Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3217097 A
Publication typeGrant
Publication dateNov 9, 1965
Filing dateAug 9, 1961
Priority dateAug 9, 1961
Publication numberUS 3217097 A, US 3217097A, US-A-3217097, US3217097 A, US3217097A
InventorsPauli Fritz K, Schlidt Rudolf H
Original AssigneePauli Fritz K, Schlidt Rudolf H
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Tethered hovering platform for aerial surveillance
US 3217097 A
Images(6)
Previous page
Next page
Description  (OCR text may contain errors)

TETHERED HOVERING PLATFORM FOR AERIAL SURVEILLANCE Filed Aug. 9, 1961 Nov. 9, 1965 F. K. PAULI ETAL 6 Sheets-Sheet 1 Fritz K. Pauli 'Rudolf H. Schlidt, ]NVENTORS Nov. 9,1965 F. K. PAUL] ETAL 3,217,097

TETHERED HOVERING PLATFORM FOR AERIAL SURVEILLANCE Filed Aug. 9, 1961 6 Sheets-Sheet 2 hw i1 :F- if 1i Fritz K. Pauli Rudolf H. Schlidi,

IN VEN TORS. j

Nov. 9, 1965 F. K. PAULI ETAL 3,217,097

TETHERED HOVERING PLATFORM FOR AERIAL SURVEILLANCE Filed Aug. 9, 1961 6 Sheets-Sheet 3 MOVEMENT BACKWARD FORWARD ANGULAR V F|G.6B FIG-6D Fritz K. Pauli FIG.6 Rudolf H. Schlidi,

INVENTORS.

' Nov. 9, 1965 F. K. :PAULI ETAL TETHERED HOVERING PLATFORM FOR AERIAL SURVEILLANCE Filed Aug. 9, 1961 6 Sheets-Sheet 4 Frii'z K. Pauli Rudolf H. Schlidr,

INVENTORS.

BY I

Nov. 9, 1965 F. K. PAUL] ETAL 3,217,097

TETHERED HOVERING PLATFORM FOR AERIAL SURVEILLANCE Filed Aug. 9, 1961 6 Sheets-Sheet 5 VISUAL INDICATING MEANS OBSERVATION MEANS REVOLUTION COUNTER GASOLINE ENGINE OF REEL COMPRESSOR C) 0 Q OR COPTER HEIGHT (FT) ON CEO OFF POWER RPM 0II. THROTTLE ON $20 OFF 6 0 i;

GYRO 8 FLAP CONTROL AIR PRESSURE MAIN VALVE FOR UT0 WlNDING MECH' OF COMPRESSOR COMZIIQFESSED ON OFF GYRO 8 7 ON (g) OFF Q (ED ON C OFF Q PSI FLAP CONTROL CONTAINER DOOR 9o CONTROL STICK ON (g) OFF PRESSURE REGULATOR OBSERVATION MEANS TILTING CONTROL ELECTRIC POWER MOTOR SPEED EMERGENCY 80 ON 3;) OFF m RPM DESCENT Flag Fritz K.Pauli Rudolf H. Schhdi,

i I INVENTORIS. BY a, [M

W za

1955 F. K. PAUL] ETAL 3,217,097

TETHERED HOVERING PLATFORM FOR AERIAL SURVEILLANCE Filed Aug. 9, 1961 6 Sheets-Sheet 6 minim" mm FIG. I l

Friiz K. Pauli Rudolf H. Schlidi,

SHUT PRESS. 5525 OF OFF REG. POWEIQ 3,217,097 TETHERED HGVERING PLATFORM FOR AERIAL SURVEILLANCE Fritz K. Pauli, 1417 Locust Ave., and Rudolf H. Schlrdt, 3306 Panorama Drive SE., both of Huntsville, Ala. Filed Aug. 9, 1961, Ser. No. 130,427 8 Claims. (Cl. 1786) (Granted under Title 35, U.S. Code (1952), see. 266) The invention described herein may be manufactured and used by or for the Government for governmental purposes without the payment of any royalty thereon.

This invention relates to a tethered hovering platform. Such a device is useful where it is desirable to observe surrounding areas, such as in reconnaissance by field troops, or in civilian work that requires observation from a distance.

