Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3216494 A
Publication typeGrant
Publication dateNov 9, 1965
Filing dateJul 17, 1961
Priority dateJul 20, 1960
Publication numberUS 3216494 A, US 3216494A, US-A-3216494, US3216494 A, US3216494A
InventorsGoodman Hugh F
Original AssigneeApv Co Ltd
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Heat exchanger plate
US 3216494 A
Abstract  available in
Images(4)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Nov. 9, 1965 H. F. GOODMAN 3,216,494

HEAT EXCHANGER PLATE Filed July 17, 1961 4 Sheets-Sheet l X47 Attorney? Nov. 9, 1965 H. F. GOODMAN HEAT EXCHANGER PLATE 4 Sheets-Sheet 2 Filed July 17, 1961 lnve [or J Wu,

jig, Attorneys 1965 H. F. GOODMAN HEAT EXCHANGER PLATE 4 Sheets-Sheet 3 Filed July 17, 1961 Nov. 9, 1965 H. F. GOODMAN 3,216,494

HEAT EXCHANGER PLATE Filed July 17, 1961 4 Sheets-Sheet 4 lrweriior /ZVZ $712 By M Attorney:

United States Patent Ofifice 3,216,494 Patented Nov. 9, 1965 3,216,494 HEAT EXCHANGER PLATE Hugh F. Goodman, Wimbledon, London, England, assignor to The A.P.V. Company Limited Filed July 17, 1961, Ser. N0. 124,457 Claims priority, application Great Britain, July 20, 1960, 25,335/ 60 Claims. (Cl. 165-166) This invention relates to heat exchangers of the type known as plate heat exchangers, in which a number of plates are assembled in spaced face-to-face relationship to provide flow passages for the fluids between which heat is to be exchanged through the metal of the plates.

The fluids are usually contained within the plates by sealing strips of rubber or other resilient material disposed about the periphery of the plates.

There are two objects to be aimed at in the design of such plates: firstly it is desirable to produce a high degree of turbulence within the fluids so as to effect high rates of heat transfer and, secondly, to maintain the plates in accurate spaced relationship and to enable them to resist the fluid pressures acting on them Without creating excessive flexing of, or stress within, the metal of the plates. These objects are often achieved by pressing into oneface of the plates a number of transverse or inclined grooves (which form ribs on the other face) and which when co-operating with each other produce the desired turbulence, stiffen the plate surfaces and, in some cases, provide a series of points of contact between successive plates which, if the pressure difference between the plates is relatively high, are necessary to prevent deflection of the plates.

In one known form of plate the ribs are of V formation pressed to a depth equal to the distance between adjacent plates. The ribs form a continuous wavy surface, and are inclined at an angle, usually 45 or less, to the transverse dimension or width of the plate. On alternate plates the inclination of the ribs is reversed relative to the length of the plate so that when stacked and tightened together a number of points of contact occur between the ribs of successive plates. In plates of this kind a high degree of mutual support between adjacent plates can readily be arranged.

In another widely used form of plate, the ribs are not inclined widthwise of the plate, but are formed trans verse to the length of the plate, and when co-operating with the corresponding ribs of adjacent plates form undulating flow passages which are particularly effective in producing the required physical effect of a high rate of heat exchange for a minimum of pressure drop in the fluid. It is usual to aflord inter-plate support in this ar rangement by means of local projections pressed into the faces of the grooves created by the forming of the ribs.

The object of the present invention is to combine the advantage of both styles of plate, i.e., the method of support provided by the first style of plate combined with the heat exchange efiiciency of the second style of plate.

Broadly stated, the present invention comprises forming in the plates a number of ribs which are spaced longitudinally along the plates, and the length of each of which is made up by sections which are transverse and are spaced apart transversely across the plate, and by oblique sections which join the spaced transverse sections to one another.

In one arrangement, each pressed out rib is made up of a series of relatively short transverse sections spaced apart both transversely and longitudinally to form a plurality of longitudinal rows of transverse sections, the transverse sections in each row being spaced from one another longitudinally in the row. The transverse sections of each row intermediate two contiguous rows are joined with transverse sections in the two contiguous rows by oblique sections of successively reversed inclinations so as to form a wavy, or undulating, rib line as seen in face view.

In another arrangement, each rib comprises a number of transverse sections progressively out of transverse alignment and joined to one another by oblique sections having the same sense of slope.

The longitudinal distance between the two transverse rows of transverse sections in each rib is made equal to half the longitudinal pitch between successive transverse rows of complete ribs. Adjacent plates are arranged so that their transverse sections overlie each other and so that their oblique sections are of opposite inclination and, therefore, cross each other to provide mutual support. This is readily achieved from similar pressings (so far as the rib formations are concerned) if there are an even number of oblique sections in each row (so that the portions at the extreme end of each row are of opposite inclination) and successive plates are reversed end to end.

