Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3221811 A
Publication typeGrant
Publication dateDec 7, 1965
Filing dateMar 11, 1963
Priority dateMar 11, 1963
Also published asDE1235240B
Publication numberUS 3221811 A, US 3221811A, US-A-3221811, US3221811 A, US3221811A
InventorsMichael Prats
Original AssigneeShell Oil Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Mobile in-situ heating of formations
US 3221811 A
Abstract  available in
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Dec. 7, 1965 M. PRATS 3, 81

MOBILE IN-SIIU HEATING 0F FORMATIONS Filed March 11, 1963 2 Sheets-Sheet 1 FLUID PRODUCTION FLUID PRODUCTION FUEL AIR INJECTION INJECTION FLUID PRODUCTION FIG. 3

INVENTORZ M. PRATS HIS AGENT Dec. 7, 1965 M. PRATS 3,221,811

MOBILE IN-SITU HEATING OF FORMATIONS Filed March 11, 1963 2 Sheets-Sheet 2 FUEL INJECTION AIR FUEL rum) INJECTION PRODUCTION 'NJECHON DRIVE FLUID l T INJECTION 1 7 -"\B r OIL SAND l 1:; l1 ZZZZ 7ZZZZ XZZ Z AV/flW/flfl U/ M;7 14 jt BARREN SAND '0 AIRFLOW 2.2/27 lfl comausnou ZONE t 9 INJECTED BARRIER INVENTOR:

M. PRATS End H M C HIS AGENT United States Patent 3,221,811 MOBILE IN-SITU HEATING 0F FORMATIONS Michael Trrats, Houston, Tera, assignor to Shell Gil Company, New York, N.Y., a corporation of Delaware Filed Mar. 11, 1963, Ser. No. 264,384 Claims. (Cl. 16611) This invention relates to the heating of hydrocarbon or oil-bearing formations and pertains more particularly to an in-situ method for thermally fluidizing minerals or hydrocarbons occurring in or near sub-surface formations in which combustion cannot be maintained by the injection of air alone. The present method is especially useful in producing material from formations containing hydrocarbons or other organic materials, such as coal, in quantities that are not suflicient for combustion to be maintained in the formation by the injection of air or another oxygen-containing fluid.

The present method is based on the steps of injecting a fuel-containing fluid at one location, injecting an oxygen-containing fluid at a different location, burning the mixture formed where the fluids meet within the formation, and producing the combustion products, and displaced fluids from a third location. By adjusting the injection rates, the zone of combustion can be maintained in or moved through selected regions within the formation.

Combustion within a formation requires the presence of a fuel and oxygen in critical proportions at a temperature above a critical minimum. Some formations in which combustion cannot be maintained by the injection of air contain combustible materials or contain substances which produce combustible materials when they are heated, but contain these substances in proportions such that the heat from burning the combustible materials is insuflicient, or is too rapidly lost, to maintain a temperature at which ignition occurs.

In oil production processes, especially in the secondary recovery of oil, it is sometimes desirable to move a combustion front through a substantially barren formation, that is, one which will not support combustion, in order to supply heat to an adjacent formation. Various patents disclose methods of supplying both air and fuel to maintain an in-situ combustion in such barren formations.

However, in each of the processes suggested in the patent literature, the fuel and air are injected through the same well, either concurrently as components of a single fluid stream, or sequentially as components of intermittently injected fluids. One drawback to such a procedure is that When combustible materials flowing from the same injection well reach their ignition temperature within a cavern or fissure near the injection well, a backflashing can occur. This may damage the well. Secondly, in the patented procedures the pattern of the burning zone is necessarily confined to the general shape of an arc of a circle around the injection well and the region through which the burning zone can be moved is necessarily a generally circular or spherical region of expansion around the injection well.

It is therefore a primary object of the present invention to provide a method of carrying out in-situ heating within a formation to thermally fluidize minerals or hydrocarbons occurring in a formation which does not contain enough fuel to support combustion.

A further object of the present invention is to provide a method of heating an underground formation by forming a combustion front therein at any desired point so as to heat a selected region of the formation.

Another object of the present invention is to provide a method of heating an underground formation by means of a combustion front formed therein and subsequently selectively moving the combustion front as desired within the formation to heat various regions of the formation so as to volatilize minerals contained within the formation or to volatilize or reduce the viscosity of hydrocarbon materials contained within the formation and move them to a production well.

Still another object of the present invention is to provide a method for producing minerals or hydrocarbons from an underground formation by selectively heating various regions of the formation one or more times by means of a moving combustion front which is moved either continuously or in a stepwise fashion through the formation.

