Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3223649 A
Publication typeGrant
Publication dateDec 14, 1965
Filing dateNov 6, 1962
Priority dateNov 6, 1962
Publication numberUS 3223649 A, US 3223649A, US-A-3223649, US3223649 A, US3223649A
InventorsLangguth Robert P
Original AssigneeMonsanto Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Corrosion-inhibited phosphate solutions and compositions useful for manufacturing them
US 3223649 A
Abstract  available in
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent CORROSION-INHlBITED PHOSPHATE SOLUTIONS AND COMPOSITIONS USEFUL FOR MANUFAC- TURING THEM Robert P. Langguth, Overland, Mo, assignor to Monsanto Company, a corporation of Delaware No Drawing. Filed Nov. 6, 1962, Ser. No. 235,870 6 Claims. (Cl. 252389) This invention relates to improved aqueous solutions of phosphate salts, which solutions are characterized by having a significantly reduced tendency to corrode copper metal and copper-containing alloys. More specifically, the present invention relates to corrosion-inhibited ammonium phosphate solutions suitable for prolonged use in handling the storage equipment made of copper and/ or copper alloys.

Aqueous ammonium phosphate solutions have many uses: One of the most valuable recent developments in the field of fire fighting, and more particularly, forest fire fighting, was that relating to the use of aqueous solutions of ammonium phosphate salts. Since the present invention is particularly valuable when practiced in connection with forest fire fighting, the present discussion will be directed toward this particular end use. However, it should be kept in mind that the invention is generally useful for inhibiting corrosion of copper by ammonium phosphate solutions. Ordinarily, the solutions (often thickened with a viscosity modifying agent so that the solutions stick readily to surfaces with which they come into contact) are dropped onto brush, trees and dry grass in the path of a fire in order to slow or stop the progress of the fire. The extensive use of such ammonium phosphate solutions for forest fire control has been slowed because of the concern by those in the field over the natural corrosivity of such aqueous ammonium phosphate solutions toward some of the vital parts of air-tankers and storage equipment.

While, ordinarily, aqueous solutions containing several weight percent of dissolved ammonium phosphate are not considered to be extremely corrosive toward copper metal or copper alloys such as brass and bronze and the like, they are, nevertheless, sufficiently corrosive to cause great concern when the aqueous solutions are to come into physical contact with vital aircraft parts, since failure of the aircraft parts due even to slow corrosion occurring over a prolonged period of time could result in the loss of the aircraft and crew. Thus, in order to be considered completely acceptable for use in forest fire fighting by the air-drop method, it is necessary that the corrosivity of aqueous ammonium phosphate solutions, particularly toward copper metals, be significantly reduced.

Consequently, it is an object of the present invention to provide aqueous solutions containing ammonium phosphate salts useful for forest fire fighting, the normal tendency of which to corrode copper and copper-containing alloys is significantly reduced or substantially eliminated.

It is another object of the present invention to provide novel methods of inhibiting the corrosion of copper equipment by aqueous ammonium phosphate solutions.

It has now been found that the normal or natural tendency of aqueous solutions of ammonium phosphate salts, such as, for example, monoammonium orthophosphate and diammonium orthophosphate to corrode copper equipment can be significantly reduced and even practically eliminated by the presence (in solution) of an effective amount of an inorganic water-soluble sulfite. The term inorganic water-soluble sulfite is intended to include all of those inorganic sulfite materials or compounds that are soluble in the ammonium phosphate solutions in which they are to be utilized to the extent of at ice least about 0.005 weight percent. It includes, for example, the alkali metal and alkaline earth metal sulfites such as sodium, potassium, lithium, calcium, magnesium and strontium sulfites as Well as ammonium sulfite. Of these, generally sodium, potassium and/or ammonium sulfites are preferred. Actually, since the protection from corrosion that can be afforded copper equipment by practicing the present invention apparently results from the sulfite (anion) portion of the sulfite compound, the particular source from which the sulfite anions are derived in manufacturing the aqueous ammonium phosphate solutions is not at all critical, provided a sufiicient amount of sulfite anions are provided in the phosphate solutionsto effectively decrease the normal corrosivity of the phosphate solutions toward copper and copper-containing alloys.

