Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3233668 A
Publication typeGrant
Publication dateFeb 8, 1966
Filing dateNov 15, 1963
Priority dateNov 15, 1963
Publication numberUS 3233668 A, US 3233668A, US-A-3233668, US3233668 A, US3233668A
InventorsHamilton Julian P, Peet Nick P
Original AssigneeExxon Production Research Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Recovery of shale oil
US 3233668 A
Abstract  available in
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Feb. 8, 1966 J. P. HAMILTON ETAL 3,233,663

RECOVERY OF SHALE OIL Filed Nov. 15. 1963 5 Sheets-Sheet l FIG-l- FRACTURING FLU) -O2 INJECTION FRACTURING H 7 FLUID 2 2! 7 22 I I5 I6 lZ I6 I5 CASING CASING OVER BURDEN OPEN-HOLE/ SHALE OIL ZONE BURNING ZONE OZINJECTION I? H] l3 FIG- IA. 28

. INVENTORS. SHALE OIL ZONE 2; JULIAN P.HAMILTON,

r' NICK P. PEET l3 1; BY

8, 1966 J. P. HAMILTON ETAL 3,233,668

RECOVERY OF SHALE OIL 3 Sheets-Sheet 2 Filed Nov. 15, 1963 EN 0 O T H WM VA H m. P N A L U J NICK P. PE'ET,

TTORNE Y.

1966 J. P. HAMILTON ETAL 3,233,668

RECOVERY OF SHALE OIL Filed Nov. 15, 1963 3 Sheets-Sheet I5 49 TO HYDROGENATION ATMOSPHERIC DISTILLATION H20,CO2,LT.HC. TOWER TO BOILER FuEL.

VACUUM DIST TOWER I 0 INJECTIONE SEPARATOR 34- H2O TO FRACTURING 5o FLUID 7"" ELECTROLYSIS 46 BOTTOMS TO BOILER FUEL FINES RETURN LINE I2 FIG. 4.

WSUPPLEMENTARY FUEL RETURN LINE "54 56 WW,- I CAVERN y HYDROGENATION Q: 55

cA'rALYsT-- I SHALE OIL/ I PRESSURE ZONE ELECTROLYSIS JJ. CHAMBER |2 -58 WATER AND ELECTROLYTE F G A INVENTORSI JULIAN P. HAMILTON,

NICK P. PEET, BY

TTORNEY.

United States Patent 3,233,668 RECOVERY OF SHALE OIL Julian P. Hamilton, Baytown, and Nick I. Peat,

Houston, Tex., assignors, by mesne assignments, to

Esso Production Research Company, Houston, Tex., a

corporation of Delaware Filed Nov. 15, 1963, Ser. No. 324,078 15 Claims. (Cl. 166-7) The present invention is directed to a method for the recovery of shale oil. More particularly, the invention is concerned with the recovery of shale oil from oil shale formations by in situ combustion operation. In its more specific aspects, the invention is directed to the recovery of shale oil by drilling wells into the oil shale formations.

The present invention may be briefly described as a method for recovering oil from a subsurface oil shale formation wherein a plurality of wells are drilled or provided in the shale oil formation. Thus, a first well opens into the lower portion of the formation and a second well opens into the formation adjacent the first well. A third well opens initially into the formation adjacent and between the first and second wells. The formation is fractured through the third well and thereafter free oxygen is injected into the fractured formation to support a combustion operation in the fractured formation. By burning the fractured formation, a cavern is formed therein and the free oxygen is injected at a sufficient velocity to form in the cavern a fluidized bed. In the lower portion of the cavern, a burning zone is provided and a retorting and cracking zone is provided in the upper portion of the cavern. Raw shale is fed into the fluidized bed and the cavern is enlarged by progressive upward caving of the cavern roof achieved by means of explosives, hydraulic fracturing, or other techniques. Shale oil and combustion products are formed in the cavern and are removed from the cavern through the second well.

It is contemplated in the practice of the present invention that a plurality of caverns will be formed in the shale oil formation with each cavern being formed around an oxygen injection well and having supporting wells for fracturing and for recovery of the products. By virtue of having a plurality of caverns which will be formed around wells drilled on centers a distance apart within the range from about 200 feet to about 1000 feet, with the caverns having diameters which may range ultimately from about 50 feet to about 500 feet, it is possible not only to recover shale oil from the oil shale formation in which the cavern is formed but also from the oil shale formation surrounding the caverns by virtue of heat being transferred from the caverns into the walls which causes retorting to take place in the walls; as a result, shale oil flows from the walls into the caverns and is cracked and vaporized for recovery with the shale oil and combustion products in the cavern.

In the practice of the present invention, free oxygen-containing gas in injected through the oxygen injection well. This free oxygen-containing gas is injected in an amount within the range from about 500 to about 1500 cubic feet of free oxygen per ton of oil shale which is subjected to combustion. The free oxygen-containing gas may be air or other free oxygen-containing gas. In some instances, it may be desirable to use substantially pure free oxygen. An amount of about 1000 cubic feet of free oxygen per ton of oil shale will give desirable results. Where air or other free oxygen-containing gas is used, a suificient amount will be employed to provide the necessary amount of free oxygen.

The free oxygen-containing gas in injected into the formation for supporting the combustion operation is injected at a sufficient velocity of allow the formation and the maintenance of a fluidized solids bed in the cavern.

hydraulic fracturing through the third 3,233,668 Patented Feb. 8, 1 966 The free oxygen-containing gas is injected at a suflicient velocity to provide a superficial gas velocity in the cavern within the range from about 0.1 to about 2.5 feet per second. A preferred superficial gas velocity is within the range from about 0.3 to about 0.6 feet per second.

Superficial gas velocities above about 2.5 feet per second should not be employe since between about 2.5 and about 4.0 feet per second of the shale fines, which result from burning the shale formation and by attrition in the fluidized bed, may be blown from the cavern which is undesirable and must be controlled. Above about 4 feet per second, the fines will be substantially lost from the cavern and the bed will not be formed.

When free oxygen is employed in the practice of the present invention, it may suitably be produced by electrolysis of water under an elevated pressure within the range from about 1000 to about 3000 p.s.i.g. Electrolysis under pressure produces ahigh pressure oxygen for the injection operation and high pressure hydrogen for subsequent treatment of the shale oil for removal of nitro gen and sulfur. An insufficient amount of water is produced from the cavern resulting from the combustion operation for electrolysis to produce the necessary amount of oxygen and hydrogen, However, additional water will be recovered from the formation itself. It is to be understood that fresh water from an external source in addition may be used for the electrolysis operation and suitable electrolytes may be added to the water regardless of its source, as may be required. As examples only of suitable electrolytes may be mentioned solutions containing about 30 weight percent potassium hydroxide, or 30 weight percent sulfuric acid, or weight percent phosphoric acid. It is to be understood, however, that the invention is not limited to these electrolytes or concentrations.