The depth of the oblique sections of the ribs must be equal to the space betwen successive plates, but the transverse portions may, if desired, be of greater depth so that these portions nest within each other.

The invention is illustrated in the accompanying drawings in which FIGURES 1-6 are views of a plate having one form of rib, FIGURE 1 being a face View of a part of the plate, FIGURE 2 a section on the line IIII FIGURE 1, FIGURE 3 a face view showing two such plates in their face-to-face relationship, FIGURE 4 a section on the line IVIV FIGURE 3, FIGURE 5 a section on the line V-V FIGURE 3, and FIGURE 6 a perspective view showing two such plates assembled with one partly broken away to expose the other plate; FIG- URE 7 is a face view of part of a modified form of plate; FIGURE 8 is a face view of a typical form of plate having formed in it the ribs of the style shown in FIGURES 1-6.

Referring firstly to the construction shown in FIG- URES 1-6 and FIGURE 8: each plate has pressed into one face a series of short transverse grooves 1 arranged in rows extending longitudinally on the plate and the transverse grooves in adjacent rows are joined by oblique grooves 2 of successively reversed inclination so that, in effect, each recess is formed to have an undulating line as seen in the face view of FIGURE 1. The longitudinal pitch P between the transverse grooves 1 in each row is made equal to one half the longitudinal pitch P between the rows. The plate being of uniform thickness, the formation of the grooves in the one face produces corresponding ribs on the other face.

More particularly considering the construction shown in FIGURES 16 and FIGURE 8, each plate has pressed into One face a series of grooved recesses which extend generally across the plate and are deployed adjacent to one another longitudinally of the plate. The recesses comprise short transverse groove sections 1 bounded by transverse rib sections arranged in transverse section rows extending longitudinally of the plate, and oblique groove sections 2 bounded by oblique rib sections arranged in oblique section rows extending longitudinally of the plate, the oblique section rows intervening between and alternating with the transverse section rows. recess, the oblique sections 2 are of successively reversed inclination and are interposed between and join the transverse sections to form, in effect, an undulating grooved recess as seen in the face view of FIGURE 1. The longitudinal pitch P between the transverse sections of two adjacent grooved recesses in the same transverse section row is equal to half the longitudinal pitch P between a transverse section of one grooved recess in one transverse In each grooved section row and the transverse section of the adjacent grooved recess in an adjacent transverse section row.

The depth D of the oblique grooves 2 (as shown in FIGURE is equal to the space required between successive plates in the assembly of plates.

When now such plates are assembled face-to-face with the oblique sections of the ribs of opposed plates opposed to one another but at opposite inclinations, as is indicated in FIGURES 3 and 5, the plates will be supported from one another within their flow area by these oblique sections crossing and bearing against one another: the depth D of the transverse grooves 1 may be chosen to suit requirements as the walls of the grooves (as is shown in FIGURE 4) overlie one another to provide the required undulating fiow passage F which is thus defined between the plates.

Although the depth D can be less or greater than the depth D it can advantageously be made equal to the depth D with such a selection the press tools required for pressing-out the plates are more easily produced and the plates can be supported in production against a flat surface.

In the modification shown in FIGURE 7, the transverse sections 1 of the grooves are still in transverse alignment, but the sections 1 in the various rows are joined by oblique sections 2 all of the same inclination, so that the various sections are in an alignment which is oblique to the length of the plates.

The oblique sections are (as is shown) of V cross-section and it will be clear that the apex or ridge of the VS on one plate provide ribs which cross, are engaged, and supported by the apex or ridge of the VS on the adjacent plate.

As is indicated in FIGURE 8, the plates of this invention would be formed with openings 3 to provide, by the assembly of the plates, the usual supply and return ducts for the two fluids between which heat exchange is required through the plates, and with the usual gaskets 4.

With plates so produced and assembled, the required inter-plate support is provided and, at the same time, longitudinal undulating passages F are provided for the liquids.

What we claim is:

1. A plate type exchanger for heat exchanging media comprising in combination at least two heat exchanger elements each having pairs of thermoconducting plates with the plates of each pair arranged in face-to-face relation and having a longitudinal extent and a transverse extent, each of said plates being formed with ribs arranged in a series longitudinally along the plate and each comprising sections which are transverse to the length of the plate and sections which join the transverse sections and are disposed obliquely to the length of the plate and assembled face-to-face with the oblique sections of each pair of plates crossing and bearing against one another intermediate their ends to provide interplate support and with the transverse sections overlying one another to provide an undulating flow passage extending longitudinally of said plate and transversely with respect to said ribs.

2. A heat exchanger as claimed in claim 1 and wherein in each plate each rib of the series comprises a number of transverse sections, and oppositely inclined oblique sections joining the transverse sections.

3. A heat exchanger as claimed in claim 1 and wherein in each plate each rib comprises a number of transverse sections joined to one another by similarly sloped oblique sections.

