Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3225241 A
Publication typeGrant
Publication dateDec 21, 1965
Filing dateMay 2, 1962
Priority dateJul 9, 1959
Publication numberUS 3225241 A, US 3225241A, US-A-3225241, US3225241 A, US3225241A
InventorsSpencer Domina Eberle, Jr Sandford Christopher Peek
Original AssigneeSylvania Electric Prod
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Aperture fluorescent lamp
US 3225241 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

1965 o. E. SPENCER ETAL 3,225,241


1 N VENTORS 13% ATTORNEY Dec. 21, 1965 D. E. SPENCER ETAL 3,225,241


ATTORNEY United States Patent Ofiice 3,225,241 Patented Dec. 21, 1965 3,225,241 APERTURE FLUORESCENT LAMP Domina Eberle Spencer, Cambridge, and Sandford Christopher Peek, Jr., Hamilton, Mass., assignors to Sylvania Electric Products Inc., a corporation of Delaware Original application July 9, 1959, Ser. No. 825,915, now Patent No. 3,115,309. Divided and this application May 2, 1962, Ser. No. 197,211

4 Claims. (Cl. 313109) This invention relates to fluorescent lamps and similar devices, and equipment in which said lamps are operated.

For many applications for fluorescent lamps, a higher brightness than presently obtainable is required. The brightness of the lamps can be increased by increasing the power input while keeping the mercury vapor pressure at a suitable value, but even the brightness obtained by this means is smaller than that required for certain types of applications, and in any event, the total light output of the lamp is increased, which is not always desirable.

We have discovered that the brightness can be increased without increasing either the power input, or the total light output, by the use of a small aperture in the lamp coating. In other words, instead of being coated with phosphor entirely around its circumferential surface, the lam will be coated around only a portion of its circumferential surface; that is it will be coated over an angle somewhat less than the full 360 degrees of circumference. This will leave a narrow uncoated strip extending lengthwise along the lamp generally parallel to the longitudinal lamp axis. The brightness of the light coming through said aperture or uncoated portion will be much greater than the light emerging through the coated portion of the lamp.

We have discovered that the brightness can be still further improved if a reflector, for example, in the form of a reflective coating, be placed on the inside surface of the glass tube between the glass and the fluorescent phosphor, said reflecting coating being omitted from the aperture; that is, from the portion of the lamp which has no fluorescent coating.

The coating can be of a reflecting powder for example, titanium dioxide, or of a metal, for example, aluminum or silver. The use of aluminum has the additional advantage of increasing not only the visible reflection but also the ultraviolet reflection. A coating of aluminum oxide will also reflect ultraviolet light.

The reflector or reflecting coating can be put on the outside of the surface of the glass tube, but will then be less effective because of the absorption of light in the glass between the phosphor coating and the reflecting material.

In a fluorescent coating for the usual type of lamp in which the entire circumferential surface is coated with phosphor, the particle size of the phosphor should ordinarily be between three and thirty microns to reduce the reflection back into the tube.

In the present type of lamp however, the transmission of light through the coating is not desired and hence a smaller particle size, below three microns, for example, about l micron, is most effective.

We have found that in lamps having a portion of their inside surface coated with phosphor and a portion uncoated, the mercury generally present in such devices will attack the uncoated portion of the glass tube, blackening it and thereby decreasing the light output. To prevent or reduce such blackening a light-transmitting protective coating can be applied to the inner surface of the glass tube, or at least to the portion not coated with phosphor. A thin coating of antimony oxide can be used, or a very thin coating of the phosphor itself, much thinner than the main phosphor coating, can be applied over the uncoated portion of the tube. In the latter case, the protective phosphor coating can be of a thickness less than half that of the main phosphor coating, and it is desirable to make it of an average particle size of greater than about 3 microns, in order to minimize reflection and increase transmission of light through it.

The discoloration can also be reduced by making the lamp tube of a special glass, for example, lead glass, instead of the lime glass commonly used.