Temperatures in the burning zone in the cavern may range from about 1000 to about 1400" F. A preferred temperature may range from about 1150 to about 1250 F., wth good results being obtained at around 1200 F.

Temperatures in the cracking zone may range from about 700 to about 1000 F. with preferred temperatures ranging from about 900 to about 950 F. A suitable temperature is 925" F.

The pressure in the cavern should be suitably controlled such that the pressure does not exceed the breakdown pressure of the formation. Thus, the pressure may depend on the depth of the cavern from the earths surface which may range from about 500 to about 4000 feet. Pressures may be controlled by throttling the output wells. Likewise, the temperatures in both the burning zone and the cracking zone may be controlled by the rate of free oxygen injection or by supplementary injection of water and/ or steam, as may be required. Another way of controlling temperatures is by return of slurry oil to the bottom of the cavern through a separate well to serve as fuel. Still another mode of temperature control is by the control of oil shale fed into the cavern by caving of the roof of the cavern.

In this respect, the caving of the roof and enlargement of the cavern is suitably obtained by progressive fracturing if the formation above the cavern at intervals within the range of about 4 to about 20 feet above the top of the cavern. This may be accomplished by well or by controlled explosions, or by explosively fracturing the formation through the third well as will be described further hereinafter.

Raw shale oil is formed and vaporized as the shale is retorted while moving downward through the fluidized bed toward the burning zone. In the burning zone, residual carbon is burned from the spent shale allowing it to disintegrate into fluidizable solids which are removed 3 from the burning zone in the fluidized state. This allows additional spent shale to move downward into the burning zone. Additional raw shale is added to the top portion of the fluidized bed as the spent shale is converted to fluidized solids in the burning zone.

The level of the fluidized bed in the cavern may be controlled by selective withdrawal of fines from the bottom of the cavern in the dense fluidized bed by providing a separate withdrawal Well or by Withdrawal of fines through the output well. The fluidized bed should be controlled at a level at least about 20 feet below the roof of the cavern and may desirably be at a level from about 20 to about 100 feet below the cavern roof.

Although slurry oil may be returned to the bottom of the cavern to serve as fuel for the burning zone, slurry oil may be returned to the top of the cavern, as may be desired, through a separate cased hole to the top of the cavern. Slurry return to either the top or the bottom of the cavern is desirable since it provides a means of returning fines entrained in the product vapors back to the underground cavern.

The shale oil as produced contains nitrogen and sulfur, usually in combined form. The shale oil as produced is therefore unsatisfactory and must be subjected to treatment for removal of nitrogen and sulfur or for converting them to an innicuous form. This is accomplished by hydrogenation of the lighter fractions of the shale oil. Conditions for hydrogenation include temperatures within the range from about 700-800 F., with a preferred temperature of about 750 F.; and pressures within the range of about 600-l000 p.s.i., with a preferred range of about 700-900 p.s.i. A suitable pressure when a temperature of about 750 F. is used is about 800 psi.

Hydrogen consumption will range from about 1000- 2000 cubic feet per barrel and a preferred catalyst is cobalt molybdate although other hydrogenation catalyst may be used.

The shale oil fraction is fed to the hydrogenation unit at a rate sufiicient to provide a space velocity Within the range from about 0.25 to about 1.0 v./v./hr.

The present invention will be further described with reference to the drawing in which:

FIG. 1 is a cross-sectional view showing the spacing of the wells for one cavern;

FIG. 1-A is a modification of FIG. 1;

FIG. 2 is a surface ground view of the well spacing for one cavern;

FIG. 3 illustrates a plurality of caverns formed in accordance with the present invention;

FIG. 4 is a flow diagram of the surface operation for recovery of shale oil from a cavern; and

FIG. 4-A is a flow diagram of the hydrogenation and electrolysis system.

Referring now to the drawing in which identical numerals will designate identical parts and particularly to FIG. 1, numeral 11 designates the earths surface from which an injection well 12, is drilled into an oil shale formation 13. Oil shale formation 13 is overlaid by formations designated as overburden 14. Second wells are spaced from the injection well 12 and these wells may be drilled vertically and then deviated so that they open adjacent the first or injection well 12. Wells 15 may be substantially vertical throughout their depth. Third wells, which are designated as fracturing wells 16, may be drilled between the first and second wells such that they open into the formation 13 adjacent and between the first well 12 and second well 15. These wells 1d may also be substantially vertical. The first well 12 and the third wells 16 may be cased throughout their length, while the second wells 15 may be cased through the overburden 14 but have an open bore in the oil shale formation 13. Since the casings of well 12 and wells 16 are subjected to high temperatures, these casings may be suitably constructed, at least throughout their length in the formation 13, of special metallic alloys or other materials which will safely withstand the high temperatures obtaining as the combustion operation proceeds. Under some conditions it may be desirable and preferable to conduct the present invention with wells which are provided only with a surface pipe but otherwise are not cased. Thus, wells 12, 15, and 16 may or may not be cased as desired.

Where the well such as 1.2 is not cased, it may be deviated and terminate in the zone 13 as shown in FIGURE 1A. In the case of wells 16 fracturing may be conducted from an open hole as desired.

The well 12 is suitably closed at the surface 11 by a wellhead 17 having attached thereto a free oxygen injection line 18. Wells 15 are connected to a manifold 19 and are controlled by valves 20, connected to wellheads 21. Wells 16 are closed by wellheads 22 to which lines 23 connect, through which fracturing fluid or explosives are injected.

In the practice of the present invention in accordance with the best mode contemplated, a cavern such as 23 is formed by explosively or hydraulically fracturing formation material 24 and by injecting free oxygen into the fractured formation material 24- through the casing 12 provided with perforations 25. A burning zone 26 is then initiated in the cavern 23 which assists in the formation of the cavern and forms a fluidized bed 27 above the burning zone 26. Mild cracking takes place in the fluidized bed, the attrited shale formation material providing heat transfer to the products undergoing cracking allowing use of relatively low cracking temperatures in the range from about 700 F. to about 1000 F. The fracturing is conducted through wells 16 by means of perforations 16a which may suitably be formed by using the Wel -known gun perforating technique. Since there are several wells which may be adjacent each other, it may be desirable to use an oriented gun to avoid perforating the other wells.