The ammonium phosphate solutions in which these sulfite ions perform particularly effectively are those that contain at least about 0.5 weight percent, and up to the level at about which the solutions are saturated therewith, of dissolved ammonium phosphate salts, including monoammonium orthophosphate and/or diammonium orthophosphate salts, and also including the diammonium and monoammonium mixed orthophosphate salts that also contain an alkali metal cation, such as monoammonium disodium orthophosphate, monoammonium dipotassium orthophosphate and the like, no matter from what source these materials were derived, or in what form the materials are initially introduced into the aqueous compositions. Generally, it is preferred that the inhibited aqueous phosphate solutions of this invention have a pH between about 3 and about 9. When monoammonium orthophosphate is the only ammonium phosphate salt present in the inhibited fire-control compositions of this invention, the preferred pH of these compositions is generally from about 2 to about 4. Similarly, when diammonium orthophosphate is the only ammonium phosphate salt contained therein, the preferred pH is from about8 to 10. When mixtures of monoammonium orthophosphate and diammonium orthophosphate are utilized, pHs between these preferred ranges are generally more desirable. However, compositions having pHs somewhat higher or lower than these preferred ranges can also be utilized to advantage in the practice of the present invention.

Although the presence of even a very small amount of the water-soluble sulfite compounds in the aqueous ammonium phosphate solutions described above has a corrosion-inhibiting effect upon them, as a general rule, aqueous phosphate compositions containing from about 0.04 to about 10, and preferably from about 0.10 to about 2 weight percent of one or more of the sulfite compounds in the dissolved state should be utilized. Generally optimum corrosion-inhibiting effects can be attained by utilizing at least about 0.20 Weight percent of the sulfite compound.

The corrosion-inhibited ammonium phosphate solutions of the present invention can also contain materials other than the phosphate salts and the sulfite compounds without detracting substantially from the benefits that can be obtained by practicing this invention, for example, the solutions can contain minor amounts of surfactants; inorganic and organic complexing agents such as the alkali metal tripolyphosphate, pyrophosphates and trimetaphosphates, as well as the higheiypolyphosphates such as the hexametaphosphates and also can contain ethylenediamine tetraacetic acid and various alkali metal and ammonium salts thereof and the alkali metal and ammonium nitrilotriacetates; any of the various thickening agents such as carboxymethylcellulose, algin, guar gum and carboxyethylcellulose; other corrosion-inhibiting. ingredients;

and inorganic and organic pigments and dyes; as well as many other materials.

The corrosion-inhibited phosphate compositions of this invention can be manufactured via any of a number of manipulative methods without any noticeably detrimental effects upon the ultimate performance of the compositions. For example, the sulfite compound can simply be dissolved by intermixing it into or with the otherwise completely formulated aqueous compositions, or at any other stage during the preparation of the fire-control composition. Via another method, the sulfite compound can first be dissolved in water, and the resulting solution then intermixed subsequently with the ammonium phosphate materials.

Still another process for manufacturing the aqueous corrosion-inhibited phosphate compositions described heretofore involves one of the preferred embodiments of the present invention. This preferred embodiment comprises a concentrate mixture of one or more of the ammonium phosphate salts described heretofore with one or more of the sulfite (inhibitor) compounds, generally in a particulated, solid form. Preferably the inhibitor compound(s) and ammonium phosphate salt(s) will be present in this concentrate composition or mixture in amounts proportionate to those found in the fire-control compositions described heretofore, so that the final firecontrol composition can be manufactured by simply dissolving the concentrate in a sufficient amount of water. In other words, generally the preferred concentrate compositions of this invention will contain at least one of the above-described ammonium phosphate salts and at least one of the sulfite (inhibitor) compounds in a weight ratio of phosphate salt to inhibitor compound, respectively, of from about 3800:1 to about :1, and preferably from about 750:1 to about 100:1. It is still further preferred that these particulated, solid concentrate compositions contain a total of at least about 50 weight per cent of one or more of the above-described ammonium phosphate salts. These preferred concentrate compositions can also contain effective amounts of practically any other ingredients, including a thickener if one is desired in the final fire-control compositions, as well as dyes, pigments, water-softening agents and the like, all of which should preferably be present in the concentrate compositions in minor amounts, as compared to the ammonium phosphate salt(s) contained therein. Some of the advantages of these preferred concentrate compositions can readily be appreciated when it is realized that at most points from which aircraft are loaded for their various air-drops of fire-control compositions, very little weighing and handling equipment is available that is capable of manufacturing the fire-control compositions from the individual components. Thus, in the absence of the preferred concentrate compositions described above (which concentrate compositions need simply be dissolved in appropriate amount of water in order to be converted into the final valuable fire-control compositions of the present invention), as a practical matter, such corrosion inhibited final fire-control compositions as those described heretofore could not be utilized.

Typical examples of the preferred concentrate compositions of this invention include:

(a) 99.0 weight percent of diammonium orthophosphate and 1.0 weight percent of sodium sulfite.

(b) 90.0 weight percent of monoammonium orthophosphate, 1.0 weight percent of ammonium sulfite and 9.0 weight percent of sodium alginate.

(c) 90 weight percent of diammonium orthophosphate, 0.5 weight percent of potassium sulfite and 9.5 weight percent of sodium carboxymethylcellulose.