These and other objects of the invention will be understood from the following description taken with reference to the drawing, wherein:

. FIGURES 1 through 4 are plan views of three wells with various flow patterns of injected materials being schematically shown extending between the wells; and,

FIGURE 5 is a diagrammatic view of a pair of wells taken in longitudinal cross-section with the air and fuel flow patterns being schematically shown between the wells.

In FIGURE 1 a planned view of the preferred arrangements of wells is shown for use in carrying out the method of the present invention. The method is started by injecting a fuel such as methane into the formation to be heated through well number 1 and producing the fluid at well number 3. The several lines forming flow patterns of fuel represent the injection of fuel at successive and increasing flow rates.

After a suitable pattern of flow of fuel from well 1 to well 3 has been established, air or an oxygen-containing fluid is injected through well 2 (FIGURE 2) either simultaneously with or subsequent to the formation temperature of well 2 being raised by means of a suitable down-hole heating device. Alternatively, at the time the air is injected into well 2 with the fuel being present in the adjacent formation, the mixture can be ignited by any suitable ignition procedure, e.g., by utilizing an ignition means which would be lowered into the well to the desired depth. The air injection rate is preferably kept small enough compared to the fuel injection rate so that the fluids-produced in well 3 do not constitute an explosive mixture. With a small air injection rate, the regions of contact of the fuel and air are at least partially within the zone of the formation heated by any down-hole heater used within well 2. Once ignition has been accomplished, the heater can be turned off and the heat of combustion used to maintain the temperature of the air and fuel above the ignition temperature. The hatched portion shown in FIGURE 2 represents schematically the combustion front surrounding well 2 and extending to well 3.

The location of the combustion front (hatched portion) within the formation can be readily changed by adjusting the air and fuel injection rates. Increasing the injection rate of the air relative to that of the fuel moves the combustion zone further away from well 2, both in the direction toward well 1 and in the direction normal to a line between wells 1 and 2. A reduction in the fuel injection rate into well 1 will cause the combustion zone to move still further from well 2. An increase in the fuel injection rate into well 1 would have the opposite effect. Simultaneous increase of injection rates of both the fuel into well 1 and the air into well 2 would cause a greater sideward movement of the combustion front, thus allowing the combustion front to sweep into greater areas of the formation under consideration.

An analysis of the produced gas from well 3 indicates whether combustion is occurring. In the event that combustion within the formation has stopped, the gaseous mixture in the formation can be re-ignited in the manner in which it was originally ignited. The location of the regions in which combustion is occurring within the formation can be determined by methods well-known to reservoir engineers, such as by calculating the flow paths of the injected gas. Combustion can be maintained within the formation while moving the combustion front from one region to another as long as the injection rates of the fuel and the air are not changed so rapidly that the mixing zone is moved into portions of the formation which have not been previously heated to ignition temperature by the combustion front.

As illustrated in FIGURE 4, the location of the burning region within the formation can be readily changed by producing the fluids from an additional well 4 for example. By producing from well 4 located to the left of well 1, the burning region (hatched zone) can be relocated in a manner shown. The combustion zone can be moved back and forth between the wells as many times as desired. The rate at which the combustion zone can be moved is materially greater than the rates of movement which are possible for combustion zones produced by burning in a matrix containing a static body of fuel.

While the method of the present invention has been described herein above as being carried out through three wells or conduits in communication between the surface and the underground formation to be heated, it is quite apparent that it is not essential that three sub-surface locations be employed, as shown in FIGURE 5. In the arrangement shown in FIGURE 5, the well 6 is provided with 2 conduits 7 and 8 through which fuel is injected, and oil or other fluid production is produced, respectively. The open lower ends of the two conduits 7 and 8 are isolated one from the other by means of a packer 9. Preferably prior to start of production the barren sand formation 10 has been fractured in a manner well-known to the art with a barrier 11 preferably of a heat-resistent material such as cement, being injected into the fracture so as to extend radially from the well 4. Alternately, the barrier of a sealing material could be injected without fracturing the formation. From the fuel flow lines drawn on FIGURE it will be seen that the injected barrier directs the fuel flow into the formation in a manner such as to cause it to sweep a considerable area prior to it being contacted by the flow of air from conduit 12 positioned in well 13. Thus a combustion front forms at 14 and may be moved up or down within the formation by varying the flow of the two injected fluids. In the arrangement shown in FIGURE 5, two of the three subsurface locations are provided in a single well.

