuel levels to the intake manifold through a fuel-vapor-absorbing filter having a restricted portion open to the atmosphere, said fuel tank and carburetor reservoir respectively including restricted atmospheric bleeds, the bleed for said fuel tank comprising said filter and a regulator disposed in said conduit means for controlling the manifold depression in said conduit means.

References Cited by the Examiner UNITED STATES PATENTS 708,942 9/07 Torchiani 141-383 1,953,808 4/34 Kenneweg 123-136 2,152,091 3/39 Rockwell 123136 2,462,575 2/49 Walker 141-383 2,881,747 4/59 Gehner 123-136 2,965,086 12/60 Gregory et a1. 123136 3,001,519 9/61 Dietrich et al 123-136 RICHARD B. WILKINSON, Primary Examiner.

RALPH H. BRAUNER, Examiner.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3352294 *Jul 28, 1965Nov 14, 1967Exxon Research Engineering CoProcess and device for preventing evaporation loss
US3368326 *May 3, 1965Feb 13, 1968Universal Oil Prod CoMeans for preventing hydrocarbon losses from an engine carburetor system
US3393669 *May 19, 1966Jul 23, 1968Exxon Research Engineering CoApparatus and process for adsorbing and desorbing internal combustion engine fuel vapors
US3418987 *Jul 27, 1967Dec 31, 1968Pittsburgh Activated Carbon CoCo-current purge
US3477210 *Aug 12, 1968Nov 11, 1969Universal Oil Prod CoHydrocarbon vapor control means for use with engine carburetor
US3513818 *Mar 11, 1968May 26, 1970Atlantic Richfield CoFuel vapor recovery system
US3517654 *Mar 8, 1968Jun 30, 1970Chrysler CorpEvaporative emission control system
US3518977 *Apr 15, 1968Jul 7, 1970F & E Mfg CoFuel emission control system
US3610220 *May 4, 1970Oct 5, 1971Toyota Motor Co LtdFuel tank construction
US3610221 *Oct 6, 1969Oct 5, 1971Gen Motors CorpFuel tank purge system and method
US3678912 *Apr 9, 1970Jul 25, 1972Inq H C F Porsche Kg Fa DrInstallation in internal combustion engines for preventing the escape of fuel out of the mixture formation system into the atmosphere
US3683597 *Sep 17, 1970Aug 15, 1972Gen Motors CorpEvaporation loss control
US3722189 *May 24, 1971Mar 27, 1973Chemical Construction CorpApparatus for removing hydrocarbons from a gas stream
US3727597 *May 8, 1970Apr 17, 1973Porsche KgDevice for precipitating fuel from the vapor discharging from the fuel supply system of an internal combustion engine
US3728846 *Jul 22, 1971Apr 24, 1973Saab Scania AbArrangement for a motor vehicle fuel system
US3730158 *Jul 28, 1971May 1, 1973Gen Motors CorpCanister for evaporation loss control
US3745984 *Dec 27, 1971Jul 17, 1973Gen Motors CorpPurge control valve and system
US3757753 *Oct 5, 1971Sep 11, 1973Chrysler UkFuel tanks
US3759234 *Nov 24, 1971Sep 18, 1973Exxon CoFuel system
US3763839 *Nov 24, 1971Oct 9, 1973Phillips Petroleum CoFuel system apparatus and method
US3802403 *May 19, 1972Apr 9, 1974British Leyland Austin MorrisRun-on prevention means for spark-ignition internal combustion engines including evaporative loss canisters
US4070828 *Jan 14, 1976Jan 31, 1978Regie Nationale Des Usines RenaultDevice and method for recycling hydrocarbon vapors of I.C.E. vehicles
US4112898 *Apr 7, 1977Sep 12, 1978Toyota Jidosha Kogyo Kabushiki KaishaInternal combustion engine with charcoal canister
US4176639 *Aug 12, 1977Dec 4, 1979Toyota Jidosha Kogyo KabushikikaishaEvaporative emission system for improving engine starting characteristics
US4208997 *Sep 26, 1977Jun 24, 1980Toyota Jidosha Kogyo Kabushiki KaishaCarburetor outer vent control device
US4275696 *Feb 8, 1980Jun 30, 1981Toyota Jidosha Kogyo Kabushiki KaishaCarburetor outer vent control device
US4304206 *Sep 28, 1979Dec 8, 1981Chrysler CorporationFuel tank vapor condensate trap
US4432328 *Nov 4, 1980Feb 21, 1984Nissan Motor Co., Ltd.Vapor lock and percolation phenomena inhibiting system
US4475522 *Dec 20, 1982Oct 9, 1984Toyota Jidosha Kabushiki KaishaFuel evaporation gas treating device
US4496379 *Feb 29, 1984Jan 29, 1985Aisan Industry Co., Ltd.Canister for volatile fuel controlling device
US4598686 *Mar 28, 1985Jul 8, 1986Casco Products Inc.Fuel vapor recovery system for automotive vehicles
US4683862 *Oct 15, 1986Aug 4, 1987General Motors CorporationFuel vapor storage canister
US4717401 *Sep 24, 1986Jan 5, 1988Casco Products CorporationFuel vapor recovery system
US4721846 *Jul 2, 1986Jan 26, 1988Casco Products CorporationCanister heater with PTC wafer
US5058693 *May 7, 1990Oct 22, 1991Industrial Strainer Co.Remote filter assembly for vapor recovery system
US5288307 *Aug 28, 1992Feb 22, 1994The Dow Chemical CompanyMethod to reduce fuel vapor emissions
US6000426 *Dec 19, 1997Dec 14, 1999Walbro CorporationFuel system for reducing fuel vapor
US7163574Mar 23, 2004Jan 16, 2007Honeywell International, Inc.Evaporative emissions filter
US7182802 *Mar 19, 2003Feb 27, 2007Honeywell International, Inc.Evaporative emissions filter
US7344586Nov 1, 2004Mar 18, 2008Honeywell International, Inc.Evaporative emissions filter
US7377966Aug 26, 2004May 27, 2008Honeywell International, Inc.Adsorptive assembly and method of making the same
US7655166 *Feb 2, 2010Honeywell International Inc.Evaporative emissions filter
US8216349 *Dec 24, 2009Jul 10, 2012Fram Group Ip LlcEvaporative emissions filter
US8677978 *Mar 3, 2011Mar 25, 2014Kohler Co.System and method for carburetor venting
US20040182240 *Mar 19, 2003Sep 23, 2004Bause Daniel E.Evaporative emissions filter
US20050000362 *Mar 23, 2004Jan 6, 2005Bause Daniel E.Evaporative emissions filter
US20050145224 *Nov 1, 2004Jul 7, 2005Zulauf Gary B.Evaporative emissions filter
US20060042468 *Aug 26, 2004Mar 2, 2006Smith Robert LAdsorptive assembly and method of making the same
US20080184891 *Jan 29, 2008Aug 7, 2008Zulauf Gary BEvaporative emissions filter
US20100101542 *Dec 24, 2009Apr 29, 2010Zulauf Gary BEvaporative emissions filter
US20110214645 *Sep 8, 2011Kohler Co.System and method for carburetor venting
Classifications
U.S. Classification123/519, 96/144, 55/DIG.300, 261/72.1
International ClassificationF02M63/00, F02M25/08
Cooperative ClassificationY10S55/30, F02M2700/05, F02M25/08, F02M63/00
European ClassificationF02M63/00, F02M25/08