Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3260656 A
Publication typeGrant
Publication dateJul 12, 1966
Filing dateSep 27, 1962
Priority dateSep 27, 1962
Publication numberUS 3260656 A, US 3260656A, US-A-3260656, US3260656 A, US3260656A
InventorsRoss Jr James W
Original AssigneeCorning Glass Works
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method and apparatus for electrolytically determining a species in a fluid
US 3260656 A
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

July 12, 1966 J. w. R055. JR 3,260,656

METHOD AND APPARATUS FOR ELECTROLYTIGALLY DETERMINING A SPECIES IN A FLUID Fzled Sept. 27, 1962 2 Sheets-Sheet 1 LOCAL DEPLETION TEST MEMBRANE LAYER FLUID F G (PRIOR ART) F IG. 2

GEN. ELECTRO- ELEC MEM- TEST LYTE TRODE BRANE FLUID z 56 ss 9 I- E -62 62 z w 0 g 60 U INVENTOR 52 JAMES w R088, JR.

DISTANCE BY F G 3 Rmfimub ATTORNEYS July 12, 1966 J. w. R055. JR 3,260,656

METHOD AND APPARATUS FOR ELECTROLYTIGALLY DETERMINING A SPECIES IN A FLUID Filed Sept. 27, 1962 2 Sheets-Sheet 2 INVENTOR Rm & SW

ATTORNEYS JAMES W ROSS, JR.

United States Patent C) York Filed Sept. 27, 1962, Ser. No. 226,533 19 Claims. (Cl. 204-1) Newton, Mass, assignor to (Iorning N.Y., a corporation of New This invention relates to electrochemical apparatus and more particularly to improved devices for electrically measuring the concentration of electrochemically active materials in fluids.

The term fluids as used herein is intended to include gases, liquids, vapors and mixtures thereof. Heretofore, in the determination of the concentration in fluids of an electrochemically active species (i.e. a substance such as an ion which is capable of being either reduced oroxidized at an electrode), electrochemical devices have been used in which an electrical characteristic of the species is measured and correlated with the concentration. Polarographic devices, for example, usually measure a characteristic potential at which such a species is reduced, and a diflusion current proportional to the concentration. An improvement on the basic polarographic apparatus is the well-known Clark apparatus as disclosed in US. Patent No. 2,913,386 issued November 17, 1959. The latter employs a dual electrode structure immersed in an electrolyte and encased at least in part in a membrane which is permeable to a predetermined species, for instance, gaseous oxygen. Typically, when used for oxygen analysis, the cathode is formed of platinum and is located closely adjacent the membrane; the anode is formed of silversilver chloride; and the electrolyte is an aqueous alkali halide solution. In operation of such a device, oxygen in a test fluid outside of the membrane permeates the latter and is presumably reduced at the cathode to water in accordance with the overall equation 2H++1/2O2+2 H20 It will be apparent that the Clark device is intended to completely reduce the oxygen permeating the membrane. The current (2e) necessary to effect this reduction is a measure then of the oxygen concentration in the test fluid. In determining oxygen concentration this device typically employs the Ag-AgCl anode with a KCl electrolytic solution. Hence, the anode reaction is Ag+Cl- AgCl+e As the electrode operates, H+ is consumed at the cathode, changing the pI-I of the electrolyte in time. For prolonged operation, a buflFer is therefore required.

While devices of this type have proved satisfactory for many purposes, certain problems arise in some applications. For instance, referring to FIG. 1, there is shown graphically a concentration diagram for such devices. In this diagram, the ordinate 20 is the scale from zero of the relative concentration of oxygen, and the abscissa represents distance from the cathode-membrane interface toward a test fluid. The position of the cathode-membrane interface (neglecting any small displacement between the two) is at line 20. Line 22., parallel to the ordinate, then represents the membrane-test fluid interface. The distance between lines 20 and 22 is representative of the membrane thickness. Now it may be assumed that the concentration of oxygen in the test fluid adjacent the outer face of the membrane is constant, as shown by the horizontal portion of broken line 24, and that the consumption of oxygen at the cathode is complete so that the concentration of oxygen at the cathode-membrane interface is substantially zero. Under such circumstances,

the concentration gradient, represented by the remainder of broken line 24, across the membrane is approximately linear and its slope is an inverse function of the membrane thickness.

However, during actual operation of the device, as oxygen is consumed at the cathode, there is a continual flow of the gas from the test fluid through the membrane to replenish the oxygen supply being consumed or reduced. If the oxygen in the test fluid adjacent the outer surface of the membrane is not continually replenished so as to be maintained at a constant level, the concentration gradient will then extend out into the test fluid, and its slope will become non-linear and reduced as shown at broken line 26 in FIG. 1, due to the local depletion of oxygen in a layer shown between lines 22 and 28. With continued operation of the device and no replenishment of oxygen, the local depletion layer will continue to expand further out into the test fluid, distorting the concentration gradient more and more. The distortion of concentration gradient reduces the measurement sensitivity and changes the mass flow rate of oxygen through the membrane to the cathode, making measurement uncertain and even spurious over a period of time. In order to avoid such occurrence, it is customary to provide means for breaking up any depletion layer, as for instance by stirring.

Further, if the fluid under measurement is a minute sample to which access is restricted, as in biological cells for example, depletion will continue until all of the oxygen is consumed. Because access to the fluid is restricted by the cell walls which act as barriers, the consumed oxygen cannot readily be renewed; the measurements in a short time become inconclusive. Additionally, even assuming that local depletion layers on the outer membrane surface can be avoided, in order to maintain the gas concentration at the cathode substantially at zero with reasonable current consumption the input flow rate of the oxygen must be controlled. This is usually done by providing a relatively thick membrane which, however, acts to slow the response time of the device to changes in oxygen concentration in the test fluid.