Products are withdrawn from the cavern 23 through output wells 15 and are separated and processed as described with respect to FIGS, 4 and 4-A.

Referring now to FIG. 1-A, a well 12a is drilled into the formation 13. The Well 12a has a vertical component 23 and a deviated component 29. In this modification, the deviated component 29 provides for oxygen injection into the cavern 23 without exposure of long sections of the casing to high temperatures obtaining in the burning zone and in the cracking zone. Thus, only a small portion of the well 12a need be provided with sp cial metallic alloys to resist the high temperature environments.

Referring now to FIG. 2, an areal pattern for the wells 12, 15, and 16 is shown with the several wells all having substantially vertical bores. Particular attention is directed to the spacing of the wells 15 and 16 relative to well 12.

In FIG. 3 an arrangement of the caverns 23 formed around several of the wells 12 (the wells 15 and 16 not being shown) is shown such as contemplated in the present invention. Referring to FIG. 3, wherein the wells are all drilled substantially vertically, it will be seen that the spaces 30 between the walls form supporting pillars for the formation. Also, the spaces 30 may suitably be denuded of shale oil content by heat transfer from two or more caverns as the caverns are gradually formed and enlarged to have the diameters mentioned before and shown in the drawing. In this manner, the temperature of the spaces 30 between the caverns will, after a period of time from about 5 to about months, approach the temperatures obtaining in the caverns, allowing substantial recovery of the oil from the shale. By virtue of the fact that a burning operation takes place only in the caverns, the formation material in the roofs of the caverns and in the walls of the caverns may be denuded of 011 but is not weakened by combustion, thus retaining its strength and serving to maintain the caverns without sloughing of the walls or the roof except by intentional 5. caving of the roof by the fracturing technique. Where the wells 12, 15, and 16 have substantially vertical bores, as illustrated relative to FIGS. 2 and 3, the caverns formed are generally of cylindrical shape.

Referring now to FIG. 4, there is shown a substantially cylindrical cavern, such as 23, provided with an outlet well 15 connected to a manifold 19 for recovery of products. The manifold 19 connects to -a cooling means 31 for reduction of temperature of the combustion prodnets and shale oil. The cooled products are discharged by line 32 into a separating means, such as a separation zone 33 wherein an oil slurry of fines, discharged through well 15 is recovered. This oil slurry of fines, amounting to about -10% by volume of the products, may be withdrawn by line 34 and returned to the cavern 23, either to the top of the cavern by line 35, or to the bottom of the cavern by line 36, or both. The vaporous products from zone 33 are withdrawn by line 37, cooled and condensed in cooler-condenser 38 and then discharged by'line 39 into a second separation zone 40 from whence water is withdrawn by line 41 for discharge or for electrolysis. Unoondensed material, including steam, carbon dioxide and light hydrocarbons are withdrawn by line 42 and suitably may be used as a fuel for supplying heat'.

Shale oil is withdrawn by line 43 and introduced thereby into an atmospheric distillation tower 44 which is provided with suitable internal vapor-liquid contacting means or packing, such as hell cap trays and the like. Atmosphe'ric tower 44 is operated at a suitable temperature by heating means (not shown) to allow withdrawal by line 45 of a fraction boiling up to about 700 F. A bottoms fraction is withdrawn by line 46 and introduced into a vacuum distillation tower 47 which is operated under conditions to produce an overhead product which is withdrawn by line 48 com-prising hydrocarbonaceous material boiling from about 700 F. up to 90-95% of the fraction charged to tower 44. The overhead fraction in lines 45 and 48 are commingled in line 49 for further treatment as will be described. A bottoms fraction, which may be as much as 5-10% of the fraction introduced by line 43, is withdrawn by line 59 and may serve asasuitable fuel oil.

The fraction in line 49 is introduced thereby into a hydrogenation zone 51 shown in FIG. 4-A. Hydrogenation zone 51 is provided with a bed 52 of hydrogenation catalyst. Products are withdrawn from zone 51 by line 53 for recovery of various hydrocarbon fractions.

Hydrogen is introduced in line 49 through line 54 from a pressure electrolysis chamber 55 provided with electrical leads 56 and 57. C'xygen, also under pressure, is withdrawn from pressure chamber 55 by line 58 for introduction by line 18 into well 12. Water and electrolyteare introduced into chamber 55 by line 59.

The present invention is quite advantageous and useful in that by the practice of the present invention it is possible to recover oil in an economical manner from oil shale formations. The oil content of the shale is about 30%. Thus, in conventional mining, about 70-90% of inorganic material must be handled. This is avoided in the present invention.

In oil shale formations having a thickness of about 5002000 feet, caverns approximately 200 feet in diameter having an initial conical cross section which assumes the shape of a vertical cylinder as it progressively forms will ultimately correspond tothe thickness of the formation.

Oil is evolved during retorting in situ and this oil is mildly cracked in a fluidized bed which is formed such that the product is removed in the vapor state. The vapors are cooled at the surface, which permits separation of slurry oil, hydrocarbonaceous material, and water from the flue gas. By electrolyzing the water under a sufiiciently high pressure, oxygen and hydrogen under a high pressure in sufficient amounts for injection into the 6 formation and hydrogenation of the shale oil are pro vided without requiring compression. Furthermore, it has been unexpectedly found that the amount of water required is about 108 pounds per barrel of oil which produces, on electrolysis, the amount of oxygen needed, as well as the amount of hydrogen required.

The fracturing operation by Way of which the cavern is enlarged may be the hydraulic fracturing technique wherein hydraulic pressure is imposed on the formation to cause fractures therein or it may involve explosive fracturing using shaped charges, liquid or solid explosives which are detonated in or in contact with the formation. If the fracturing well is cased, the fracturing operation is performed by first perforating the casing using bullet guns, shaped charges, chemicals or by mechanical cutters, and the like. If the fracturing well is not cased, the exposed formation may be subjected directly to fracturing. Alternatively, if casing is employed, it may be provided with frangible sections which may be ruptured by pressure or mechanically, or the casing may be provided with sections which are susceptible to attack by well-known chemicals such as acids and alkalies.