In some cases it may even be desirable to make the phosphor coating on the aperture of a phosphor of a type emitting a different color than does the main phosphor coating, and a phosphor may even be used which will transform some of the radiation from the main phosphor coating into radiation of a different wave length. This will produce a two-color lamp appealing to the eye.

In some cases where the lamp is used for illuminating the street and is placed transverse to the axis of the street it may be desirable to use two apertures in the lamp, the two being spaced slightly apart so that the light coming from them will be directed along the street in opposite directions. If necessary, a linear lens can be used around the lamp to further direct the light in order to get a proper distribution on the street, and a phosphor coating without a reflector used between the apertures to direct some light onto the street directly below the lamp. The lamp of the present invention is especially useful in the illumination of highways and airport runways in which it is desired to project a beam of light in which substantially all rays are horizontal or at angles below the horizontal, that is so that there will be no upward component of the light from the lamp. A lamp of high brightness is especially needed in such installations because the brightness at the center of the runway will depend on the brightness of the light source. We have discovered that for such purposes a lamp can be very effectively used with a parabolic rcflector, with the edge of the aperture farthest from the apex of the parabola being along the axis of the parabola and at its focus, with the other edge of the aperture being above the axis of the parabola. The lamp is then off the axis of the parabola, whereas in ordinary use of the parabolic reflector the center of the lamp would be at the focus of the parabola; that is, in cross-section, the center of the lamp would be on the axis of the parabola.

We have found that the smaller the aperture is made, that is, the smaller the angle it subtends at the center of the tube, the nearer the light source becomes to a linear source in effect, although the light is not actually emitted from the aperture but rather through it from the inside surface of the lamp.

The smaller the aperture, the greater the brightness becomes, as long as the aperture is finite and greater than zero in dimension. With extremely small apertures and high reflectivity around the remainder of the lamp surface, the brightness increase can be tremendous, far more than 50 times the normal brightness of a lamp without an aperture.

The total light output, however, will be less for very small apertures than for some intermediate sizes of apertures. With a reflectivity of about 0.9 for the reflecting material used, the maximum light output will occur at an aperture extending over only 60 of the 360' surface of the tube.

The aperture lamp of this invention with a suitable reflector or a refractor is especially suitable as a headlight for an automobile, because it gives a wide beam in which the upward component can be made as small or as large as desired, a type of beam which has been long sought in the automobile industry.

Other objects, advantages and features of the invention will be apparent from the following specification taken in connection with the accompanying drawings in which:

FIGURE 1 is a cross-sectional view of a lamp having an aperture in a fluorescent coating;

FIGURE 2 is a cross-sectional view of such a lamp having a reflector coating under the fluorescent coating;

FIGURE 3 is a cross-sectional view of a lamp with two spaced apertures;

FIGURE 4 is a cross-sectional view of a lamp with two apertures spaced apart, with a fluorescent coating without a reflecting coating between apertures;

FIGURE 5 is a schematic view of a lamp with an external reflector to direct the light from the aperture; and

FIGURE 6 is a cross-sectional view of a lamp having an opaque coating over the lamp except at the aperture.

In FIGURE 1, the glass tube 1 has the coating 2 of phosphor particles on its inside surface, the coating 2 having a gap 3 between its two ends 4, 5 in order to provide an aperture through which light from the inside surface of the coating 2 can be directly emitted, or emitted after internal reflection, without passing through the coating 2 itself.

The fluorescent coating should be thick enough to reflect into the tube 1 a large portion of the light emitted in the coating 2. The phosphor particles of the coating 2 t are preferably of a small size, averaging less than about 3 microns, to enhance the reflection. The coating can be applied in the customary manner for coating fluorescent lamps, over the entire surface if desired, and then scraped off the portion or gap 3 which is to be free of coating.