Accordingly, the present invention contemplates the provision of improvements in electrochemical analytic devices by virtue of which the sensitivity and response time are enhanced, and which improvements minimize material changes in the concentration of the species in the fluid under measurement during the measurement time. A principal object of the present invention is therefore to prove an improved electrochemical analytical device.

Further objects of the present invention are to provide an electrochemical device including enclosure means (for an electrolytic medium, at least a portion of the enclosure means being formed of barrier means selectively permeable to a predetermined spaced relation to one another within the enclosure means, means *for impressing -a predetermined potential difterence across the electrode, the electrolytic medium being one from which the elect-ro-active species can be liberated by passage of electrical current between said electrodes, the electrolytic medium bridging the electrodes and being in contact with the barrier means; to provide such a device in which one electrode is adapted to consume said species and the other electrode is adapted to generate said species; to provide such a device in which the cathode is adapted for reduction of said species and the anode is adapted to generate said species; to provide such a device in which the cathode is adapted for reduction of said species and the anode is adapted to generate said species in dependence upon said reduction, said anode being adjacent the barrier means and between the latter and the cathode; to provide such a device in which the anodic current flow is maintained at the same absolute value as the cathodic current flow; and to provide such a device in which the cathodic current is dependent upon the equilibrium between the species generated at the appropriate electrode and the concentration of the species which is outside of the enclosure means and free to permeate the barrier means.

Other objects are to provide such a device including a reference electrode which is in contact with the electrolytic medium and provides a high stability to the potential at the consuming electrode; to provide such a device which does not substantially aifect or deplete the concentration of the electro-active species outside of the enclosure means except (briefly, at all, during transient changes in said concentration) for appreciable time periods and in restricted samples of fluid; and to provide such a device in which the sensitivity and response time to changes in the concentration of electro-active species in the test fluid are markedly improved. Yet other objects of the present invention are to provide an electrical circuit for use with an electrochemical analytic device of the type described; and to provide such an electrical circuit which includes a negative feedback loop for stabilizing the potential between a reference electrode and a consuming electrode.

Other objects of the invention will in part be obvious and will .in part appear hereinafter. The invention accordingly comprises the apparatus possessing the construction, combination of elements and arrangement of parts which are exemplified in the following detailed disclosure, and the scope of the application of which will be indicated in the claims. [For a fuller understanding of the nature and objects of the present invention, reference should be had to the following detailed description taken in connection with the accompanying drawings wherein:

FIG. -1 is a graphical representation of the concentration gradient across the selectively permeable membrane in prior art devices as hereinbef-ore described;

FIG. 2 is a diagrammatic cross-sectional view of one embodiment of the present invention;

FIG. 3 is a graphical representation of a concentration gradient across a portion of the electrode-membrane structure of the embodiment shown in FIG. 2;.

FIG. 4 is a graphical representation of the current-voltage relationship at the electrodes in the structure of FIG. 2;

FIG. 5 is a diagrammatic cross-sectional representation of another embodiment of the present invention; and

FIG. '6 is a diagram of an electrical measuring circuit particularly adapted for use with the electrode structure of FIG. 5.

To effect the objects heretofore set forth the present invention generally comprises a pair of electrodes electrically coupled through an electrolytic medium of predetermined fixed characteristics. The medium is isolate-d from the test fluid under measurement by barrier means selectively permeable to the electro-active species which is to be detected and measured in the test fluid. A first electrode is adapted to consume the desired electro-active species, while the other electrode is adapted to produce or generate said species in dependence on the consumption activity of the first electrode. Thus, in operation, there is a steady state equality established between consumption and generation within the electrolyte. The electrode-membrane structure is such that this steady state equality is in turn responsive to an equilibrium between relative concentrations of the species on both sides of the barrier means. It will be seen, therefore, that in the present invention, during steady state conditions, there is no net transfer of species through the barrier means; only during transient changes in the concentration of the species in the test fluid will there be a small net transfer which rapidly decays as an internal steady state is reestablished. Consequently, the consumption of the electro-active species is minimized and changes in the concentration of the species in the fluid under measurement which may be ascribed to the analytical activity of the apparatus, are minute and quickly and automatically compensated.

The term electro-active species as used herein is intended to mean any group of identical chemical entities such as ions, molecules, atoms, etc., which are capable of being electrically oxidized or reduced. Where the species is a gas e.g. oxygen, chlorine or the like, which is dissolved in or mixed with another fluid, rather than referring to concentration, it is perhaps more accurate to refer to the equilibrium partial pressure. This is so because a gas may exhibit different solubilities with respect to difrferent fluids. Hence, although the equilibrium partial pressure (hereinafter referred to as the tension) of the gas in one fluid may be precisely equal to the tension of the same gas in another fluid, the concentrations of gas with respect to each of the fluids are not necessarily the same. However, where the gas tensions on opposite sides of a gas-permeable membrane are in equilibrium, the tension on one side is proportional to the concentration on the other side.

Referring now to FIG. 2, there will be seen one embodiment of the present invention in which there is shown a structure comprising a first electrode or anode 30, a second electrode or cathode 32, an electrolytic medium 34 which electrolytically coupled the anode and cathode, and selectively permeable barrier means, such as membrane 36. Means, such as battery 38, are provided for applying an appropriate potential across the cathode and anode through respective leads 46 and 47. The invention also may include means shown schematically as meter 40, for measuring current flow in the cathode anode circuit. In order to encase the electrodes and the electrolytic medium there is provided enclosure means 42 which preferably incorporates membrane 36 as a Wall portion thereof.