The nature and objects of the present invention, having been completely described and illustrated and the best mode contemplated set forth, what we wish to claim as new and useful and secure by Letters Patent is:

1. A method for recovering oil from a subsurface oil shale formation which comprises providing a first well opening into the lower portion of said formation, providing at least a second Well opening into said formation adjacent the first well, providing at least a third well opening into said formation adjacent the first and second wells, fracturing said formation through said third well adjacent the openings of said first and second wells, injecting a free oxygen-containing gas into said fractured formation and burning said fractured formation thereby forming a cavern in said fractured formation, the free oxygen-containing gas being injected through said first well at a sufficient velocity to form in said cavern a burning zone in the lower portion and a cracking zone comprising fluidized shale solids in the upper portion of said cavern whereby shale oil and combustion products are formed, and removing said shale oil and combustion products from the top ofsaid cavern through said second well.

2. A method for recovering oil from a subsurface oil shale formation which comprises providing a first well opening into the lower portion of said formation, providing at least a second well opening into said formation adjacent the first well, providing at least a third Well opening into said formation adjacent the first and second wells, fracturing said formation through said third well adjacent the openings of said first and second wells, injecting free oxygen-containing gas into said fractured formation and burning said fractured formation thereby forming a cavern in said fractured formation, the free oxygen-containing gas being injected through said first well at a sufficient velocity to form in said cavern a burning zone in the lower portion and a cracking zone comprising fluidized shale solids in the upper portion of said cavern whereby shale oil and combustion products are formed, removing said shale oil and combustion products from the top of said cavern through said second well, and supplying oil shale to said fluidized bed by further fracturing said formation above said cavern through said third well and thereby progressively enlarging said cavern in an upward direction.

3. A method for recovering oil from a sub-surface oil shale formation which comprises providing a plurality of spaced-apart first wells opening into the lower portion of said formation, said first wells being arranged on centers within the range from about 200 to about 1000 feet, providing at least a second well opening into said formation adjacent each of said first wells, providing at least a third well opening into said formation adjacent eachof 1 said first and second wells, fracturing said formation through said each of said third wells adjacent the openings of said first and second wells, injecting free oxygencontaining gas into said fractured formation and burning said fractured formation thereby forming a plurality of caverns in said fractured formation, the free oxygen-containing gas being injected through each of said first wells at a sufficient velocity to form in each of said caverns a burning zone in the lower portion and a cracking zone comprising fluidized shaie solids in the upper portion of each of said caverns whereby heat from said caverns is transferred to the wails of said caverns and shale oil and combustion products are released into said caverns, and removing said shale oil and combustion products from the top of said caverns through each of said second wells.

4. A method in accordance with claim 3 in which oil shale is supplied to the fluidized bed in each of said caverns by further fracturing said formation above each of said. caverns through said third wells and thereby progressively enlarging said caverns in an upward direction.

5. A method for recovering oil from a subsurface oil shale formation which comprises providing a first cased well opening into the lower portion of said formation, providing at least a second well having an open bore in said formation adjacent the first well, providing at least a third cased well opening into said formation adjacent and between the first and second wells, fracturing said formation through said third well adjacent the openings of said first and second wells, injecting free oxygen-containing gas into said fractured formation and burning said fractured formation thereby forming a cavern in said fractured formation, the free oxygen-containing gas being injected through said first well at a sufficient velocity to form in said cavern a burning zone in the lower portion and a cracking zone comprising fluidized shale solids in the upper portion of said cavern whereby shale oil and combustion products are formed, and. removing said shale oil and combustion products from the top of said cavern through said second well.

6. A method in accordance with claim 5 in which the first Well is substantially vertical and the second and third wells are arranged angularly relative to said first well.

i. A method in accordance with claim 5 in which the first, second, and third wells are substantially vertical and the cavern is substantially cylindrical.

8. A method for recovering oil from a subsurface oil shale formation which comprises providing a first well opening into the lower portion of said formation, providing at least a second well opening into said formation adjacent the first well, providing at least a third well opening into said formation adjacent and between the first and second wells, fracturing said formation through said third well adjacent the openings of said first and second wells, injecting free oxygen-containing gas into said fractured formation and burning said fractured formation thereby forming a cavern in said fractured formation, the free oxygen-containing gas being injected. through said first well in an amount within the range from about 500 to about 1500 cubic feet of free oxygen per ton of oil shale at a sufficient velocity to form in the upper portion of said cavern a cracking zone comprising a fluidized bed of shale solids in which a superficial gas velocity within the range from about 0.1 to about 2.5 feet per second is maintained and wherein a burning zone at a temperature within the range from about 1000 to about 1400 F. is provided in the lower portion, said cracking zone being at a temperature within the range from about 700 to about 1000 F. whereby shale oil and combustion products are formed, and removing said. shale oil and combustion products from the top of said cavern through said second well.

9. A method in accordance with claim 8 in which a plurality of first wells are provided on centers within the range from about 200 to about 1000 feet.

10. A method for recovering oil from a subsurface oil shale formation which comprises providing a first well opening into the lower portion of said formation, providing at least a second well opening into said. formation adjacent the first well, providing at least a third well opening into said formation adjacent and between the first and second wells, fracturing said formation through said third well adjacent the openings of said first and second. wells, injecting free oxygen into said fractured formation and burning said fractured formation thereby forming a cavern in said fractured formation, the free oxygen being injected through said first well at a sufficient velocity to form in the upper portion of said cavern a cracking zone comprising a fluidized bed of shale solids and wherein a burning zone is provided in the lower portion whereby shale oil and. combustion products are formed, removing said shale oil and combustion products in vaporous form together with entrained fines from the top of said cavern through said second well, cooling said vaporous products and separating said fines in an oil slurry, further cooling said products to form a gas phase, an oil phase, and an aqueous phase and. separating said phases, subjecting at least a fraction of said oil phase to hydrogenation to remove nitrogen and sulfur, subjecting said aqueous phase to high pressure electrolysis to form free oxygen and hydrogen, and employing said free oxygen for injection into said first well and said hydrogen for said hydrogenation. v

11. A method in accordance with claim 10 in which the slurry is returned to the bottom of the cavern in said burning zone.

12. A method in accordance with claim it) in which the slurry is returned to the top of said cavern in said cracking zone.

13. A method in accordance with claim 10 in which the water is subjected to electrolysis under a sufficiently high pressure for injection into said first well.