The method in general comprises establishing fluid communication from points above the surface to a least three sub-surface locations, establishing fluid communication through the formation between the sub-surface locations, injecting a fuel-containing fluid into the formation around at least one of the sub-surface locations, injecting an oxygen-containing fluid into the formation around at least-one of the sub-surface locations, adjusting the relative rates of the injections so that the injected fluids meet within the formation and displace fluids into the vicinity of at least one of the sub-surface locations, igniting the mixture formed along the junction of the injected fluids, controlling the relative rates of injection so that the burning mixture extends along a path having a selected and movable portion within the formation, and withdrawing the fluids displaced in the vicinity of at least one of the sub-surface locations.

. The above-described formation heating method can be used in conjunction with an oil production operation be similarly used in conjunction with the production of any mineral matter capable of being thermally converted to a liquid or gaseous fluid, for example, viscous petroleum materials. In addition to hydrocarbons, various examples of volatilizable contents of sedimentary strata susceptible to the method of the present invention may be native metals such as mercury, bismuth, antimony, arsenic, zinc, etc., sulfur, both native and in composition, inpyrite, mispickel, galena, redruthite, argentite, blends, etc., chlorides of the metals and alkalis such as calomel, sylvite, chlorite, salmiac, etc., oxides of the metals, such as arsenolite, etc., sulfides of the metals, such as cinnabar, etc., inorganic acids in compositions, such as carbonic dioxide, etc., and any volatilizable minerals produced by the chemical action upon the constituents of the strata of mineralizing agents.

The process can be used either for heating or for simultaneously thermally fluidizing and fluid driving a material which is present in the formation in which in-situ combustion cannot be maintained by injecting air along.

In simultaneously thermally fluidizing, fluid driving, and producing a material, the location into which fluids are displaced is maintained at a pressure lower than the injection pressures of the fuel in the air, and the fluidized material is withdrawn along with the fluid combustion products and the fluids displaced from the formation.

The initial permeability of the formation in which the burning is to be conducted is not a limitation. The necessary fluid communication through the formation can be established by hydraulic fracturing, underground explosions, or the like. The fissures and caverns in locations in which .the fuel-containing and oxygen-containing fluids meet will become filled with explosive mixtures and detonations will occur. Such explosions will convert the nearby portions of the formation to highly porous fragmented portions and the region of this occurrence will be moved along with any movements of the junction of the fuel-containing and oxygen-containing fluids.

In an operation which a normally solid material is thermally liquified and the fluid driven into a production well, the liquified material, such as sulfur, must be pumped out or removed in a manner so as to maintain a relatively low pressure in the production well. The present method can be employed to roast an ore, to reduce the viscosity of a liquid or solid which cannot be fluid-driven at the applicable pressures, or to pyrolyze a material into fluid products.

I claim as my invention:

1. A method of heating extensive areas of an underground formation for the purpose of heating a material in an underground location, said method comprising the steps of (a) injecting fuel at one point into an underground formation which is deficient in combustible material in an amount suflicient to maintain an underground combustion,

(b) injecting an oxygen-containing fluid into said underground formation at a point spaced from said fuelinjection point but within contact range of said in jected fuel,

(c) igniting said mixture of fuel and oxygen-containing fluid at least at one point along the contact front in the formation between said injection points where the fuel and oxygen-containing fluid combine into a combustible mixture, thereby forming a combustion front which subsequently propagates along the entire contact front,

(d) discharging the products of said combustion from said formation at a point displaced from the points at which the fuel and the oxygen-containing fuel are separately injected,

(e) controlling the injection rates of said fuel and said oxygen-containing fluid to maintain the combustion front in a selected area of said formation being heated, nd

(f) slowly increasing the flow rate of one of said injected materials relative to the other to cause the combustion front to move from a portion of the formation closer to one injection point toward the other injection point.

2. The method of claim 1 including the step of slowly decreasing the flow rate of said one injected material to cause the combustion front to move in the opposite direction between said injection points.

3. The method of claim 1 wherein the injection of fuel and the injection of oxygen-containing fluid into the formation take place through separate wells at points spaced from each other and from a production well.

4. The method of claim 3 wherein the injection wells are both to one side of and substantially in line together with said production well.

5. The method of claim 1 wherein the steps of injecting fuel and of injecting oxygen-containing fluid take place through separate spaced apart injection wells while the products of combustion are first discharged through a production well to one side of the injection wells and including the steps of subsequently closing the production well and opening another production well through which the products may be discharged substantially on the op posite side of said injection wells.

References Cited by the Examiner UNITED STATES PATENTS CHARLES E. OCONNELL, Primary Examiner.