Enclosure means 42 is preferably formed with a substantially hollow chamber 44 interiorly thereof, the chamber having at least one opening to the outside of the enclosure means. Membrane 36 is so disposed as to completely cover the opening in chamber 44. The electrolytic medium (i.e. a medium capable of providing both positive and negative ionic charge transport as by ions provided from a disassociatable compound in a polar solvent, or by ions provided by a molten salt or the like), for example an aqueous electrolyte, is disposed within the chamber in suflicient quantity to maintain a continuous electrical contract between electrodes. The enclosure means preferably then is formed as a liquid-tight container so that the electrolyte cannot leak out. The electrolyte is preferably selected to be one whose ions require a more negative potential for reduction than does hydrogen and require a more positive potential for oxidation than does water or hydroxyl ion. The dilference between these more negative and positive potentials is generally termed the decomposition voltage of the electrolyte.

The walls of chamber 44, other than membrane 36, are preferably made of a material, such as glass, ceramic, solid polymer or the like, which is substantially impermeable to fluids, is a high resistance material (i.e. an electrical insulator) and is substantially chemically inert to the electrolyte and decomposition products of the latter. Membrane 36, in the form of a sheet with a substantially uniform thickness, for example, not more than approximately 5 mils, is selected from materials which exhibit selective permeability to the electro-active species which one desires to measure. For instance, where the species is gaseous oxygen, membrane 36 may be of a polymer such as polyethylene, polyvinyl chloride, rubber, or other known substances which provide a solid barrier selectively pervious to the gas. Barrier materials are known which are selectively permeable to other electro-active species. Appropriate means (not shown) are provided for sealing the membrane across the opening to chamber 44, for instance, adhesives which are insoluble in the electrolyte and test fluid, an O-ring, or other known techniques or structures.

Anode 30 is formed as a substantially sheet-like element typically having a thickness of about 3 mils and being porous to both the electrolyte and electro-active species. The anode is made of an electrically conductive material, preferably a noble metal such as platinum, gold or the like. To provide porosity, the anode may be provided as a mesh or screen as shown, as a spongy mass, or in other known configurations. In the form shown, anode 30 is disposed within electrolyte 34 and is superposed adjacent membrane 36, i.e. arranged either in face-to-face contact with the latter, or, if the anode and membrane are in separated condition, then there is approximate parallelism of the adjacent surfaces of the anode and membrane with a stratum of electrolyte between them.

Cathode 32, in the form shown, is also a substantially sheet-like element which may be either porous or solid, preferably the latter, and its thickness is determined by cost and considerations of structural strength. The cathode is also preferably made of a noble metal, for instance the same metal used as the anode. Cathode 32 is also disposed within electrolyte 34 and is disposed in approximately parallel face-to-face relationship to the anode, but separated from the latter a short distance by appropriate nneans such as spacer 46.

In the preferred form, spacer 46 is a substantially sheetlike porous element, such as a woven fabric. The spacer is preferably formed of material which is electrically nonconductive, relatively chemically inert to the electrolyte and its decomposition products, and exhibits good dimensional stability with respect to variables such as temperature, pressure, solvents and the like, whereby the spacing between the anode and the cathode is maintained at a substantially constant value. Typical materials from which such spacer may be made are nylon, polytetrafluorethylene, and the like. It will be seen then that the electrode structure of FIG. 2 is that of a sandwich in which the anode is spaced from the cathode and retained in between the latter and the membrane, other portions of the volume between the membrane and cathode being substantially filled with electrolyte.

In describing the operation of the embodiment of FIG. 2, it will be exemplary to consider oxygen as the electroactive species. In such case, the electrolyte is preferably an aqueous solution of a base, such as KOH, because in the operation of the device it is desired to avoid evolution of gaseous hydrogen at the anode. Hence, the pH of the electrolyte should preferably be basic and generally not less than approximately pH 2 or 3. In selecting the cathode and anode in this instance, it is preferred to use materials which will respectively reduce oxygen and generate oxygen with maximum current efliciencies. Because of their low oxygen over-voltages and relative chemical inertness, the noble metals are thus preferred and both anode and cathode can be made of, for example, platinum. If the potential applied across the anode and cathode is established well below the decomposition voltage of the electrolyte, and there is no oxygen available in the electrolyte (as from diffusion into the electrolyte through the membrane, or from being dissolved in the latter), only a virtually constant, minute, residual current will flow in the cathode-anode circuit. If, however, a supply of oxygen is presented to the outer surface of membrane 36, as for instance, by contacting the latter with a liquid having a dissolved oxygen content or by contacting the latter with a gas which comprises oxygen, because of the selective permeability of the membrane some oxygen will diffuse through the latter to its inner face and thence into the electrolyte to the cathode. If the potential across the electrodes is above the reduction potential of oxygen, although below the decomposition potential of the electrolyte, oxygen present at the cathode will be reduced. The reduction process is believed to be according to the same equation heretofore used in describing the cathodic reduction in the Clark apparatus.