14. A method for recovering oil from a subsurface oil shale formation which comprises providing a first well openin' into the iower portion of said formation, providing at least a second well opening into said formation adjacent the first well, providing at least a third well opening into said formation adjacent and between the first and second wells, fracturing said formation through said third well adjacent the openings of said first and second wells, injecting free oxygen-containing gas into said fractured formation and burning said fractured formation thereby forming a cavern in said fractured formation, the free oxygen-containing gas being injected through said first well at a sufficient velocity to form in the upper portion of said cavern a cracking zone comprising a fluidized bed of shale solids and wherein a burning zone is pro vided in the lower portion whereby shale oil and combustion products are formed, removing said shale oil and combustion products in vaporous form together with entrained fines from the top of said cavern through said second well, cooling said vaporous products and separating said fines in an oil slurry, further cooling said products to form a gas phase, an oil phase, and an aqueous phase and separating said phases, and subjecting at least a fraction of said oil phase to hydrogenation to remove nitrogen and sulfur.

15. A method for recovering oil from a subsurface oil shale formation which comprises providing a first well opening into the lower portion of said formation, providing at least a second well opening into said formation adjacent the first well, providing at least a third well opening into said formation adjacent and between the first and second wells, fracturing said formation through said third well adjacent the openings of said first and second wells, injecting free oxygen-containing gas into said fractured formation and burning said fractured formation thereby forming a cavern in said fractured formation,

the free oxygen-containing gas being injected through said first Well at a sufiicient velocity to form in the upper portion of said cavern a cracking zone comprising a fluidized bed of shale solids and wherein a burning Zone is provided in the lower portion of said cavern whereby shale oil and combustion products are formed, removing said shale oil and combustion products from the upper portion of said cavern through said second well, and removing fines from the lower portion of said cavern to control the level of said bed.

References Cited by the Examiner UNITED STATES PATENTS Rogers 166-39 X Martin 166-1l X Pevere et al. 166-11 Watson 166-11