In view of these facts, an object of this invention is to provide an aerial-surveillance device which can be operated with its controls mounted in a permanent location, or that can be controlled from a moving vehicle.

Another object of this invention is to provide a tethered hovering platform with a scanning section which can be orientated while it is air-borne.

Still another object of this invention is to provide a device with a scanning section that can be raised to various heights and lowered in a minimum of time.

A further object of this invention is to provide a light weight device which is relatively free of vibration when used with a vehicle that is traveling over rough terrain.

The foregoing and other objects of this invention will become more fully apparent from the following detailed description of the invention and from the accompanying drawings, in which:

FIGURE 1 is a pictorial view of the tethered hovering platform showing the scanning section being operated from a tank.

FIGURE 2 is an elevational view partly in section and partly broken away, showing the scanning section of FIGURE 1.

FIGURE 3 is a view along line 3-3 of FIGURE 2.

FIGURE 4 is a plan View of FIGURE 2.

FIGURE 5 is a view, partly broken away and partly in section, along line 5--5 of FIGURE 4.

FIGURES 6 through 6d are views showing the relation between the rotor and control flaps when the position of the flaps is varied for movement of the scanning section in different directions.

FIGURE 7 is a sectional view, partly broken away, showing the tethered hovering platform mounted in the tank of FIGURE 1.

FIGURE 8 is an elevational view partly in section of the reeling mechanism of FIGURE 7.

FIGURE 9 is a view of the master control console used for control of the tethered hovering platform.

FIGURE 10 is a sectional elevational view, partly broken away, of another embodiment of the invention.

FIGURE 11 is a plan view of FIGURE 10.

In the drawings, for the purpose of illustration, there is shown preferred embodiments of the invention and wherein the numeral 1 designates a tethered hovering platform. The device (FIGURE 1) includes a scanning section 2, a control line 3 and a ground station 4. The scanning section as shown in FIGURE 2 comprises the airborne vehicle, the scanning means within the airborne vehicle and their associated components as shown therein.

The scanning section is provided with a frame 5 (FIG- URES 2 and 4) that is preferably made of light metal, or plastic and may be filled with any of the known type light weight materials for providing extra strength. This frame comprises a plurality of arcuate support arms 6 auras? Patented Nov. 9, 1965 which have one end connected to a circular protection ring 8. The other ends of arms 6 are connected to housing 10, adajacent its base. Housing It) is provided with a partially enclosed supply tube 12 having one end flowconnected to control line 3 and its other end adapted to provide a bearing support for a rotatable drive rotor 14 having a plurality of hollow blades 16. Each blade is provided with a nozzle outlet 18, adjacent its tip, which is preferably rectangular in cross section. These outlets are flow-connected thru the hollow blades, to supply tube 12, for receiving fluid pressure to operate rotor 14. It is to be understood that other means for driving rotor 14 can be used, such as a small electric motor mounted in the scanning section, or small rocket motors attached to the rotor, but that the fluid pressure system described is preferred.

The housing also serves as a mount for a pivotal observation means 38 which permits the surrounding terrain to be observed. The observation means shown in the drawings is a miniature slow scan television camera. However, it is to be understood that other types of devices can be carried by the scanning section, such as audio transmitting systems, optical equipment, infrared equipment, or other electronic devices. A small motor 32, preferably pneumatic, having one end pivotally connected to observation means 30 and its other end pivotally connected to said housing is used to pivot means 3%. This motor is powered by fluid pressure supplied from control line 3 and is controlled by switch 34 mounted in the control console 36. Switch 34 operates control valve 33, which determines the direction that motor 32 moves and the tilting of means 3!).

In order to maintain the scanning section in a vertical plane, a gyroscopic assembly 24 (FIGURE 5) is disposed in housing It). The housing also serves as a mount for a pair of movable shafts 21, that support control flaps 22, below said rotor. These flaps are utilized for changing the orientation of the scanning section (various positions of the flaps are shown in FIGURE 6) and are moved by motors 24. These motors are provided with gears 2d which coast with a second set of gears 28 that are rigidly mounted on shafts 21.