BENJAMIN HERSH, Examiner.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2880803 *Jan 16, 1958Apr 7, 1959Phillips Petroleum CoInitiating in situ combustion in a stratum
US2913050 *May 12, 1955Nov 17, 1959Phillips Petroleum CoPreventing explosions in bore holes during underground combustion operations for oil recovery
US2954218 *Dec 17, 1956Sep 27, 1960Continental Oil CoIn situ roasting and leaching of uranium ores
US3007521 *Oct 28, 1957Nov 7, 1961Phillips Petroleum CoRecovery of oil by in situ combustion
US3026937 *May 17, 1957Mar 27, 1962California Research CorpMethod of controlling an underground combustion zone
US3097690 *Dec 24, 1958Jul 16, 1963Gulf Research Development CoProcess for heating a subsurface formation
US3120264 *Jul 9, 1956Feb 4, 1964Texaco Development CorpRecovery of oil by in situ combustion
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3349846 *Jul 30, 1964Oct 31, 1967Phillips Petroleum CoProduction of heavy crude oil by heating
US3361201 *Sep 2, 1965Jan 2, 1968Pan American Petroleum CorpMethod for recovery of petroleum by fluid injection
US3422891 *Aug 15, 1966Jan 21, 1969Continental Oil CoRapid breakthrough in situ combustion process
US4440224 *Oct 20, 1978Apr 3, 1984Vesojuzny Nauchno-Issledovatelsky Institut Ispolzovania Gaza V Narodnom Khozyaistve I Podzemnogo Khranenia Nefti, Nefteproduktov I Szhizhennykh Gazov (Vniipromgaz)Method of underground fuel gasification
US4456065 *Aug 20, 1981Jun 26, 1984Elektra Energie A.G.Heavy oil recovering
US6688387Apr 24, 2001Feb 10, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6698515Apr 24, 2001Mar 2, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a relatively slow heating rate
US6708758Apr 24, 2001Mar 23, 2004Shell Oil CompanyIn situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US6712135Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a coal formation in reducing environment
US6712136Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US6712137Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US6715547Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US6715549Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US6719047Apr 24, 2001Apr 13, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US6722429Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6722430Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US6722431Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of hydrocarbons within a relatively permeable formation
US6725920Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US6725921Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation by controlling a pressure of the formation
US6725928Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a distributed combustor
US6729395Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US6729396Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US6729397Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US6729401Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation and ammonia production
US6732795Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US6732796Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US6736215Apr 24, 2001May 18, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US6739393Apr 24, 2001May 25, 2004Shell Oil CompanyIn situ thermal processing of a coal formation and tuning production
US6739394Apr 24, 2001May 25, 2004Shell Oil CompanyProduction of synthesis gas from a hydrocarbon containing formation
US6742587Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US6742588Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US6742589Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US6742593Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US6745831Apr 24, 2001Jun 8, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US6745832Apr 24, 2001Jun 8, 2004Shell Oil CompanySitu thermal processing of a hydrocarbon containing formation to control product composition
US6745837Apr 24, 2001Jun 8, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US6749021Apr 24, 2001Jun 15, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a controlled heating rate
US6752210Apr 24, 2001Jun 22, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using heat sources positioned within open wellbores
US6758268Apr 24, 2001Jul 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US6761216Apr 24, 2001Jul 13, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
US6763886Apr 24, 2001Jul 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with carbon dioxide sequestration
US6769483Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US6782947Apr 24, 2002Aug 31, 2004Shell Oil CompanyIn situ thermal processing of a relatively impermeable formation to increase permeability of the formation
US6789625Apr 24, 2001Sep 14, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US6805195Apr 24, 2001Oct 19, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US6820688Apr 24, 2001Nov 23, 2004Shell Oil CompanyIn situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio
US6866097Apr 24, 2001Mar 15, 2005Shell Oil CompanyIn situ thermal processing of a coal formation to increase a permeability/porosity of the formation