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1269747 *Apr 6, 1918Jun 18, 1918Lebbeus H RogersMethod of and apparatus for treating oil-shale.
US2630307 *Dec 9, 1948Mar 3, 1953Carbonic Products IncMethod of recovering oil from oil shale
US2788956 *Aug 3, 1955Apr 16, 1957Texas CoGeneration of carbon monoxide and hydrogen by underground gasification of coal
US2825408 *Mar 9, 1953Mar 4, 1958Sinclair Oil & Gas CompanyOil recovery by subsurface thermal processing
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3316020 *Nov 23, 1964Apr 25, 1967Mobil Oil CorpIn situ retorting method employed in oil shale
US3386508 *Feb 21, 1966Jun 4, 1968Exxon Production Research CoProcess and system for the recovery of viscous oil
US3460867 *Oct 24, 1965Aug 12, 1969Ernest E BurghMining and retorting of oil shale
US3468376 *Feb 10, 1967Sep 23, 1969Mobil Oil CorpThermal conversion of oil shale into recoverable hydrocarbons
US3490529 *May 18, 1967Jan 20, 1970Phillips Petroleum CoProduction of oil from a nuclear chimney in an oil shale by in situ combustion
US3513913 *Apr 19, 1966May 26, 1970Shell Oil CoOil recovery from oil shales by transverse combustion
US3596993 *Feb 14, 1969Aug 3, 1971Mc Donnell Douglas CorpMethod of extracting oil and by-products from oil shale
US3601193 *Apr 2, 1968Aug 24, 1971Cities Service Oil CoIn situ retorting of oil shale
US3698478 *Dec 10, 1969Oct 17, 1972Phillips Petroleum CoRetorting of nuclear chimneys
US3999607 *Jan 22, 1976Dec 28, 1976Exxon Research And Engineering CompanyRecovery of hydrocarbons from coal
US4036299 *Sep 22, 1975Jul 19, 1977Occidental Oil Shale, Inc.Enriching off gas from oil shale retort
US4084640 *Nov 4, 1976Apr 18, 1978Marathon Oil CompanyCombined combustion for in-situ retorting of oil shales
US4089375 *May 13, 1977May 16, 1978Occidental Oil Shale, Inc.In situ retorting with water vaporized in situ
US4109719 *Dec 5, 1977Aug 29, 1978Continental Oil CompanyMethod for creating a permeable fragmented zone within a subterranean carbonaceous deposit for in situ coal gasification
US4109964 *Jan 3, 1977Aug 29, 1978Occidental Oil Shale, Inc.Method for preconditioning oil shale preliminary to explosive expansion and in situ retorting thereof
US4118070 *Sep 27, 1977Oct 3, 1978Occidental Oil Shale, Inc.Subterranean in situ oil shale retort and method for making and operating same
US4120355 *Aug 30, 1977Oct 17, 1978Standard Oil Company (Indiana)Method for providing fluid communication for in situ shale retort
US4185693 *Jun 7, 1978Jan 29, 1980Conoco, Inc.Oil shale retorting from a high porosity cavern
US4324292 *Jul 18, 1980Apr 13, 1982University Of UtahProcess for recovering products from oil shale
US4353418 *Oct 20, 1980Oct 12, 1982Standard Oil Company (Indiana)In situ retorting of oil shale
US4366864 *Nov 24, 1980Jan 4, 1983Exxon Research And Engineering Co.Method for recovery of hydrocarbons from oil-bearing limestone or dolomite
US4470460 *Nov 26, 1982Sep 11, 1984Ashland Oil, Inc.In situ retorting or oil shale
US4487260 *Mar 1, 1984Dec 11, 1984Texaco Inc.In situ production of hydrocarbons including shale oil
US4491179 *Apr 26, 1982Jan 1, 1985Pirson Sylvain JMethod for oil recovery by in situ exfoliation drive
US6250391 *Jan 29, 1999Jun 26, 2001Glenn C. ProudfootProducing hydrocarbons from well with underground reservoir
US6581684Apr 24, 2001Jun 24, 2003Shell Oil CompanyIn Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US6588503Apr 24, 2001Jul 8, 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to control product composition
US6588504Apr 24, 2001Jul 8, 2003Shell Oil CompanyIn situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US6591906Apr 24, 2001Jul 15, 2003Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US6591907Apr 24, 2001Jul 15, 2003Shell Oil CompanyIn situ thermal processing of a coal formation with a selected vitrinite reflectance
US6607033Apr 24, 2001Aug 19, 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to produce a condensate
US6609570Apr 24, 2001Aug 26, 2003Shell Oil CompanyIn situ thermal processing of a coal formation and ammonia production
US6688387Apr 24, 2001Feb 10, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6698515Apr 24, 2001Mar 2, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a relatively slow heating rate
US6702016Apr 24, 2001Mar 9, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US6708758Apr 24, 2001Mar 23, 2004Shell Oil CompanyIn situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US6712135Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a coal formation in reducing environment
US6712136Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US6712137Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US6715546Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6715547Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US6715548Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6715549Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US6719047Apr 24, 2001Apr 13, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US6722429Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6722430Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US6722431Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of hydrocarbons within a relatively permeable formation
US6725920Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US6725921Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation by controlling a pressure of the formation
US6725928Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a distributed combustor
US6729395Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US6729396Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US6729397Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US6729401Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation and ammonia production
US6732794Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6732795Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US6732796Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US6736215Apr 24, 2001May 18, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US6739393Apr 24, 2001May 25, 2004Shell Oil CompanyIn situ thermal processing of a coal formation and tuning production
US6739394Apr 24, 2001May 25, 2004Shell Oil CompanyProduction of synthesis gas from a hydrocarbon containing formation
US6742587Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US6742588Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US6742589Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US6742593Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US6745831Apr 24, 2001Jun 8, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US6745832Apr 24, 2001Jun 8, 2004Shell Oil CompanySitu thermal processing of a hydrocarbon containing formation to control product composition
US6745837Apr 24, 2001Jun 8, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US6749021Apr 24, 2001Jun 15, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a controlled heating rate
US6752210Apr 24, 2001Jun 22, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using heat sources positioned within open wellbores
US6758268Apr 24, 2001Jul 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US6761216Apr 24, 2001Jul 13, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
US6763886Apr 24, 2001Jul 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with carbon dioxide sequestration
US6769483Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US6769485Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ production of synthesis gas from a coal formation through a heat source wellbore
US6789625Apr 24, 2001Sep 14, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US6805195Apr 24, 2001Oct 19, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US6820688Apr 24, 2001Nov 23, 2004Shell Oil CompanyIn situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio
US6866097Apr 24, 2001Mar 15, 2005Shell Oil CompanyIn situ thermal processing of a coal formation to increase a permeability/porosity of the formation
US6877554Apr 24, 2001Apr 12, 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control
US6994168Apr 24, 2001Feb 7, 2006Scott Lee WellingtonIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US7032660Apr 24, 2002Apr 25, 2006Shell Oil CompanyIn situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US7036583Sep 24, 2001May 2, 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US7644765Oct 19, 2007Jan 12, 2010Shell Oil CompanyHeating tar sands formations while controlling pressure
US7673681Oct 19, 2007Mar 9, 2010Shell Oil CompanyTreating tar sands formations with karsted zones