Referring now to FIG. 4 there is graphically shown the general current-voltage relationship in the present invention during operation. The ordinate is shown as the current axis, the voltage axis being the abscissa. While the curve 48 is shown as being symmetrical about the origin, this is only for purposes of illustration and is not actually the case. At a point where there is a predetermined negative voltage -E, the oxygen at the cathode is electrically reduced. This produces a current I whose amplitude is a function of the concentration of gaseous oxygen present in the electrolyte. With a negative current -I, equal in magnitude to I, now flowing at the anode, the latter is at a positive voltage +E, shown at point 51, predetermined by the nature of the anode material and electrolyte. With proper choice of parameters in the example described above, at the anode the current oxidizes the water in the electrolyte, generating oxygen according to the following:

Hence the system consumes the species at one electrode and tends to generate a like quantity thereof at the other electrode, without changing the electrolyte pH. This leads rapidly to an internal or interelectrode steady state condition between the consumption and generation of the species, and the current flow is therefore a measure of the 0 present in the system. The steady state equality between generation and consumption is, however, responsive to any change in concentration of the oxygen outside of the membrane. This is largely because of the geometry of the system wherein the generating electrode lies between the consuming electrode and membrane. The gas tensions on both sides of the membrane will tend to reach an equilibrium with one another inasmuch as a high tension outside the membrane will result in net diffusion of the gas throughout the latter toward the anode, and conversely a higher tension inside the membrane would result in net gaseous diffusion through the membrane from the anode to the test fluid. Thus, any change in gas tension outside the membrane will upset the internal steady state of the system, forcing it to a new steady state by either increase or decreased consumption of gas and a corresponding increase or decrease in gas generation. Each change in gas generation is thus in a direction tending to establish equilibrium between the gas tensions on opposite sides of and across the membrane. Every change in the internal steady state is, of course, accompanied by a chance in the current flowing between the electrodes. It will thus be seen that in the equilibrium condition of gas tension across the membrane, the current flow is constant and there is no net transfer of gas through the membrane. On the other hand, if the gas tension in the test fluid should change, a transient condition will exist until a new steady state is established internally which again provides a gas tension equivalency on both faces of the membrane. Hence, depletion of oxygen is minimized at points adjacent the outside surface of the membrane i.e. the surface contacting the test fluid.

Referring now to FIG. 3, there is shown graphically a concentration diagram taken across the electrode-membrane structure of the embodiment of FIG. 2. As in FIG. 1, the ordinate 52 represents the relative concentration of the particular electroactive species. The absicca 54 represents distance from the cathode-electrolyte interface which is at the origin of the graph and hence, in a sense, the latter interface is line 52. Lines 56 and 58 then represent the respective surfaces of the anode facing the cathode and the membrane; and line 60 is the outer surface of the membrane in contact with the test fluid. For the sake of clarity, no displacement between anode and membrane is shown, hence line 58 can also be considered the anode-membrane interface. The

distance between the various lines is representative of the thickness of the various elements but is not to be considered as necessarily showing the actual proper proportions. Using again the example of oxygen and assuming for simplicity, that the oxygen exhibits the same tension in both electrolyte and test fluid and the concentration of oxygen in the test fluid is constant, the latter concentration is indicated by the horizontal portion of broken line 62 which extends from the test fluid into the membrane. The concentration gradient, represented by the remainder of broken line 62, extends from the anode-membrane interface to the cathode-electrolyte interface. The slope and position of line 62 will not change during steady state operation because of the equilibria established as heretofore described which results in no net transfer of oxygen across the membrane. However, during a transient change in oxygen concentration in the test fluid, although the horizontal portion of line 62 extending into the test fluid from membrane surface 60 will shift its level, this only results in a temporaray departure from a zero slope of the concentration level across the membrane. This zero slope is quickly re-established by the corresponding change in generation of oxygen at the anode. Hence, substantially no depletion layer will be created in the test fluid.

If the membrane is made very thin, for example, in the nature of 0.5 mils, the response time is considerably reduced inasmuch as diffusion time through the membrane in enhanced. Presupposing constant diffusion coefficients for the membrane, electrolyte and anode, the steady state current is approximately where K is a constant depending, inter alia, on the diffusion coeflicients, C is the concentration of the species in the test fluid and H and L are respectively the anode (generating here) thickness and inter-electrode spacing.

It is apparent that the spacing between the cathode and anode affects the sensitivity and response time, hence should be as small as possible without creating a dead short circuit. Typically, a spacing of l to 10 mils has proved quite satisfactory. Similarly, the spacing between the anode and membrane, if any, will also affect the response time and can be minimized without concern for short circuits.

Referring now to FIG. there will be seen another embodiment of the present invention similar in many respects to the embodiment of FIG. 2, and wherein like numerals denote like parts. The device shown in FIG. 5 also includes, in a configuration similar to FIG. 2, enclosure means 42 having a hollow 44 therein open to the outside of the enclosure means, the opening being sealed by membrane 36. A generating electrode, such as anode 30, is disposed inside hollow 44 against the membrane. A consuming electrode, such as cathode 32, is also disposed within hollow 44 and separated, as by separator 46, from the anode 36. Appropriately fluid-sealed electrically conductive leads 46 and 47 are respectively attached to cathode 32 and anode 30 to provide electrical connection to the electrodes from the exterior of the enclosure means. An electrolytic medium, such as a fluid electrolyte 34, substantially occupies the remaining space within hollow 44. Contacting the electrolyte and spaced from the other electrodes and membrane is a third or reference electrode 66 to which another electrically conductive lead 68 is attached to provide an electrical connection between electrode 66 and the exterior of the enclosure means.

Where this latter embodiment is intended to measure concentration of, for example, oxygen, the elements thereof can be selected and formed in the manner and of the materials heretofore described in connection with the embodiment of FIG. 2, except that electrode 66 is preferably an Ag-AgO electrode.