US6877554Apr 24, 2001Apr 12, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control
US6910536Apr 24, 2001Jun 28, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US6948563Apr 24, 2001Sep 27, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US6991031Apr 24, 2001Jan 31, 2006Shell Oil CompanyIn situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US6994168Apr 24, 2001Feb 7, 2006Scott Lee WellingtonIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US7032660Apr 24, 2002Apr 25, 2006Shell Oil CompanyIn situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US7036583Sep 24, 2001May 2, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US7096941Apr 24, 2001Aug 29, 2006Shell Oil CompanyIn situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US7644765Oct 19, 2007Jan 12, 2010Shell Oil CompanyHeating tar sands formations while controlling pressure
US7673681Oct 19, 2007Mar 9, 2010Shell Oil CompanyTreating tar sands formations with karsted zones
US7673786Apr 20, 2007Mar 9, 2010Shell Oil CompanyWelding shield for coupling heaters
US7677310Oct 19, 2007Mar 16, 2010Shell Oil CompanyCreating and maintaining a gas cap in tar sands formations
US7677314Oct 19, 2007Mar 16, 2010Shell Oil CompanyMethod of condensing vaporized water in situ to treat tar sands formations
US7681647Mar 23, 2010Shell Oil CompanyMethod of producing drive fluid in situ in tar sands formations
US7683296Mar 23, 2010Shell Oil CompanyAdjusting alloy compositions for selected properties in temperature limited heaters
US7703513Oct 19, 2007Apr 27, 2010Shell Oil CompanyWax barrier for use with in situ processes for treating formations
US7717171Oct 19, 2007May 18, 2010Shell Oil CompanyMoving hydrocarbons through portions of tar sands formations with a fluid
US7730945Oct 19, 2007Jun 8, 2010Shell Oil CompanyUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7730946Oct 19, 2007Jun 8, 2010Shell Oil CompanyTreating tar sands formations with dolomite
US7730947Oct 19, 2007Jun 8, 2010Shell Oil CompanyCreating fluid injectivity in tar sands formations
US7735935Jun 1, 2007Jun 15, 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US7785427Apr 20, 2007Aug 31, 2010Shell Oil CompanyHigh strength alloys
US7793722Apr 20, 2007Sep 14, 2010Shell Oil CompanyNon-ferromagnetic overburden casing
US7798220Apr 18, 2008Sep 21, 2010Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US7798221Sep 21, 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7831134Apr 21, 2006Nov 9, 2010Shell Oil CompanyGrouped exposed metal heaters
US7832484Apr 18, 2008Nov 16, 2010Shell Oil CompanyMolten salt as a heat transfer fluid for heating a subsurface formation
US7841401Oct 19, 2007Nov 30, 2010Shell Oil CompanyGas injection to inhibit migration during an in situ heat treatment process
US7841408Apr 18, 2008Nov 30, 2010Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US7841425Nov 30, 2010Shell Oil CompanyDrilling subsurface wellbores with cutting structures
US7845411Dec 7, 2010Shell Oil CompanyIn situ heat treatment process utilizing a closed loop heating system
US7849922Dec 14, 2010Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US7860377Apr 21, 2006Dec 28, 2010Shell Oil CompanySubsurface connection methods for subsurface heaters
US7866385Apr 20, 2007Jan 11, 2011Shell Oil CompanyPower systems utilizing the heat of produced formation fluid
US7866386Oct 13, 2008Jan 11, 2011Shell Oil CompanyIn situ oxidation of subsurface formations
US7866388Jan 11, 2011Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US7912358Apr 20, 2007Mar 22, 2011Shell Oil CompanyAlternate energy source usage for in situ heat treatment processes
US7931086Apr 18, 2008Apr 26, 2011Shell Oil CompanyHeating systems for heating subsurface formations
US7942197Apr 21, 2006May 17, 2011Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US7942203May 17, 2011Shell Oil CompanyThermal processes for subsurface formations
US7950453Apr 18, 2008May 31, 2011Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US7986869Apr 21, 2006Jul 26, 2011Shell Oil CompanyVarying properties along lengths of temperature limited heaters
US8011451Sep 6, 2011Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US8027571Sep 27, 2011Shell Oil CompanyIn situ conversion process systems utilizing wellbores in at least two regions of a formation
US8042610Oct 25, 2011Shell Oil CompanyParallel heater system for subsurface formations
US8070840Apr 21, 2006Dec 6, 2011Shell Oil CompanyTreatment of gas from an in situ conversion process
US8083813Dec 27, 2011Shell Oil CompanyMethods of producing transportation fuel
US8113272Oct 13, 2008Feb 14, 2012Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US8146661Oct 13, 2008Apr 3, 2012Shell Oil CompanyCryogenic treatment of gas
US8146669Oct 13, 2008Apr 3, 2012Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US8151880Dec 9, 2010Apr 10, 2012Shell Oil CompanyMethods of making transportation fuel
US8151907Apr 10, 2009Apr 10, 2012Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8162059Apr 24, 2012Shell Oil CompanyInduction heaters used to heat subsurface formations