US7673786Apr 20, 2007Mar 9, 2010Shell Oil CompanyWelding shield for coupling heaters
US7677310Oct 19, 2007Mar 16, 2010Shell Oil CompanyCreating and maintaining a gas cap in tar sands formations
US7677314Oct 19, 2007Mar 16, 2010Shell Oil CompanyMethod of condensing vaporized water in situ to treat tar sands formations
US7681647Mar 23, 2010Shell Oil CompanyMethod of producing drive fluid in situ in tar sands formations
US7683296Mar 23, 2010Shell Oil CompanyAdjusting alloy compositions for selected properties in temperature limited heaters
US7703513Oct 19, 2007Apr 27, 2010Shell Oil CompanyWax barrier for use with in situ processes for treating formations
US7717171Oct 19, 2007May 18, 2010Shell Oil CompanyMoving hydrocarbons through portions of tar sands formations with a fluid
US7730945Oct 19, 2007Jun 8, 2010Shell Oil CompanyUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7730946Oct 19, 2007Jun 8, 2010Shell Oil CompanyTreating tar sands formations with dolomite
US7730947Oct 19, 2007Jun 8, 2010Shell Oil CompanyCreating fluid injectivity in tar sands formations
US7735935Jun 1, 2007Jun 15, 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US7785427Apr 20, 2007Aug 31, 2010Shell Oil CompanyHigh strength alloys
US7793722Apr 20, 2007Sep 14, 2010Shell Oil CompanyNon-ferromagnetic overburden casing
US7798220Apr 18, 2008Sep 21, 2010Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US7798221Sep 21, 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7831134Apr 21, 2006Nov 9, 2010Shell Oil CompanyGrouped exposed metal heaters
US7832484Apr 18, 2008Nov 16, 2010Shell Oil CompanyMolten salt as a heat transfer fluid for heating a subsurface formation
US7841401Oct 19, 2007Nov 30, 2010Shell Oil CompanyGas injection to inhibit migration during an in situ heat treatment process
US7841408Apr 18, 2008Nov 30, 2010Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US7841425Nov 30, 2010Shell Oil CompanyDrilling subsurface wellbores with cutting structures
US7845411Dec 7, 2010Shell Oil CompanyIn situ heat treatment process utilizing a closed loop heating system
US7849922Dec 14, 2010Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US7860377Apr 21, 2006Dec 28, 2010Shell Oil CompanySubsurface connection methods for subsurface heaters
US7866385Apr 20, 2007Jan 11, 2011Shell Oil CompanyPower systems utilizing the heat of produced formation fluid
US7866386Oct 13, 2008Jan 11, 2011Shell Oil CompanyIn situ oxidation of subsurface formations
US7866388Jan 11, 2011Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US7912358Apr 20, 2007Mar 22, 2011Shell Oil CompanyAlternate energy source usage for in situ heat treatment processes
US7931086Apr 18, 2008Apr 26, 2011Shell Oil CompanyHeating systems for heating subsurface formations
US7942197Apr 21, 2006May 17, 2011Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US7942203May 17, 2011Shell Oil CompanyThermal processes for subsurface formations
US7950453Apr 18, 2008May 31, 2011Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US7986869Apr 21, 2006Jul 26, 2011Shell Oil CompanyVarying properties along lengths of temperature limited heaters
US8011451Sep 6, 2011Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US8027571Sep 27, 2011Shell Oil CompanyIn situ conversion process systems utilizing wellbores in at least two regions of a formation
US8042610Oct 25, 2011Shell Oil CompanyParallel heater system for subsurface formations
US8070840Apr 21, 2006Dec 6, 2011Shell Oil CompanyTreatment of gas from an in situ conversion process
US8083813Dec 27, 2011Shell Oil CompanyMethods of producing transportation fuel
US8113272Oct 13, 2008Feb 14, 2012Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US8146661Oct 13, 2008Apr 3, 2012Shell Oil CompanyCryogenic treatment of gas
US8146669Oct 13, 2008Apr 3, 2012Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US8151880Dec 9, 2010Apr 10, 2012Shell Oil CompanyMethods of making transportation fuel
US8151907Apr 10, 2009Apr 10, 2012Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8162059Apr 24, 2012Shell Oil CompanyInduction heaters used to heat subsurface formations
US8162405Apr 24, 2012Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US8172335May 8, 2012Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8177305Apr 10, 2009May 15, 2012Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8191630Apr 28, 2010Jun 5, 2012Shell Oil CompanyCreating fluid injectivity in tar sands formations
US8192682Apr 26, 2010Jun 5, 2012Shell Oil CompanyHigh strength alloys
US8196658Jun 12, 2012Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US8220539Jul 17, 2012Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8224163Oct 24, 2003Jul 17, 2012Shell Oil CompanyVariable frequency temperature limited heaters
US8224164Oct 24, 2003Jul 17, 2012Shell Oil CompanyInsulated conductor temperature limited heaters
US8224165Jul 17, 2012Shell Oil CompanyTemperature limited heater utilizing non-ferromagnetic conductor
US8225866Jul 21, 2010Jul 24, 2012Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8230927May 16, 2011Jul 31, 2012Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US8233782Jul 31, 2012Shell Oil CompanyGrouped exposed metal heaters
US8238730Aug 7, 2012Shell Oil CompanyHigh voltage temperature limited heaters
US8240774Aug 14, 2012Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US8256512Oct 9, 2009Sep 4, 2012Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US8261832Sep 11, 2012Shell Oil CompanyHeating subsurface formations with fluids
US8267170Sep 18, 2012Shell Oil CompanyOffset barrier wells in subsurface formations
US8267185Sep 18, 2012Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US8272455Sep 25, 2012Shell Oil CompanyMethods for forming wellbores in heated formations
US8276661Oct 2, 2012Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US8281861Oct 9, 2012Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US8327681Dec 11, 2012Shell Oil CompanyWellbore manufacturing processes for in situ heat treatment processes
US8327932Apr 9, 2010Dec 11, 2012Shell Oil CompanyRecovering energy from a subsurface formation
US8353347Oct 9, 2009Jan 15, 2013Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US8355623Jan 15, 2013Shell Oil CompanyTemperature limited heaters with high power factors
US8381815Apr 18, 2008Feb 26, 2013Shell Oil CompanyProduction from multiple zones of a tar sands formation
US8434555Apr 9, 2010May 7, 2013Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US8448707May 28, 2013Shell Oil CompanyNon-conducting heater casings
US8459359Apr 18, 2008Jun 11, 2013Shell Oil CompanyTreating nahcolite containing formations and saline zones
US8485252Jul 11, 2012Jul 16, 2013Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8536497Oct 13, 2008Sep 17, 2013Shell Oil CompanyMethods for forming long subsurface heaters
US8555971May 31, 2012Oct 15, 2013Shell Oil CompanyTreating tar sands formations with dolomite
US8562078Nov 25, 2009Oct 22, 2013Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8579031May 17, 2011Nov 12, 2013Shell Oil CompanyThermal processes for subsurface formations
US8606091Oct 20, 2006Dec 10, 2013Shell Oil CompanySubsurface heaters with low sulfidation rates
US8608249Apr 26, 2010Dec 17, 2013Shell Oil CompanyIn situ thermal processing of an oil shale formation
US8627887Dec 8, 2008Jan 14, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8631866Apr 8, 2011Jan 21, 2014Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US8636323Nov 25, 2009Jan 28, 2014Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US8662175Apr 18, 2008Mar 4, 2014Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8701768Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations
US8701769Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US8739874Apr 8, 2011Jun 3, 2014Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US8752904Apr 10, 2009Jun 17, 2014Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8789586Jul 12, 2013Jul 29, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8791396 *Apr 18, 2008Jul 29, 2014Shell Oil CompanyFloating insulated conductors for heating subsurface formations
US8820406Apr 8, 2011Sep 2, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8833453Apr 8, 2011Sep 16, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US8839867 *Jan 11, 2012Sep 23, 2014Cameron International CorporationIntegral fracturing manifold
US8851170Apr 9, 2010Oct 7, 2014Shell Oil CompanyHeater assisted fluid treatment of a subsurface formation