.Referring now to FIG. 6 there will be seen an electronic circuit for use with the embodiment of FIG. 5 to determine the current flow between anode and cathode as well as to provide high stability to the operation of the system. The circuit of FIG. 6 comprises means for electrically connecting the circuit to electrodes of FIG. 5, and such means may comprise leads 68, 46 and 47 respectively adapted to be connected to reference electrode 66, cathode 32 and anode 30. Lead 68 is also connected to lead 46 through a series resistor 70 and an electrical power source, such as battery 72, the latter being poled so that lead 46 is negative. A point intermediate resistor 70 and the reference electrode is connected, as by lead 74, to the input of D.C. voltage amplifying device or amplifier 76, the output of the latter being coupled to the anode through lead 47. A measuring instrument such as ammeter 78 is located preferably in the circuit between the amplifier and anode. The amplifier and positive side of the battery should be appropriately grounded in order to avoid transient from extraneous phenomena.

In operation of the device shown in connection with FIGS. 5 and 6, the presence of a species in the electrolyte permits current flow between the cathode and reference electrode, creating a potential across resistor 70 due to the IR drop therein. The voltage across resistor 70 is amplified by the gain of amplifier 76 and applied to anode 30. It will thus be apparent that amplifier 76 is a D.C. inverting amplifier which preferably exhibits high gain (in the order of thousands) and is also preferably stabilized as by internal negative feedback, chopper-stabilization or the like, all as well known in the art. Thus the reference electrode is positive with respect to cathode 32, but negative with respect to anode 30. If the gain of amplifier 76 is sufficiently high, the coupling of its output through anode 30 to reference electrode 66 constitutes a negative feedback loop which will tend to create a virtual ground at the input of the amplifier. The potential of the reference electrode is therefore fixed at the virtual ground, and the potential between cathode 32 and the reference electrode is consequently maintained at a very stable level at which only oxgen will be reduced at the cathode.

The following example is illustrative of the construction and operation of a device of the type shown in connection with FIGS. 5 and 6. A hollow container was formed of polymethylmethacrylate. In the container was placed a cathode formed of 1 mil platinum metal foil of approximately 0.3 square centimeter per surface. a platinum metal anode formed of 80 mesh gauze, 3 mil diameter wire, and having a mean thickness of 5 mils, was placed in the container and spaced from the cathode with a nylon fabric spacer having a thickness of approximately 5 mils. In contact with the electrolyte there was also installed an Ag-AgO reference electrode in the form of a very short piece of No. 16 gauge Wire. The remainder of the container was filled with a 1M KOH aqueous solution, and the opening into the container was capped with a polytetrafluoroethylene membrane having a thickness of 0.5 mil. In operation, the cathode potential was set at 0.7 volt with respect to the Ag-AgO electrode, and the device was operated at a temperature of 20 C.

In order to establish the backgriund current, the device was first operated with pure helium disposed against the surface of the membrane opposite the surface contacting the electrolyte, and a steady state current of 4.3 microamperes was obtained. Subsequently the outer surface of the membrane of the device was exposed to a number of various oxygen-containing fluids in samples of 0.2 cc. each, with the following results:

Sample: Current in microamperes Air saturated water 17.3 Air 17.3 O 59.6

All readings reached a constant level within a maximum of one minute after exposure to the sample. Each reading stayed constant for more than 3 hours after the initial transient. Despite the dilferent mobilities of the oxygen in water and in air, the readings achieved with respect to air and air saturated water were nevertheless identical and remarkably stable, indicating that in fact there was no net oxygen dfilusion through the membrane during steady state operation.

If one uses a similarly constructed apparatus in which however the electrolyte is aqueous KCl and the cathode is Ag-AgCl (thereby ensuring that no oxygen generation would occur within the apparatus), after 40 minutes the concentration of oxygen in a sample of similar size will be reduced approximately 70%. On the other hand, in the present invention, when operated for the same period of time there was no detectable change in oxygen concentration in the test sample.

It will be apparent to those skilled in the art that many modifications of the invention as thus described can be made. For example, a large number of electrolytes may be used. Indeed, under some circumstances the electrolyte may be a molten salt, and the enclosure means a membrane selected accordingly to have appropriate temperature resistant characteristics. While the anode and cathode of the present invention have been shown as substantially flat plates, of course other configurations which preserve the relative positioning of the electrodes and membrane may also be used. For example, the device may be constructed with the anode and cathode as concentric cylinders, the membrane lying along a portion of the exterior cylindrical surface of the anode. It will also be apparent that where the species to be measured is reducible, the generating electrode is an anode and the consuming electrode is a cathode. However, if the species to be measured is oxidizable, the generating electrode will be a negative electrode placed adjacent the membrane and the consuming electrode will be an anode or positive electrode.

Since certain changes may be made in the above apparatus without departing from the scope of the invention herein involved it is intended that all matter contained in the above description or shown in the accompanying drawing shall be interpreted in an illustrative and not in a limiting sense.

What is claimed is:

1. An electrode assembly for measuring the concentration of a specific electro-chemically active species in a fluid, said assembly comprising in combination:

a liquid electrolyte;

first electrode means of a material electrochemically inert to both said electrolyte and said species and in contact with said medium;

barrier means for separating said electrolyte from said fluid, and being selectively permeable to said species, and in contact with said medium;

an electrical power source connected for biasing said first electrode means at a potential at which said species in said electrolyte will be consumed at said first electrode means; second electrode means of a material electrochemically inert to both said electrolyte and said species, said second electrode means being in contact with said medium and connected to said power source for completing a circuit in which a current from said source can flow through both said electrode means at a level which is a function of such consumption;

said electrolyte being one from which substantially only said species is electrolytically generable at said second electrode means at said current level, said second electrode means being biased by said power source at a potential at which said species is generable from said medium; and

said second electrode means being so positioned with respect to said first electrode means and said barrier means that said species as generated at said second electrode means is available for consumption at said first electrode means in quantity dependent upon a tendency of said species to establish an equilibrium condition across said barrier means between concentration of said species respectively in said electrolyte and in said fluid.