US8162405Apr 24, 2012Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US8172335May 8, 2012Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8177305Apr 10, 2009May 15, 2012Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8191630Apr 28, 2010Jun 5, 2012Shell Oil CompanyCreating fluid injectivity in tar sands formations
US8192682Apr 26, 2010Jun 5, 2012Shell Oil CompanyHigh strength alloys
US8196658Jun 12, 2012Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US8220539Jul 17, 2012Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8224163Oct 24, 2003Jul 17, 2012Shell Oil CompanyVariable frequency temperature limited heaters
US8224164Oct 24, 2003Jul 17, 2012Shell Oil CompanyInsulated conductor temperature limited heaters
US8224165Jul 17, 2012Shell Oil CompanyTemperature limited heater utilizing non-ferromagnetic conductor
US8225866Jul 21, 2010Jul 24, 2012Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8230927May 16, 2011Jul 31, 2012Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US8233782Jul 31, 2012Shell Oil CompanyGrouped exposed metal heaters
US8238730Aug 7, 2012Shell Oil CompanyHigh voltage temperature limited heaters
US8240774Aug 14, 2012Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US8256512Oct 9, 2009Sep 4, 2012Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US8261832Sep 11, 2012Shell Oil CompanyHeating subsurface formations with fluids
US8267170Sep 18, 2012Shell Oil CompanyOffset barrier wells in subsurface formations
US8267185Sep 18, 2012Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US8272455Sep 25, 2012Shell Oil CompanyMethods for forming wellbores in heated formations
US8276661Oct 2, 2012Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US8281861Oct 9, 2012Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US8327681Dec 11, 2012Shell Oil CompanyWellbore manufacturing processes for in situ heat treatment processes
US8327932Apr 9, 2010Dec 11, 2012Shell Oil CompanyRecovering energy from a subsurface formation
US8353347Oct 9, 2009Jan 15, 2013Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US8355623Jan 15, 2013Shell Oil CompanyTemperature limited heaters with high power factors
US8381815Apr 18, 2008Feb 26, 2013Shell Oil CompanyProduction from multiple zones of a tar sands formation
US8434555Apr 9, 2010May 7, 2013Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US8448707May 28, 2013Shell Oil CompanyNon-conducting heater casings
US8459359Apr 18, 2008Jun 11, 2013Shell Oil CompanyTreating nahcolite containing formations and saline zones
US8485252Jul 11, 2012Jul 16, 2013Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8536497Oct 13, 2008Sep 17, 2013Shell Oil CompanyMethods for forming long subsurface heaters
US8555971May 31, 2012Oct 15, 2013Shell Oil CompanyTreating tar sands formations with dolomite
US8562078Nov 25, 2009Oct 22, 2013Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8579031May 17, 2011Nov 12, 2013Shell Oil CompanyThermal processes for subsurface formations
US8606091Oct 20, 2006Dec 10, 2013Shell Oil CompanySubsurface heaters with low sulfidation rates
US8608249Apr 26, 2010Dec 17, 2013Shell Oil CompanyIn situ thermal processing of an oil shale formation
US8627887Dec 8, 2008Jan 14, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8631866Apr 8, 2011Jan 21, 2014Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US8636323Nov 25, 2009Jan 28, 2014Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US8662175Apr 18, 2008Mar 4, 2014Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8701768Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations
US8701769Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US8739874Apr 8, 2011Jun 3, 2014Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US8752904Apr 10, 2009Jun 17, 2014Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8789586Jul 12, 2013Jul 29, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8791396Apr 18, 2008Jul 29, 2014Shell Oil CompanyFloating insulated conductors for heating subsurface formations
US8820406Apr 8, 2011Sep 2, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8833453Apr 8, 2011Sep 16, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US8851170Apr 9, 2010Oct 7, 2014Shell Oil CompanyHeater assisted fluid treatment of a subsurface formation
US8857506May 24, 2013Oct 14, 2014Shell Oil CompanyAlternate energy source usage methods for in situ heat treatment processes
US8881806Oct 9, 2009Nov 11, 2014Shell Oil CompanySystems and methods for treating a subsurface formation with electrical conductors
US9016370Apr 6, 2012Apr 28, 2015Shell Oil CompanyPartial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9022109Jan 21, 2014May 5, 2015Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US9022118Oct 9, 2009May 5, 2015Shell Oil CompanyDouble insulated heaters for treating subsurface formations
US9033042Apr 8, 2011May 19, 2015Shell Oil CompanyForming bitumen barriers in subsurface hydrocarbon formations
US9051829Oct 9, 2009Jun 9, 2015Shell Oil CompanyPerforated electrical conductors for treating subsurface formations
US9127523Apr 8, 2011Sep 8, 2015Shell Oil CompanyBarrier methods for use in subsurface hydrocarbon formations
US9127538Apr 8, 2011Sep 8, 2015Shell Oil CompanyMethodologies for treatment of hydrocarbon formations using staged pyrolyzation