The brightness of the light emitted through the aperture can be greatly increased by adding a reflecting coating 6 between glass tube 1 and phosphor coating 2, as shown in FIGURE 2. The reflecting coating 6 can be of powdered materials of good reflectivity, such as magnesium oxide, zinc oxide, or titanium dioxide. The particle size can be small. for example an average size of 1 micron is quite effective. The reflector coating can be applied in the same manner as the phosphor coating. or in some other manner, if desired, and the phosphor coating then applied over it in the manner previously mentioned.

The brightness obtained through the gap or aperture 3 will be greater if a metal surface, preferably a specular reflecting surface, is used for the reflecting coating 6. The metal coating can be applied in any manner customary in the art, for example as shown in US. Patent 2,064,- 369 to O. H. Biggs. Aluminum and silver are especially effective as reflecting materials, and can be applied by evaporation. Silver can also be applied chemically, by the usual mirror deposition methods, if desired.

Although the reflector coating has been shown inside the bulb, it can also be placed on the outside of the bulb if desired, although then there will be additional losses in the glass between the phosphor and the reflector, with a smaller increase in brightness.

In some cases, more than one aperture may be present, as shown in FIGURE 3. In that case, the glass tube 1 and the coatings 2 and 6 can be the same as before, but part of the gap 3 between them will be covered by the additional reflecting coating 7 and the additional phosphor coat 8, thereby in effect producing two apertures 9, 10. Such a lamp is especially useful as a street-light, mounted several feet, perhaps as high even as twenty feet, above the street, the axis of the lamp being perpendicular to the street or the center line thereof.

As shown by the arrows 11, 12, light would then emerge from the apertures 9, 10 in two different directions, part being directed toward the street on one side of the lamp, and part toward the street on the other side.

A refractor or series of longitudinal or linear lenses, parallel to the axis of the tube can be used on each side of the tube 1 to direct the light wherever desired.

In some cases, some direct light from the lamp may be desired on the street directly below tube 1, and that may be achieved by omitting the reflecting coating 7 between the two apertures 9, 10, as shown in FIGURE 4, so that some direct light from the outside surface of phosphor coating 8 will fall on the roadway.

One type of fixture which is effective with an aperture lamp is shown in FIGURE 5. In this the phosphor coating 2 is shown schematically, with its ends 4, 5 shown as dots for emphasis. A reflecting parabola, which can be of specular metal, is placed with its axis tangent to the circle of coating 2 at one end 5 thereof, with the other end 4 of the coating 2 off the axis 13 of the parabola 14. Only one side 15-16 of the parabola is present in the actual reflector, and the lamp is on the other side of the axis 13 than the portion 15-16 of the parabola 14. One edge 5 of the coating 2 is tangent to the axis of the parabola, as previously stated, and at the focus of the parabola. The other edge 4 of coating 2 is off the axis of the parabola and nearer to the apex 15 thereof.

As shown by the schematic ray of light 17, all rays from edge 5 will be reflected parallel to the axis 13, and all other rays, for example a ray 18 from edge 4, will be reflccted below ray 18 in the figure, that is, in a direction nearer to the parabola 14 itself.

This reflector-lamp combination is therefor especially eifective where it is desired to place the longitudinal axis of the lamp horizontally and to insure that all rays emanating from the fixture will be directed at or below the horizontal. If it is desired to have all rays below the horizontal, for example to have them just slightly below the horizontal when illuminating a runway or roadway from a region vertically close to the edge of the runway or roadway, then the whole unit, lamp plus reflector, can be tilted the desired amount.

If a glass or plastic window is used in front of the unit, then a non-reflecting black region can be used between the forward end 16 of reflector l4 and the window, as shown in co-pending US. patent application Serial No. 712,203, filed January 30, 1958, by Biggs, Spencer and Peek.

Because the lamp used with the reflector has an aperture, the fixture of the present invention can be made much smaller than that shown in the application mentioned above.

In the fixture of FIGURE 4, an opaque coating can be used over the reflecting portion of the bulb in order to prevent any stray light passing through the reflector from reaching the reflector or the object to be eliminated. In that way, a sharp cut-off of the beam will be achieved.