2. An assembly as defined in claim 1 including means for measuring said current.

3. An assembly as defined in claim 1 including container means enclosing said electrolyte and said electrode means, said container means having said barrier means as a wall portion thereof.

4. An assembly as defined in claim 1 wherein said barrier means comprises a membrane having opposite surfaces, one of which is in contact with said electrolyte and the other of which is adapted to contact said fluid.

5. An electrode assembly for measuring the concentration of a specific electrochemically reducible gas in a fluid, said assembly comprising, in combination:

a cathode of an electrochemically inert material;

an anode of an electrochemically inert material;

an electrolytic medium in contact with both said cathode and anode;

barrier means for separating said fluid and said medium, said barrier means being selectively permeable to said gas, and in contact with said medium;

an electrical power source connected to said cathode for establishing a cathodic potential at said first electrode, said cathode being adapted for reducing said gas in said medium at said cathodic potential, said source providing an electrical current flow at said cathode at a level which is a function of such reduction;

said medium being a medium from which only said gas is electrolytically generable at said anode at said current level, said anode being adapted for generating said gas from said medium at said current level and connected to said power source so as to complete a circuit between said anode and cathode and bias said anode at an anodic potential at which said gas can be generated from said medium;

said anode and cathode being positioned in spaced relation to one another and to said barrier means, and said potentials being established at magnitudes, such that said current flow tends to substantially steady state condition responsively to a tendency for an equilibrium condition to become established across said barrier means between the partial .pressures of said gas in said medium and said fluid.

6. An assembly as defined in claim 5 including means for maintaining the magnitude of said cathodic potential at said cathode at a substantially constant value.

7. An assembly as defined in claim 5 wherein said electrolytic medium comprises a first material from which said gas can be generated at said anode at said current level and anodic potential, and a second material which provides ionic charge transport;

said source being connected for maintaining the magnitude of said anodic potential below the decomposition potential of said second material and above the poten- {ial 1at which said gas can be generated at said current eve 8. An electrode assembly for measuring the concentration of a specific electrochemically active gas in a fluid according to the level of electrical current flowing at a polarographic cathode responsively to the availability at said cathode of said gas; said assembly comprising in combination;

a liquid medium electrolytically and anodically decomposable to generate only said gas;

barrier means for separating said fluid from said rifedium and being selectively permeable to said gas and in contact with said medium;

said polarographic cathode being of a material electrochemically inert to both said medium and said gas,

and having a surface in contact with said medium for electrolytically consuming said gas;

an anode in contact with said medium and being of a material electrochemically inert to both said medium and gas, said anode being positioned wholly between said surface of said polarographic cathode and said barrier means and capable of generating said gas from said medium with a current efliciency substantially the same as the current efiiciency of consumption of said gas at said polarographic cathode, so that said gas as generated at said anode is available for consumption at said cathode in quantity dependent upon a tendency of said gas to establish across said barrier means an equilibrium condition between concentrations of said gas respectively in said medium and said fluid.

9. An assembly as defined in claim 8 wherein said second electrode is positioned in contact with said barrier means, said second electrode being porous to both said electrolytic medium and said gas.

10. An assembly as defined in claim 9 wherein said second electrode is a mesh.

11. An assembly as defined in claim 8 including means for impressing on said polarographic electrode, a first potential above the polarization potential for said gas,

" and means for impressing on said second electrode a second potential which is above the potential required for generation of said gas from said medium by electrolytic decomposition.

12. As assembly as defined in claim 11 including a third electrode contacting said medium and spaced from said polarographic and second electrode, and means for maintaining said third electrode at a reference potential between said first and second potentials and fixed with respect to said first potential.

13. An electrode assembly for measuring the concentration of a specific electrochemically active gas in a fluid according to the level of electrical current flowing at a polarographic cathode responsively to the availability at said cathode of said gas; said assembly comprising in combination:

' a liquid medium electrolytically and anodically decomposable to generate only said gas;

barrier means for separating said fluid from said medium and being selectively permeable to said gas and in contact with said medium;

said polarographic cathode being of a material electrochemically inert to both said medium and said gas, and having a surface in contact with said medium for electrolytically consuming said gas;

an anode in contact with said medium and being of a material electrochemically inert to both said medium and gas, said anode being positioned wholly between said surface of said polarographic cathode and said barrier means, for electrolytically generating said gas; a third electrode in contact with said medium; means for impressing (1) at said polarographic cathode a first potential which is above the polarization potential for said gas, (2) at said anode, a second A potential which is above the decomposition potential for said medium and (3) at said third electrode, a third potential between said first and second potentials, said first potential being fixed with respect to said third potential, said first and second potentials providing a current flow at said anode when said gas is present at said cathode, which current flow is equal and opposite to the current flow at said cathode, so that said gas as generated at said anode is available for consumption at said cathode in quantity dependent upon a tendency of said gas to establish an equilibrium condition, across said barrier means, between concentrations of said gas respectively in said medium and said fluid.