US9129728Oct 9, 2009Sep 8, 2015Shell Oil CompanySystems and methods of forming subsurface wellbores
US9181780Apr 18, 2008Nov 10, 2015Shell Oil CompanyControlling and assessing pressure conditions during treatment of tar sands formations
US9309755Oct 4, 2012Apr 12, 2016Shell Oil CompanyThermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US9399905May 4, 2015Jul 26, 2016Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US20020029881 *Apr 24, 2001Mar 14, 2002De Rouffignac Eric PierreIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US20020029882 *Apr 24, 2001Mar 14, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US20020029884 *Apr 24, 2001Mar 14, 2002De Rouffignac Eric PierreIn situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US20020029885 *Apr 24, 2001Mar 14, 2002De Rouffignac Eric PierreIn situ thermal processing of a coal formation using a movable heating element
US20020033253 *Apr 24, 2001Mar 21, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation using insulated conductor heat sources
US20020033255 *Apr 24, 2001Mar 21, 2002Fowler Thomas DavidIn situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US20020033256 *Apr 24, 2001Mar 21, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US20020033257 *Apr 24, 2001Mar 21, 2002Shahin Gordon ThomasIn situ thermal processing of hydrocarbons within a relatively impermeable formation
US20020033280 *Apr 24, 2001Mar 21, 2002Schoeling Lanny GeneIn situ thermal processing of a coal formation with carbon dioxide sequestration
US20020034380 *Apr 24, 2001Mar 21, 2002Maher Kevin AlbertIn situ thermal processing of a coal formation with a selected moisture content
US20020035307 *Apr 24, 2001Mar 21, 2002Vinegar Harold J.In situ thermal processing of a coal formation, in situ production of synthesis gas, and carbon dioxide sequestration
US20020036083 *Apr 24, 2001Mar 28, 2002De Rouffignac Eric PierreIn situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US20020036084 *Apr 24, 2001Mar 28, 2002Vinegar Harold J.In situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US20020036089 *Apr 24, 2001Mar 28, 2002Vinegar Harold J.In situ thermal processing of a hydrocarbon containing formation using distributed combustor heat sources
US20020036103 *Apr 24, 2001Mar 28, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a coal formation by controlling a pressure of the formation
US20020038705 *Apr 24, 2001Apr 4, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US20020038708 *Apr 24, 2001Apr 4, 2002Wellington Scott LeeIn situ thermal processing of a coal formation to produce a condensate
US20020038709 *Apr 24, 2001Apr 4, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US20020038711 *Apr 24, 2001Apr 4, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US20020038712 *Apr 24, 2001Apr 4, 2002Vinegar Harold J.In situ production of synthesis gas from a coal formation through a heat source wellbore
US20020039486 *Apr 24, 2001Apr 4, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a coal formation using heat sources positioned within open wellbores
US20020040173 *Apr 24, 2001Apr 4, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US20020040177 *Apr 24, 2001Apr 4, 2002Maher Kevin AlbertIn situ thermal processing of a hydrocarbon containig formation, in situ production of synthesis gas, and carbon dioxide sequestration
US20020040779 *Apr 24, 2001Apr 11, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce a mixture containing olefins, oxygenated hydrocarbons, and/or aromatic hydrocarbons
US20020040781 *Apr 24, 2001Apr 11, 2002Keedy Charles RobertIn situ thermal processing of a hydrocarbon containing formation using substantially parallel wellbores
US20020043365 *Apr 24, 2001Apr 18, 2002Berchenko Ilya EmilIn situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US20020043366 *Apr 24, 2001Apr 18, 2002Wellington Scott LeeIn situ thermal processing of a coal formation and ammonia production
US20020043367 *Apr 24, 2001Apr 18, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US20020043405 *Apr 24, 2001Apr 18, 2002Vinegar Harold J.In situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US20020046832 *Apr 24, 2001Apr 25, 2002Etuan ZhangIn situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US20020046838 *Apr 24, 2001Apr 25, 2002Karanikas John MichaelIn situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
US20020046839 *Apr 24, 2001Apr 25, 2002Vinegar Harold J.In situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
US20020049358 *Apr 24, 2001Apr 25, 2002Vinegar Harold J.In situ thermal processing of a coal formation using a distributed combustor
US20020050353 *Apr 24, 2001May 2, 2002Berchenko Ilya EmilIn situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US20020050356 *Apr 24, 2001May 2, 2002Vinegar Harold J.In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US20020050357 *Apr 24, 2001May 2, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US20020052297 *Apr 24, 2001May 2, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US20020053429 *Apr 24, 2001May 9, 2002Stegemeier George LeoIn situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control