Control line 3 has one end flow-connected to scanning section 2 and is preferably made of light weight material, such as plastic with reinforced nylon fiber, but can be made from other materials as long as they provide a line which is flexible and light weight combined with high strength. The line is provided with additional reinforcements by a plurality of wires 38 that are molded in the wall of the line. These Wires provide the necessary electrical connections between the elements in the scanning section and the control console disposed in the ground station.

As stated above, the ground station can be either stationary, or movable but is illustrated in the drawing as being movable. The ground station is provided with a recess 40, that provides a storage space for the scanning section when the section is not in use. The recess is covered by a movable door 42, operated by a motor and gear arrangement 44 that is controlled from the console, when the section is housed in the recess. Ground station 4 is also provided with a reeling mechanism 46, adjacent to recess 40.

Mechanism 46 is provided with a spool 48 (FIGURES 7 and 8), for storage of line 3, that has a bore 49 extending partially along its axis which is open at one end and an aperture 50 joining the bore. This aperture provides a path between bore 49 and control line 3 for passage of pressurized fluid for operating rotor 14 and for passing conductors 38 into bore 49, where they are connected to a plurality of electrical contacts 51. The open end of bore 49 is flow-connected by a conduit 56 to a pressure regulator and a shutoff valve 58 and a source of pressure 61, which can be a compressor, tanks, or any other suitable pressure supplying means. Spool 48 is mounted for rotation, in a pair of supports 52, by a reversible drive mechanism 54. This mechanism is also coupled with a guide roller 60 mounted on one end of an arm 64. Arm 64 also serves as a mount for a second guide roller 62, that coacts with roller 6t). Roller 60 is Synchronized with spool 48 by drive rod 66 and its attached gear boxes 68 and 70, or other suitable means that will maintain the amount of line unwound from spool 48 and the amount of line passing over roller 69 equal. Arm 64 is provided with a pair of tension springs 72 to insure pretensioning of rollers 60 and 62. The other end of arm 64 is provided with a pair of resilient snubbers 65 for providing a limited shock absorbed action to the arm.

FIGURES 10 and 11 show another embodiment of the invention that utilizes a pair of oppositely rotating rotors 74, and 76 having a coupling device '78 for insuring equal rotational speed of both rotors. However, it is to be understood that the rotors can be rotated in the same direction. In this embodiment frame is substantially rectangular so that both rotors are enclosed by the same frame. The remainder of this embodiment is the same as the first embodiment, and can replace the scanning section of the first embodiment by changing control line 3 from one embodiment to the other and by providing the ground station with recess 40 that will receive a scanning section of either shape.

The operation of the device is as follows:

The tethered hovering platform is placed in operating position (for purposes of explanation, the device is de-' scribed as being mounted in a movable mount, represented as a tank, but as pointed out above it can be maintained in a stationary position) aboard a moving tank.

When the tank commander reaches a position where he wants to observe the surrounding terrain, the operator actuates switch 80 (FIGURE 9) which controls electric power to the device, and switches on fluid pressure control switch 82 for supplying pressure to the pressure regulator. Next, switch 84, for supplying power to a visual indicating means 85 and observation means 30, is switched on and the indicating means and observation means are checked for proper operation. Door 42 is opened by actuation of switch 86 and the pressure regulating section of valve 58 is adjusted by control switch 88 so that it supplies a minimum amount of fluid pressure to the shut-oif section of valve 58. The shut-ofi section of valve 58 is opened by switch 89, thereby supplying the minimum amount of pressure to scanning section 2. Switch 87 is then operated, placing the gyroscope in operation. With the gyroscope in operation, power is supplied to the motors for operating the control flaps by switching on switch 90, and the flaps are adjusted to Zero position by control stick 91.

The scanning section is now ready to move out of recess 40 and up to a predetermined height that is controlled by the setting of revolution counter 92 and brake 94. When it is desired that the device ascend, a predetermined pressure necessary to lift the scanning section from recess 49 is supplied to rotor 14 (or to the dual rotors in the second embodiment) by readjustment of control 88, brake 94 is released and the winding mechanism is operated by switch 93 thereby allowing line 3 to leave spool -58. When the scanning section has reached the predetermined height, it is positioned by moving the control stick. With the scanning section in the desired position, the observation means is adjusted by operating switch 34 which operates a two-way valve 33 that controls the direction of movement of motor 32, thereby positioning observation means 30.