14. An assembly as defined in claim 13 wherein said means ,for impressing said potentials comprises an electrical power source connected through a series resistance between said polarographic and third electrodes, and a DC. amplifier means having the potential drop across said resistance as the input signal thereto, the output of said amplifier being connected to said second electrode so as to tend to maintain said potential drop at a minimum,

15. An electrode assembly for measuring the concentration of gaseous oxygen in a fluid, said assembly comprising in combination:

means defining an electrolyte space and having as a wall portion thereof barrier means selectively per- :meable to oxygen and impermeable to said fluid;

a first electrode of an electrochemically inert material and adapted to polarographically reduce said oxygen and disposed within said space in contact with said medium;

a second electrode for electrolytically generating oxygen, and formed of an electrically conductive material substantially electrochemically inert to said medium and to oxygen, said second electrode being positioned between said first electrode and said' barrier means;

an electrolytic medium disposed within said space in contact with said electrodes and said barrier means, said electrolytic medium comprising a material from which said oxygen can be generated at said second electrode by passage of an electrical current therethrough; and

means for effecting a current between said electrodes through said medium for simultaneous and substantially equal consumption and generation of oxygen at the respective electrodes in dependence upon establishment of an equilibrium between the partial pressures of oxygen at each side of said barrier means when the side of said barrier means opposite said electrolytic medium is in contact with said fluid.

16. An electrode assembly for measuring the concentration of an electrochemically reducible gas, said assembly comprising, in combination:

a hollow container of electrically insulating material having an opening therein, a membrane sealing said opening and being selectively permeable to said gas and impermeable to liquids, a cathode of electrochemically inert metal disposed within said hollow of said container for electrolytically reducing said gas, a porous anode of electrochemically inert metal disposed in said hollow between said cathode and said membrane adjacent the latter for electrolytically gen erating said gas;

means spacing said cathode from said anode, an electrolytic medium so disposed within said hollow as to form an ionically conductive path between said cathode and anode while in contact with said membrane, said electrolytic medium being capable of being so oxidized by an electrical current at said anode as to produce only said gas which is therefore available for reduction at said cathode in quantity dependent upon a tendency of said gas to establish across said barrier means an equilibrium condition between concentrations of said gas respectively in said medium and said fluid.

17. An electrode assembly as defined in claim 16 including means for impressing at said cathode, a potential above the polarization potential for said gas and means for impressing at said anode a potential above the potential necessary to produce said gas from said medium.

18. Method of measuring the concentration of an electrochemically active gas in a fluid comprising the steps of:

providing a body of electrolytic medium from which 70 said gas can be electrolytically generated;

diffusing said gas between said fluid and said medium through barrier means selectively permeable to said gas, and impermeable to both said medium and fluid; impressing a first potential on a first electrochemically inert metal electrode immersed in said medium and a second potential on a second electrochemically inert metal electrode immersed in said medium so as to cause a flow of current at said electrodes;

positioning said electrodes in spaced relation to one another and to said barrier means, and maintaining said potentials at magnitude and values at which said current flow causes at said electrodes a redox reaction in said body so that there is electrolytic generation of said gas at one electrode tending to an equality with an electrolytic consumption of said gas at the other electrode according to a tendency of said gas to establish an equilibrium of the partial pressures of said gas on opposite sides of said barrier means and the net diffusion of said gas through said barrier means is minimized, and,

measuring the magnitude of said current flow.

19. Method of measuring the concentration of gaseous oxygen in a fluid, comprising the steps of:

providing a body of electrolytic medium from which oxygen can be electrolytically generated,

contacting opposite sides of a membrane, Which is selectively permeable to oxygen, respectively with said fluid and said medium so as to permit oxygen diifusion through said membrane;

impressing first and second potentials respectively on an anode and cathode, both of electrochemically inert metals, in contact with said body, said anode being positioned in spaced-apart relation to and between said cathode and said membrane;

maintaining said potentials at values at which current flows in said body between said anode and cathode to generate oxygen at said anode responsive to a simultaneous reduction of oxygen at said cathode, the rate of oxygen generation being responsive to a tendency of the partial pressures of oxygen in said fluid and medium to establish a substantially static equilibrium across said membrane; and measuring said current flow,

References Cited by the Examiner UNITED STATES PATENTS 2,370,871 3/1945 Marks 204-1 2,758,079 8/1956 Eckfeldt 204- 2,805,191 9/1957 Hersch 204-1 2,898,282 8/1959 Flock et a1 204-195 2,912,367 11/ 1959 Asendorf et al 204-1 3,000,805 9/1961 Carritt et al. 204-195 3,022,241 2/ 1962 Jessop 204-195 3,028,317 4/1962 Wilson et al. 204-1 3,038,848 6/1962 Brewer et al 204-195 3,070,539 12/1962 Arthur et al. 204-195 3,088,905 5/1963 Glover 204-195 3,098,813 7/1963 Beebe et a1 204-1 3,160,577 12/1964 Nolan 204-195 JOHN H. MACK, Primary Examiner.