A lamp having such an opaque coating 20 is shown in FIGURE 6.

The width of the beam can be adjusted by varying the distance 15-5, that is, the distance along the axis 13 between points 15 and 5.

In the foregoing description only the new features in the lamps were described, and the old features were not. However, it is clear that the tube 1 is a sealed envelope, containing a filling of inert gas and a small amount of mercury vapor, with an electrode, preferably of the thermionic type, at each end of the lamp, in the manner customary in the art. These features can be the same as in the so-called Very High Output" lamps, with an input of about 25 watts or more, such as shown in US. patent application Serial No. 742,928, filed June 18, 1958, by Waymouth et al., now Patent No. 2,961,566.

This application is a division of copending application Serial No. 825,915, filed July 9, 1959, now Patent No. 3,115,309.

What we claim is:

1. A fluorescent lamp comprising a sealed elongated tube, a coating of phosphor inside said tube and subtending the major portion of the angle around the axis of said tube, a portion of the tube being free from phosphor coating and subtending a minor portion of said angle, said phosphor coating being thick enough to reflect back into the tube substantially all light falling on the coating.

2. The combination of claim 1, in which the phosphor coating is composed chiefly of particles of sizes below about 3 microns in order to have high reflectivity and low transmission.

3. The lamp of claim 1, and a protective coating over the otherwise uncoated portion of the lamp tube.

4. A fluorescent lamp comprising a sealed elongated tube, a coating of phosphor inside said tube and subtending the major portion of the angle around the axis of said tube, a portion of the tube being free from phosphor coating and subtending a minor portion of said angle, and a protective light-transmissive coating of material diflerent from that of the phosphor coating over the otherwise uncoated portion of the lamp tube.

References Cited by the Examiner UNITED STATES PATENTS 2,407,379 9/1946 Morehouse 313109 2,440,832 5/ 1948 Pennybacker 3l31 13 2,854,600 9/1958 Van De Weijeret a]. 313-409 10 GEORGE N. WESTBY, Primary Examiner.

3',225,241 December 21', 19.65

Patent No. Dated Inventor(s) Domina Eberle Spencer et a1 It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Insert sheet 2 as part of Letters Patent 3,225 ,241

Signed and sealed this 16th day of April 1974 (SEAL) Attest:

EDWARD M.FLETCHER,JR. C. MARSHALL DANN Attesting Officer Commissioner of Patents

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2407379 *Dec 22, 1941Sep 10, 1946Bertram Morehouse WalterCombination bactericidal and illuminating lamp
US2440832 *May 29, 1945May 4, 1948Miles PennybackerGas discharge lamp
US2854600 *Aug 9, 1956Sep 30, 1958Philips CorpLow-pressure mercury-vapour discharge lamp
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3275872 *Jul 12, 1963Sep 27, 1966Gen ElectricReflector fluorescent lamp
US3295003 *Nov 18, 1963Dec 27, 1966Gen ElectricGrooved reflector lamp
US3442582 *Dec 7, 1966May 6, 1969IbmLamp arrangement for document scanning and modified lamp
US3504819 *Feb 21, 1966Apr 7, 1970Owens Illinois IncLamp envelopes
US3767956 *Dec 24, 1969Oct 23, 1973Xerox CorpAperture fluorescent lamp for copying machines
US3875454 *Nov 5, 1973Apr 1, 1975Philips CorpLow-pressure mercury vapour discharge lamp and method of manufacturing said lamp
US3875455 *Apr 18, 1973Apr 1, 1975Gen ElectricUndercoat for phosphor in reprographic lamps having titanium dioxide reflectors
US3995182 *Nov 12, 1975Nov 30, 1976U.S. Philips CorporationLow-pressure sodium vapor discharge lamp
US4061946 *Oct 6, 1975Dec 6, 1977Gte Sylvania IncorporatedFluorescent lamp having zero back brightness
US4117378 *Mar 11, 1977Sep 26, 1978General Electric CompanyReflective coating for external core electrodeless fluorescent lamp
US4119889 *Feb 14, 1977Oct 10, 1978Hollister Donald DMethod and means for improving the efficiency of light generation by an electrodeless fluorescent lamp
US4224553 *Oct 10, 1978Sep 23, 1980Licentia Patent-Verwaltungs-G.M.B.H.Gas discharge indicator device
US4287231 *Apr 4, 1980Sep 1, 1981Westinghouse Electric Corp.Method of spray-reflectorizing electric lamp envelopes
US4317066 *Feb 4, 1980Feb 23, 1982Xerox CorporationGaseous discharge lamp having novel electrode mountings
US4341979 *Feb 14, 1980Jul 27, 1982Leo GrossFluorescent lamp with rotating magnetic field arc spreading device
US4363997 *Sep 8, 1980Dec 14, 1982Hitachi, Ltd.Fluorescent lamp having reflective layer
US5003220 *Jun 22, 1987Mar 26, 1991Gte Products CorporationIntegral lamp for tri-color picture element
US5116272 *Jul 3, 1990May 26, 1992Gte Products CorporationMethod and apparatus for forming apertures in fluorescent lamps
US5142191 *Jul 3, 1990Aug 25, 1992Gte Products CorporationAperture fluorescent lamp with press seal configuration
US5552664 *Jun 29, 1994Sep 3, 1996Light Sources, Inc.Fluorescent lamps with imprinted color logos and method of making same
US5726528 *Aug 19, 1996Mar 10, 1998General Electric CompanyFluorescent lamp having reflective layer
US6108965 *Jun 12, 1998Aug 29, 2000Brandenburg LimitedTrap for catching insects
US6777702Feb 15, 2002Aug 17, 2004Voltarc Technologies, Inc.Discharge lamp having multiple intensity regions
US6919676Jun 16, 2003Jul 19, 2005Voltarc Technologies Inc.Discharge lamp having overlaid fluorescent coatings and methods of making the same
US6943361May 16, 2002Sep 13, 2005Voltarc Technologies Inc.Tanning lamp having grooved periphery
US7530715 *May 31, 2006May 12, 2009Jenn-Wei MiiLuminescent assembly with shortwave and visible light source
US20040095059 *Jun 16, 2003May 20, 2004Laudano Joseph D.Discharge lamp having overlaid fluorescent coatings and methods of making the same
US20080007968 *Jul 9, 2007Jan 10, 2008Innolux Display Corp.Double-layer lamp and backlight module having same field of the invention
US20080049421 *May 31, 2006Feb 28, 2008Jenn-Wei MiiLuminescent assembly with an increased brightness
DE2611894A1 *Mar 20, 1976Oct 14, 1976Gte Sylvania IncUv-leuchtstoffentladungslampe mit reflektorfilm im innern
DE2644821A1 *Oct 5, 1976Apr 14, 1977Gte Sylvania IncLeuchtstofflampe mit reflektorschicht
DE2648602A1 *Oct 27, 1976May 12, 1977Philips NvVerfahren zum anbringen einer schicht einer suspension und/oder loesung an der innenwand einer roehrenfoermigen lampe
DE3400385A1 *Jan 7, 1984Jul 19, 1984Philips NvNiederdruckquecksilberdampfentladungslampe
EP0033652A1 *Feb 2, 1981Aug 12, 1981Xerox CorporationLow pressure electric discharge lamp
EP0040547A1 *May 19, 1981Nov 25, 1981Xerox CorporationIllumination system including a low pressure arc discharge lamp
WO1994022160A1 *Mar 22, 1993Sep 29, 1994Heflin Edward GLight plus
U.S. Classification313/488, 313/113, 313/489
International ClassificationH01J61/35
Cooperative ClassificationH01J61/35, C03C2217/256, C03C2217/475, C03C2218/114, C03C17/007, C03C2217/214, C03C2217/212, C03C17/10
European ClassificationH01J61/35, C03C17/10, C03C17/00D2