(d) 55 weight percent of an equimolar mixture of monoammonium orthophosphate and diammonium orthophosphate, 1.0 weight percent of ammonium sulfite, 35

weight percent of sodium tripolyphosphate and 9 weight percent of sodium alginate.

(e) 89 weight percent of monoammonium orthophosphate, 0.25 weight percent of magnesium sulfite and 10.75 weight percent of pentasodium aminotrimethylenephosphonate.

(f) 70 weight percent of diammonium orthophosphate, 20 weight percent of monoammonium orthophosphate, 9 Weight percent of sodium carboxyethylcellulose and 1 weight percent of sodium sulfite.

(g) 84 weight percent of diammonium orthophosphate, 15.50 weight percent of guar gum and 0.50 weight percent of ammonium sulfite.

These concentrate compositions are also useful as corrosion-inhibited de-icer compounds, wherein either alone or in combination with additional corrosion-inhibiting materials, they can be utilized in a manner similar to that in which more corrosive, less desirable sodium chloride is presently conventionally utilized. For example, these particulated, solid ammonium phosphatesulfite compounds can effectively de-ice sidewalks, roadways and the like when they are simply spread over ice and/ or snow on these substrates.

The concentrate compositions can be prepared via any of a number of convenient procedures, including simply blending or mixing together the appropriate amounts of the various dry ingredients. Although the size of the individual particles in these preferred concentrate compositions is not critical in so far as the practice of the present invention is concerned, it is generally preferred that they be of sufficiently small size to pass through a US. standard 12 mesh screen. For optimum results, at least about Weight percent of these particles should be small enough to pass through a US. standard 40 mesh screen. Although commercial grades of phosphate salts do not necessarily meet these optimum standards of particle size, they can readily be utilized in the preparation of the compositions of this invention.

In the following examples, which are illustrative of some of the preferred embodiments of the present invention, all parts given :are by weight unless otherwise specified.

EXAMPLE I Into a conventional aluminum storage tank fitted with a fairly efficient mixer are charged 8.34 parts of water and 1.2 parts of a pre-prepared blend made up of 84' parts of crystalline technical grade diammonium orthophosphate, 15 parts of sodium ali-gnate and 1 part of sodium sulfite. The resulting mixture is then stirred until all of the diammonium orthophosphate has dissolved.

Into the resulting fire-control composition are immersed several clean, preweighed soft copper (1" x 2" x coupons. The coupons are immersed in the composition for a total of 72 hours, after which the coupons are removed from the fire-control composition, rinsed with distilled water and acetone and then reweighed. The loss in weight (in milligrams) is then appropriately inserted into the equation:

=corrosion in mils er ear DAT p y wherein;

W=Weight lost during test in milligrams, D=specific .gravity of metal, A=exposed surface area in square inches, T=time of exposure to solution in hours,

in order to determine the corrosion that has taken place, expressed in terms of mils of penetration per year. The corrosion rate or rate of attack on copper by the composition of Example I is thus found to be about 10.0 mils per year.

By comparison, a composition which is prepared in the same way as that in Example I, above, but without the sodium sulfite, corrodes similar copper coupons at a rate of about 1,000 mils per year.

In a manner similar to that just described, other compositions containing various levels of inorganic sulfite compounds are tested. Results of these tests are given in Table 1, below:

ful when dissolved in Water to protect copper and copper alloys from corrosion ordinarily caused by aqueous solutions of ammonium phosphate as in claim 2, wherein said sulfite compound is sodium sulfite.

5. A particulated, solid concentrate composition useful when dissolved in water to protect copper and copper T able 1 CORROSION INHIBITED AMMONIUM PHOSPHATE SOLUTIONS Example Corrosion No. Ammonium Phosphate Parts Thiekener 1 Inhibitor Parts Metal Rate mpy.

Control Diammonium Orthophosphate C0pper 250 D0 do Brass 140 D Bronze. 150 D0 Coppen. 170 Do Monoammonium Orthophosphate do II Diammonium Orthoph0sphate 0.10 do d Ammonium 0.10 Brass 18 Sulfite. Sodium sulfite.-.. 010 Bronze 22 Potassium Sulfite. 0.10 Copper 20 Sodium sulfite.... 0.20 do, 20 Potassium Sulfite 0.05 do1.- 5 Ammonium 0.05 o 5 p sulfite. IX Diammomum Orthophosphate Magnesium 0.20 do 20 Sulfite. X .do Ammonium 0.20 do 20 sulfite. XI do Sodium Sultite 0.10 -.do 20 Monoammonium Orthophosphate XII Diammonium 0rthophosphate Monoammonium Orthophosphate do 0.15 do Tetrasodium Pyrophosphate 1 1 XIII Monoanunonium Orthophosphate 1 "do 0.10 -do 7 2 Carboxymethylcellulose.