US8857506May 24, 2013Oct 14, 2014Shell Oil CompanyAlternate energy source usage methods for in situ heat treatment processes
US8881806Oct 9, 2009Nov 11, 2014Shell Oil CompanySystems and methods for treating a subsurface formation with electrical conductors
US8978763Sep 23, 2011Mar 17, 2015Cameron International CorporationAdjustable fracturing system
US9016370Apr 6, 2012Apr 28, 2015Shell Oil CompanyPartial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9022109Jan 21, 2014May 5, 2015Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US9022118Oct 9, 2009May 5, 2015Shell Oil CompanyDouble insulated heaters for treating subsurface formations
US9033042Apr 8, 2011May 19, 2015Shell Oil CompanyForming bitumen barriers in subsurface hydrocarbon formations
US9051829Oct 9, 2009Jun 9, 2015Shell Oil CompanyPerforated electrical conductors for treating subsurface formations
US9068450Mar 1, 2013Jun 30, 2015Cameron International CorporationAdjustable fracturing system
US9127523Apr 8, 2011Sep 8, 2015Shell Oil CompanyBarrier methods for use in subsurface hydrocarbon formations
US9127538Apr 8, 2011Sep 8, 2015Shell Oil CompanyMethodologies for treatment of hydrocarbon formations using staged pyrolyzation
US9129728Oct 9, 2009Sep 8, 2015Shell Oil CompanySystems and methods of forming subsurface wellbores
US9181780Apr 18, 2008Nov 10, 2015Shell Oil CompanyControlling and assessing pressure conditions during treatment of tar sands formations
US9222345 *Sep 22, 2014Dec 29, 2015Cameron International CorporationWell fracturing systems and methods
US9255469 *Sep 22, 2014Feb 9, 2016Cameron International CorporationIntegral fracturing manifold
US9309755Oct 4, 2012Apr 12, 2016Shell Oil CompanyThermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US20020027001 *Apr 24, 2001Mar 7, 2002Wellington Scott L.In situ thermal processing of a coal formation to produce a selected gas mixture
US20020040778 *Apr 24, 2001Apr 11, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US20020049360 *Apr 24, 2001Apr 25, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce a mixture including ammonia
US20020053431 *Apr 24, 2001May 9, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce a selected ratio of components in a gas
US20020076212 *Apr 24, 2001Jun 20, 2002Etuan ZhangIn situ thermal processing of a hydrocarbon containing formation producing a mixture with oxygenated hydrocarbons
US20020132862 *Apr 24, 2001Sep 19, 2002Vinegar Harold J.Production of synthesis gas from a coal formation
US20030066642 *Apr 24, 2001Apr 10, 2003Wellington Scott LeeIn situ thermal processing of a coal formation producing a mixture with oxygenated hydrocarbons
US20030137181 *Apr 24, 2002Jul 24, 2003Wellington Scott LeeIn situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US20030173072 *Oct 24, 2002Sep 18, 2003Vinegar Harold J.Forming openings in a hydrocarbon containing formation using magnetic tracking
US20030173080 *Apr 24, 2002Sep 18, 2003Berchenko Ilya EmilIn situ thermal processing of an oil shale formation using a pattern of heat sources
US20030173082 *Oct 24, 2002Sep 18, 2003Vinegar Harold J.In situ thermal processing of a heavy oil diatomite formation
US20030178191 *Oct 24, 2002Sep 25, 2003Maher Kevin AlbertIn situ recovery from a kerogen and liquid hydrocarbon containing formation
US20030192691 *Oct 24, 2002Oct 16, 2003Vinegar Harold J.In situ recovery from a hydrocarbon containing formation using barriers
US20030192693 *Oct 24, 2002Oct 16, 2003Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US20030196788 *Oct 24, 2002Oct 23, 2003Vinegar Harold J.Producing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation
US20030196789 *Oct 24, 2002Oct 23, 2003Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation and upgrading of produced fluids prior to further treatment
US20040020642 *Oct 24, 2002Feb 5, 2004Vinegar Harold J.In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US20040140095 *Oct 24, 2003Jul 22, 2004Vinegar Harold J.Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US20040144540 *Oct 24, 2003Jul 29, 2004Sandberg Chester LedlieHigh voltage temperature limited heaters
US20040144541 *Oct 24, 2003Jul 29, 2004Picha Mark GregoryForming wellbores using acoustic methods
US20040145969 *Oct 24, 2003Jul 29, 2004Taixu BaiInhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US20040146288 *Oct 24, 2003Jul 29, 2004Vinegar Harold J.Temperature limited heaters for heating subsurface formations or wellbores
US20040211569 *Oct 24, 2002Oct 28, 2004Vinegar Harold J.Installation and use of removable heaters in a hydrocarbon containing formation
US20050006097 *Oct 24, 2003Jan 13, 2005Sandberg Chester LedlieVariable frequency temperature limited heaters
US20060213657 *Jan 31, 2006Sep 28, 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US20070095537 *Oct 20, 2006May 3, 2007Vinegar Harold JSolution mining dawsonite from hydrocarbon containing formations with a chelating agent
US20070137857 *Apr 21, 2006Jun 21, 2007Vinegar Harold JLow temperature monitoring system for subsurface barriers
US20080017380 *Apr 20, 2007Jan 24, 2008Vinegar Harold JNon-ferromagnetic overburden casing
US20080035348 *Apr 20, 2007Feb 14, 2008Vitek John MTemperature limited heaters using phase transformation of ferromagnetic material
US20080173442 *Apr 20, 2007Jul 24, 2008Vinegar Harold JSulfur barrier for use with in situ processes for treating formations
US20080173444 *Apr 20, 2007Jul 24, 2008Francis Marion StoneAlternate energy source usage for in situ heat treatment processes
US20080173450 *Apr 20, 2007Jul 24, 2008Bernard GoldbergTime sequenced heating of multiple layers in a hydrocarbon containing formation
US20080217016 *Oct 19, 2007Sep 11, 2008George Leo StegemeierCreating fluid injectivity in tar sands formations
US20080283246 *Oct 19, 2007Nov 20, 2008John Michael KaranikasHeating tar sands formations to visbreaking temperatures
US20080314593 *Jun 1, 2007Dec 25, 2008Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US20090084547 *Apr 18, 2008Apr 2, 2009Walter Farman FarmayanDownhole burner systems and methods for heating subsurface formations
US20090090509 *Apr 18, 2008Apr 9, 2009Vinegar Harold JIn situ recovery from residually heated sections in a hydrocarbon containing formation
US20090194269 *Oct 13, 2008Aug 6, 2009Vinegar Harold JThree-phase heaters with common overburden sections for heating subsurface formations
US20090194282 *Oct 13, 2008Aug 6, 2009Gary Lee BeerIn situ oxidation of subsurface formations
US20090194329 *Oct 13, 2008Aug 6, 2009Rosalvina Ramona GuimeransMethods for forming wellbores in heated formations
US20090194524 *Oct 13, 2008Aug 6, 2009Dong Sub KimMethods for forming long subsurface heaters
US20090200031 *Oct 13, 2008Aug 13, 2009David Scott MillerIrregular spacing of heat sources for treating hydrocarbon containing formations
US20090200854 *Oct 13, 2008Aug 13, 2009Vinegar Harold JSolution mining and in situ treatment of nahcolite beds
US20090260823 *Oct 22, 2009Robert George Prince-WrightMines and tunnels for use in treating subsurface hydrocarbon containing formations
US20090260824 *Oct 22, 2009David Booth BurnsHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US20090272535 *Nov 5, 2009David Booth BurnsUsing tunnels for treating subsurface hydrocarbon containing formations
US20090272578 *Nov 5, 2009Macdonald Duncan CharlesDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US20090321417 *Dec 31, 2009David BurnsFloating insulated conductors for heating subsurface formations
US20100071903 *Mar 25, 2010Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US20100096137 *Oct 9, 2009Apr 22, 2010Scott Vinh NguyenCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US20100108310 *Oct 9, 2009May 6, 2010Thomas David FowlerOffset barrier wells in subsurface formations
US20130175038 *Jan 11, 2012Jul 11, 2013Cameron International CorporationIntegral fracturing manifold
US20150007997 *Sep 22, 2014Jan 8, 2015Cameron International CorporationWell fracturing systems and methods
US20150007998 *Sep 22, 2014Jan 8, 2015Cameron International CorporationIntegral fracturing manifold
WO2001081239A2 *Apr 24, 2001Nov 1, 2001Shell Internationale Research Maatschappij B.V.In situ recovery from a hydrocarbon containing formation
WO2001081239A3 *Apr 24, 2001May 23, 2002Shell Oil CoIn situ recovery from a hydrocarbon containing formation
WO2013106212A3 *Dec 29, 2012Jul 9, 2015Cameron International CorporationIntegral fracturing manifold
Classifications
U.S. Classification166/259
International ClassificationE21B43/247, E21B43/16
Cooperative ClassificationE21B43/247
European ClassificationE21B43/247