Reference is made to FIGURE 6, in which section A shows that with the control stick in zero position the scanning section remains stationary, except when moved by gusts of wind, section B shows the position of the 41 flaps when the control stick is moved forward, section C shows the position of the flaps when the control stick is moved backwards from its Zero position, and section D shows the position of the flaps when the control stick is rotated in one direction (if the stick is rotated in the opposite direction the position of the flaps will be reversed). With the above control, we see that the scanning section can be moved in a number of different directions with, or without the tank moving.

In order for the scanning section to descend the reverse procedure is carried out. Also, it is possible to create a partial descend by decreasing the length of control line 3 and the pressure supplied to the scanning section (adjustment of the pressure is not always necessary in partial descends).

It is to be understood that the preferred invention is herein shown and described, and that various changes in the shape, size and arrangement of parts may be resorted to without departing from the spirit of the inventor tor the scope of the subjoined claims.

The following invention is claimed:

1. An aerial-surveillance device for observing surrounding terrain comprising: a self powered movable ground station; a scanning section, said scanning section having a protection shroud; fluid actuated rotor means disposed for rotation for producing thrust for propelling said scanning section, said rotor means enclosed by said shroud for placing said section in an airborne position; a plurality of control flaps disposed beneath said fluid actuated rotor means and disposed for actuation to direct said thrust in a desired direction, for controlling the attitude of said scanning section; a plurality of servo mechanisms connected to said flaps for movement of said flaps; observation means pivotally mounted in said scanning section for receiving a representation of the surrounding terrain; a tubular control line having one end connected to said scanning section; a plurality of electrical conductors embedded adjacent the periphery of said tubular control line for supplying power to said servo mechanisms; and a source of power connected to a second end of said control line, said source of power comprising an air compressor and a source of electrical power.

2. A device as set forth in claim 1, that further comprises a gyroscopic assembly disposed in said scanning section for maintaining said section in a vertical plane.

3. A device as set forth in claim 1, in which said fluid actuated rotor means comprises a rotor having a plurality of blades and thrust producing means disposed in the tip of each blade.

4. A device as set forth in claim 1, further comprising a master control valve disposed intermediate said second end of said second control line and said air compressor, said master control valve having a cut-off section and a pressure regulator section coacting with said air compressor for controlling the ascent and descent of said scanning section.

5. A device as set forth in claim 1, in which said means coacting with said section for displaying said representation comprises a video receiver.

6. A device as set forth in claim 1 wherein said ground station is provided with a control mechanism including a control console and a reeling mechanism for controlling said tubular control line connected to said scanning section.

7. A device as set forth in claim 1, in which said fluid actuated rotor means for placing said section in an airborne position comprises a plurality of rotors having a plurality of blades, thrust producing means disposed in the tip of each blade, and means for maintaining equal rotational speed of said rotors.

8. An aerial-surveillance device for observing surrounding terrain comprising; a scanning section, said section having a housing, fluid actuated rotor means disposed for rotation for producing thrust for propelling said scanning section, said fluid actuated rotor means attached to said housing for placing said section in an airborne position, means rotatably disposed in said housing for maintaining said housing in a plane that is normal to said means for placing said housing in an airborne position, variable control mechanism connected to said housing and disposed for actuation to direct said thrust in a desired direction for changing the airborne position of said section, observation means pivotably attached to said housing for receiving a representation of the surrounding terrain, and a shroud for protecting said scanning section and for directing thrust from said means for placing said section in an airborne position; a control station having a master control console for control of said scanning section, means for displaying said representation of said surrounding terrain, a reeling mechanism having a bore, an aperture, a plurality of electrical contacts supported by said mechanism, and electrical means extending thru said aperture and connecting said contacts to said console, a plurality of electrical conductors electrically connecting said contacts to said scanning section, a fluid pressure source flowconnected to said bore, and a source of electric power connected to said contacts; a hollow resilient control line having one end connected to said scanning section in communication with said fluid actuated rotor means, and its other end flow-connected With said bore and source of fluid pressure.