4. A heat exchanger as claimed in claim 1 and wherein the depth of each transverse rib-forming groove in each plate is equal to one half of the required spacing of adjacent plates.

5. A heat exchanger as defined in claim 1 wherein the oblique sections have a V cross-sectional shape whereby the ridges of the VS of one plate cross and are supported by the ridges of the Vs of the adjacent plate.

6. A heat exchanger plate as claimed in claim 1 and wherein the transverse sections and the oblique sections are formed to equal depths.

7. A plate type exchanger for heat exchanging media comprising in combination at least two heat exchanger elements each having pairs of thermoconducting plates and the two plates of each element having a longitudinal extent and a transverse extent, each of said plates being formed with a series of grooved recesses and intervening ribs which extend generally transversely across the plate and are deployed longitudinally of the plate, said recesses comprising transverse groove sections bounded by transverse rib sections arranged in first rows extending longitudinally of the plate with the transverse sections respectively in alternate ones of said first rows being spaced from one another longitudinally of the plate, and oblique groove sections bounded by oblique rib sections arranged in second rows extending longitudinally of the plate and intervening between and alternating with said first rows, the plates of each pair being assembled face-to-face with the transverse groove sections of the respective plates overlying one another to provide undulating flow passages extending longitudinally of said plates and transversely with respect to said groove sections, and the oblique rib sections of the respective plates crossing and bearing against one another intermediate their ends to provide interplate support.

8. A heat exchanger according to claim 7 in which the oblique groove sections and oblique rib sections of each of said series in alternate ones of said second rows are of reversed inclination.

9. A heat exchanger according to claim 7 in which the oblique groove sections and oblique rib sections of each of said series in alternate ones of said second rows are of similar inclination.

10. A plate type exchanger for heat exchanging media comprising in combination at least two heat exchanger elements each having pairs of thermoconducting plates with the plates of each pair arranged in face-to-face relation and having a longitudinal extent and a transverse extent, each of said plates being formed with a series of grooved recesses andintervening ribs which extend generally transversely across the plate and are deployed longitudinally of the plate, said recesses comprising transverse groove sections bounded by transverse rib sections arranged in first rows extending longitudinally of the plate with the transverse sections respectively in alternate ones of said first rows being spaced from one another longitudinally of the plate, and oblique groove sections bounded by oblique rib sections arranged in second rows extending longitudinally of the plate and intervening between and alternating with said first rows.

References Cited by the Examiner UNITED STATES PATENTS 2,7 77,674 1/57 Wakeman 25 7245 .7 2,7 87,446 4/57 Ljungstrom 25 7--245 .7 3,111,982 11/63 Ulbricht 166 ROBERT A. OLEARY, Primary Examiner.

HERBERT L- MAR C R ES SUKALO,

- Examiners.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2777674 *May 29, 1953Jan 15, 1957Creamery Package Mfg CoPlate type heat exchanger
US2787446 *Mar 11, 1953Apr 2, 1957Rosenblads Patenter AbPlate type heat exchanger
US3111982 *May 20, 1959Nov 26, 1963Gutehoffnungshuette SterkradeCorrugated heat exchange structures
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3364992 *Dec 22, 1965Jan 23, 1968Citroen Sa AndrePlate type heat-exchangers having corrugated, zig-zag sheet members
US3608629 *Feb 3, 1969Sep 28, 1971Sub Marine Systems IncFlow compensator for exchanger apparatus
US3731737 *Mar 10, 1969May 8, 1973Alfa Laval AbPlate heat exchanger
US3757857 *Mar 23, 1971Sep 11, 1973Merryfull AHeat exchangers
US4206748 *May 25, 1978Jun 10, 1980Libbey-Owens-Ford CompanySolar energy collector with collapsible supporting structure
US4449573 *Apr 30, 1982May 22, 1984Svenska Rotor Maskiner AktiebolagRegenerative heat exchangers
US4518544 *Jan 20, 1983May 21, 1985Baltimore Aircoil Company, Inc.Serpentine film fill packing for evaporative heat and mass exchange
US5124086 *Sep 19, 1991Jun 23, 1992Munters Eurform GmbhFill pack for heat and mass transfer
US8622115 *Aug 19, 2009Jan 7, 2014Alstom Technology LtdHeat transfer element for a rotary regenerative heat exchanger
US20110042035 *Aug 19, 2009Feb 24, 2011Alstom Technology LtdHeat transfer element for a rotary regenerative heat exchanger
EP0115455A2 *Jan 18, 1984Aug 8, 1984Baltimore Aircoil Company, Inc.Serpentine film fill packing for evaporative heat and mass exchange
Classifications
U.S. Classification165/166, 261/112.2
International ClassificationF28F3/08
Cooperative ClassificationF28F3/083, F28F3/046
European ClassificationF28F3/04B4, F28F3/08B