What is claimed is:

1. A concentrated ammonium phosphate composition useful when diluted and dissolved in water to protect copper and copper alloys from corrosion ordinarily caused by aqueous solutions of ammonium phosphate, said composition consisting essentially of a Water-soluble inorganic water soluble sulfite compound and at least one ammonium ort-hophosphate salt; the weight ratio of said ammonium orthophosphate salt to said sulfite compound in said composition being from about 380011 to about 10:1.

2. A particulated solid concentrate composition useful when dissolved in water to protect copper and copper alloys from corrosion ordinarily caused by aqueous solutions of ammonium phosphate consisting essentially of at least about 50 weight percent of an ammonium orthophosphate material selected from the group consisting of monoammonium orthophosphate, diammonium orthophosphate and mixtures thereof, and an inorganic water soluble sulfite compound selected from the group consisting of ammonium, alkali metal and alkaline earth metal sulfites; the Weight ratio of said ammonium orthophosphate material to said sulfite compound in said concentrate composition being from about 750:1 to about 100:1.

3. A particulated, solid concentrate composition useful when dissolved in water to protect copper and copper alloys from corrosion ordinarily caused by aqueous solutions of ammonium phosphate as in claim 2, wherein said sulfite compound is ammonium sulfite.

4. A particulated, solid concentrate composition usealloys from corrosion ordinarily caused by aqueous solutions of ammonium phosphate as in claim 2, wherein said sulfite compound is potassium sulfite.

6. A particulated, solid concentrate composition useful when dissolved in water to protect cop-per and copper alloys from corrosion ordinarily caused by aqueous solutions of ammonium phosphate as in claim 2, wherein said sulfite compound is magnesium sulfite.

OTHER REFERENCES Chemical Week, vol. 89, No. 14, Oct. 7, 1 961, pages 39-40.

Condensed Chemical Dictionary, 4th ed. (1950) (pages 47, 415, and 543).

JULIUS GREENWALD, Primary Examiner.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1997669 *Feb 23, 1934Apr 16, 1935Antonio ArcieriAeroplane attachment for extinguishing fires
US2303399 *May 1, 1939Dec 1, 1942Hall Lab IncAlkaline detergent
US2617713 *Apr 15, 1948Nov 11, 1952Pure Oil CoMethod of inhibiting corrosion of steel by alkali solutions
US2636009 *Aug 31, 1946Apr 21, 1953Irwin Joseph TConditioning of metal surfaces
US2901428 *Jul 6, 1956Aug 25, 1959Chem Fab Grunan AgFire extinguishing method
USRE25394 *Jun 11, 1963MonCorrosion-inhibited liquid fertilizer
CA575798A *May 12, 1959Nat Aluminate CorpCorrosion inhibitor composition and cooling solution
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3338829 *May 6, 1964Aug 29, 1967Monsanto CoCorrosion-inhibited ammonium orthophosphate solutions and compositions useful for manufacturing them
US3364149 *May 13, 1964Jan 16, 1968Monsanto CoCorrosion-inhibited phosphate solutions and compositions useful for manufacturing them
US4725382 *Apr 3, 1986Feb 16, 1988Chemical Specialties, Inc.Fire retardant composition
US6447697Mar 3, 1999Sep 10, 2002Astaris, LlcColorant liquid, method of use, and wildland fire retardant liquids containing same
US6517747Dec 29, 2000Feb 11, 2003Astaris, LlcColorant liquid, method of use, and wildland fire retardant liquids containing same
US6676858Dec 26, 2001Jan 13, 2004Astaris LlcColorant liquid, method of use, and wildland fire retardant liquids containing same
US6802994Nov 28, 2000Oct 12, 2004Astaris LlcFire retardant compositions containing ammonium polyphosphate and iron additives for corrosion inhibition
US6828437Apr 23, 2003Dec 7, 2004Astaris, LlcUse of biopolymer thickened fire retardant composition to suppress fires
US6846437Dec 26, 2001Jan 25, 2005Astaris, LlcAmmonium polyphosphate solutions containing multi-functional phosphonate corrosion inhibitors
US6852853Apr 23, 2003Feb 8, 2005Astaris LlcMethods for preparation of biopolymer thickened fire retardant compositions
US6905639Oct 16, 2001Jun 14, 2005Astaris LlcFire retardant compositions with reduced aluminum corrosivity
Classifications
U.S. Classification252/389.2, 252/7, 252/2
International ClassificationC23F11/08, C23F11/18
Cooperative ClassificationC23F11/182
European ClassificationC23F11/18C