References Cited by the Examiner UNITED STATES PATENTS 1,523,926 1/25 Ypma 24417 .17 1,993,414 3/35 Respess 40214 2,212,128 8/40 Richter 343902 2,463,094 3/49 Field et a1. 178-6 2,476,678 7/49 Miller 4689 2,995,740 8/61 Shreckengost 1786 3,149,803 9/64 Petrides et al 24417.13

FOREIGN PATENTS 569,094 1/59 Belgium.

20 DAVID G. REDINBAUGH, Primary Examiner.

KATHLEEN H. CLAFFY, Ex'aminer.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1523926 *Mar 26, 1923Jan 20, 1925Harry YpmaHelicopter
US1993414 *Mar 7, 1932Mar 5, 1935Respess Aeronautical EngineeriAerial signal device
US2212128 *May 6, 1939Aug 20, 1940Telefunken GmbhAntenna
US2463094 *Jan 11, 1944Mar 1, 1949Gen Railway Signal CoAirplane course indicating system
US2476678 *Jan 14, 1947Jul 19, 1949Miller Walter CInflatable toy airplane
US2995740 *Aug 30, 1957Aug 8, 1961Shreckengost Raymond CRadar system
US3149803 *Jul 19, 1961Sep 22, 1964Us Industries IncTethered hovering platform
BE569094A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3523660 *Feb 5, 1968Aug 11, 1970Condor Helicopters & Aviat IncTelevision camera mounting structure for helicopters used in aerial survey work
US3611367 *Feb 3, 1969Oct 5, 1971Giravions DorandAirborne station for aerial observation system
US4058277 *Jul 28, 1976Nov 15, 1977Dornier Gmbh.Captive remote-controlled helicopter
US4886222 *Jun 13, 1988Dec 12, 1989The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationAtmospheric autorotating imaging device
US4937717 *Jun 9, 1988Jun 26, 1990Betzvog Jr John MLighting system for hazardous areas
US5015187 *Feb 28, 1990May 14, 1991Byron HatfieldHelicopter remote control system
US5020411 *Mar 6, 1989Jun 4, 1991Larry RowanMobile assault logistic kinetmatic engagement device
US5114227 *May 14, 1987May 19, 1992Loral Aerospace Corp.Laser targeting system
US5294930 *May 1, 1992Mar 15, 1994Li Ming ChiangOptical RF stereo
US6487953Apr 15, 1985Dec 3, 2002The United States Of America As Represented By The Secretary Of The ArmyFire control system for a short range, fiber-optic guided missile
US6491253Apr 15, 1985Dec 10, 2002The United States Of America As Represented By The Secretary Of The ArmyMissile system and method for performing automatic fire control
US6634593Aug 14, 2002Oct 21, 2003Bertin TechnologiesRemote controlled aircraft, in particular for surveillance or inspection
US8738198 *May 26, 2011May 27, 2014Foster-Miller, Inc.Robot surveillance system and method
US20120112008 *Aug 16, 2011May 10, 2012Primal InnovationSystem for high altitude tethered powered flight platform
US20120303179 *May 26, 2011Nov 29, 2012Hagen SchempfRobot surveillance system and method
USRE35553 *Jan 20, 1995Jul 8, 1997Li; Ming-ChiangOptical RF stereo
DE3726065A1 *Aug 6, 1987Jan 21, 1988Friedhelm FredrichBOX-TYPE MOTOR VEHICLE having an evaluation device in the driver's cab, which evaluation device allows an operator to assess an object by means of screens and sound transducers, the signals from a video camera being used especially for assessment of the recording angle
WO2001060692A1 *Feb 13, 2001Aug 23, 2001Bertin Technologies SaRemote-controlled flying machine, in particular for surveillance or inspection
WO2012063220A2 *Nov 10, 2011May 18, 2012Sky SapienceAerial unit and method for elevating payloads
Classifications
U.S. Classification348/144, 174/47, 89/36.15, 348/E07.87, 89/40.12, 244/17.17, 89/41.5, 89/936
International ClassificationB64C39/02, H04N7/18, B64C39/00
Cooperative ClassificationB64C39/022, H04N7/183
European ClassificationB64C39/02B, H04N7/18D