US20020053432 *Apr 24, 2001May 9, 2002Berchenko Ilya EmilIn situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US20020053435 *Apr 24, 2001May 9, 2002Vinegar Harold J.In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US20020053436 *Apr 24, 2001May 9, 2002Vinegar Harold J.In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US20020056551 *Apr 24, 2001May 16, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation in a reducing environment
US20020057905 *Apr 24, 2001May 16, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US20020062051 *Apr 24, 2001May 23, 2002Wellington Scott L.In situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US20020062052 *Apr 24, 2001May 23, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US20020062959 *Apr 24, 2001May 30, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US20020062961 *Apr 24, 2001May 30, 2002Vinegar Harold J.In situ thermal processing of a hydrocarbon containing formation and ammonia production
US20020066565 *Apr 24, 2001Jun 6, 2002Rouffignac Eric Pierre DeIn situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US20020074117 *Apr 24, 2001Jun 20, 2002Shahin Gordon ThomasIn situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US20020077515 *Apr 24, 2001Jun 20, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US20020084074 *Sep 24, 2001Jul 4, 2002De Rouffignac Eric PierreIn situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US20020096320 *Apr 24, 2001Jul 25, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US20020104654 *Apr 24, 2001Aug 8, 2002Shell Oil CompanyIn situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US20020108753 *Apr 24, 2001Aug 15, 2002Vinegar Harold J.In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US20020117303 *Apr 24, 2001Aug 29, 2002Vinegar Harold J.Production of synthesis gas from a hydrocarbon containing formation
US20020170708 *Apr 24, 2001Nov 21, 2002Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US20020191968 *Apr 24, 2001Dec 19, 2002Vinegar Harold J.In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US20020191969 *Apr 24, 2001Dec 19, 2002Wellington Scott LeeIn situ thermal processing of a coal formation in reducing environment
US20030006039 *Apr 24, 2001Jan 9, 2003Etuan ZhangIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US20030019626 *Apr 24, 2001Jan 30, 2003Vinegar Harold J.In situ thermal processing of a coal formation with a selected hydrogen content and/or selected H/C ratio
US20030024699 *Apr 24, 2001Feb 6, 2003Vinegar Harold J.In situ production of synthesis gas from a coal formation, the synthesis gas having a selected H2 to CO ratio
US20030051872 *Apr 24, 2001Mar 20, 2003De Rouffignac Eric PierreIn situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US20030062154 *Apr 24, 2001Apr 3, 2003Vinegar Harold J.In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US20030062164 *Apr 24, 2001Apr 3, 2003Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US20030066644 *Apr 24, 2001Apr 10, 2003Karanikas John MichaelIn situ thermal processing of a coal formation using a relatively slow heating rate
US20030075318 *Apr 24, 2001Apr 24, 2003Keedy Charles RobertIn situ thermal processing of a coal formation using substantially parallel formed wellbores
US20030085034 *Apr 24, 2001May 8, 2003Wellington Scott LeeIn situ thermal processing of a coal formation to produce pyrolsis products
US20030100451 *Apr 24, 2002May 29, 2003Messier Margaret AnnIn situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US20030130136 *Apr 24, 2002Jul 10, 2003Rouffignac Eric Pierre DeIn situ thermal processing of a relatively impermeable formation using an open wellbore
US20030141065 *Apr 24, 2001Jul 31, 2003Karanikas John MichaelIn situ thermal processing of hydrocarbons within a relatively permeable formation
US20030164238 *Apr 24, 2001Sep 4, 2003Vinegar Harold J.In situ thermal processing of a coal formation using a controlled heating rate
US20030173078 *Apr 24, 2002Sep 18, 2003Wellington Scott LeeIn situ thermal processing of an oil shale formation to produce a condensate
US20030213594 *Jun 12, 2003Nov 20, 2003Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US20040015023 *Apr 24, 2001Jan 22, 2004Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US20040069486 *Apr 24, 2001Apr 15, 2004Vinegar Harold J.In situ thermal processing of a coal formation and tuning production
US20040108111 *Apr 24, 2001Jun 10, 2004Vinegar Harold J.In situ thermal processing of a coal formation to increase a permeability/porosity of the formation
US20070137857 *Apr 21, 2006Jun 21, 2007Vinegar Harold JLow temperature monitoring system for subsurface barriers
US20090101346 *May 31, 2007Apr 23, 2009Shell Oil Company, Inc.In situ recovery from a hydrocarbon containing formation
US20100126727 *Dec 8, 2008May 27, 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
EP0030430A1 *Nov 27, 1980Jun 17, 1981The University Of Newcastle Research Associates LimitedUnderground gasification of coal
Classifications
U.S. Classification166/245, 166/260
International ClassificationE21B43/16, E21B43/243, E21B43/247, E21B43/24
Cooperative ClassificationE21B43/247, E21B43/24, E21B43/243
European ClassificationE21B43/243, E21B43/247, E21B43/24