MURRAY A. TILLMAN, WINSTON A. DOUGLAS,

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2370871 *Feb 7, 1942Mar 6, 1945Wallace & Tiernan IncChlorine detection by electrode depolarization
US2758079 *Mar 29, 1950Aug 7, 1956Leeds & Northrup CoElectrolytic determination of the concentration of a constituent in a fluid
US2805191 *Oct 14, 1954Sep 3, 1957Int Nickel CoOxygen analysis of gases
US2898282 *Jun 20, 1956Aug 4, 1959Du PontElectrolytic oxygen analysis
US2912367 *Nov 12, 1957Nov 10, 1959DegussaMeasurement of cyanide concentration
US3000805 *Aug 30, 1957Sep 19, 1961Walter G FinchElectrode measuring device
US3022241 *Feb 11, 1958Feb 20, 1962Cambridge Instr Company IncMethod and apparatus for measurement of dissolved oxygen
US3028317 *May 28, 1959Apr 3, 1962Beckman Instruments IncGalvanic cell
US3038848 *Jun 20, 1958Jun 12, 1962Mast Dev CompanyMethod and apparatus for detecting and measuring trace constituents in air and othergases
US3070539 *Jan 25, 1960Dec 25, 1962Beckman Instruments IncIonic transducer
US3088905 *Oct 13, 1960May 7, 1963British Oxygen Co LtdMethod of and apparatus for oxygen determination
US3098813 *Feb 6, 1959Jul 23, 1963Beckman Instruments IncElectrode
US3160577 *Mar 24, 1961Dec 8, 1964Bendix CorpSensing unit
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3328277 *Apr 3, 1964Jun 27, 1967Honeywell IncOxygen sensor with a scavenger electrode
US3380905 *Oct 11, 1963Apr 30, 1968Leland C. Clark Jr.Electrolytic sensor with anodic depolarization
US3429784 *Jan 13, 1964Feb 25, 1969Yellow Springs InstrMethod and apparatus for measuring gas content
US3429796 *Sep 16, 1965Feb 25, 1969Analytic Systems CoGas analyzer
US3503861 *Mar 16, 1967Mar 31, 1970Volpe EmilioApparatus for electrochemical analyses
US3509034 *May 29, 1968Apr 28, 1970NasaPulse-activated polarographic hydrogen detector
US3526577 *Dec 13, 1966Sep 1, 1970Yellow Springs InstrMethod and apparatus for gas measurement
US3668101 *Jul 22, 1968Jun 6, 1972Nat Res DevMembrane electrodes and cells
US3755125 *Jan 14, 1971Aug 28, 1973Envirometrics IncElectrochemical gas analyzer
US3767552 *Oct 6, 1971Oct 23, 1973Teledyne IndGas analyzer
US3782170 *Mar 22, 1972Jan 1, 1974Lowrance Electronics MfgOxygen analyzer
US3925183 *Jan 28, 1974Dec 9, 1975Energetics ScienceGas detecting and quantitative measuring device
US3992267 *Apr 21, 1975Nov 16, 1976Energetics Science, Inc.Electrochemical gas detection method
US4076596 *Oct 7, 1976Feb 28, 1978Leeds & Northrup CompanyElectrolytic cell, oxygen
US4168220 *Jul 10, 1978Sep 18, 1979Leeds & Northrup CompanyMeasuring current output difference by using a substitute electrode
US4259165 *Dec 10, 1979Mar 31, 1981Hokushin Electric Works, Ltd.Galvanic cell, gas-permeable membrane, measuring electrode, counterelectrode
US4450064 *Mar 21, 1983May 22, 1984Beckman Instruments, Inc.Electrochemical gas sensor and method for producing the same
US4457808 *May 16, 1983Jul 3, 1984General Signal CorporationAutomatic
US4459180 *May 16, 1983Jul 10, 1984General Signal CorporationConcentration, currents, polarography, calibration, injection, bias, response, maintenance
US4521290 *Mar 16, 1984Jun 4, 1985Honeywell Inc.Thin layer electrochemical cell for rapid detection of toxic chemicals
US4522690 *Dec 1, 1983Jun 11, 1985Honeywell Inc.Electrochemical sensing of carbon monoxide
US4563249 *May 10, 1983Jan 7, 1986Orbisphere Corporation Wilmington, Succursale De Collonge-BelleriveElectroanalytical method and sensor for hydrogen determination
US4571292 *Aug 12, 1982Feb 18, 1986Case Western Reserve UniversityApparatus for electrochemical measurements
US4627906 *Aug 22, 1985Dec 9, 1986The Regents Of The University Of CaliforniaElectrochemical sensor having improved stability
US4655880 *Aug 1, 1983Apr 7, 1987Case Western Reserve UniversityPotentiostat electrodes
US4695361 *May 19, 1986Sep 22, 1987Seatronics, Inc.Oxygen sensor
US4853091 *Apr 26, 1988Aug 1, 1989Siemens AktiengesellschaftMethod and apparatus for the electrochemical determination of oxygen concentration
US4865717 *Aug 10, 1988Sep 12, 1989Transducer Research, Inc.Electrochemical micro sensor
US5007424 *Jun 29, 1990Apr 16, 1991Hellige GmbhPolarographic/amperometric measuring sensor
US5030310 *Jan 19, 1990Jul 9, 1991Miles Inc.Electrode for electrochemical sensors
US5228974 *Dec 11, 1991Jul 20, 1993Dragerwerk AktiengesellschaftElectrolytic cell having a hygroscopic Group 1 metal salt; fast response time of signal; signal stability; refrigertion plants
US5344546 *Feb 19, 1993Sep 6, 1994Dragerwerk AktiengesellschaftElectrical measuring cell for determinging ammonia, amines, hydrazine amines, hydrazine and hydrazine derivatives
US5376244 *Oct 29, 1992Dec 27, 1994Siemens AktiengesellschaftElectrochemical determination of oxygen concentration
US5387329 *Apr 9, 1993Feb 7, 1995Ciba Corning Diagnostics Corp.Extended use planar sensors
US5401376 *Mar 11, 1994Mar 28, 1995Ciba Corning Diagnostics Corp.Oxygen sensor
US5489371 *Mar 25, 1993Feb 6, 1996Teknekron Sensor Development CorporationPorous electrode positioned on semipermeable membrane for detecting and measuring concentration of compounds extracted from high resistivity liquid
US5503719 *Mar 9, 1994Apr 2, 1996Ciba Corning Diagnostics Corp.Extended use planar sensors
US5518601 *Aug 24, 1995May 21, 1996Ciba Corning Diagnostics Corp.Extended use planar sensors
US5595646 *Aug 24, 1995Jan 21, 1997Ciba Corning Diagnostics Corp.Measuring partial pressure of oxygen in blood, adjusting permeability of acrylonitrile-butadiene membrane by blending with vinyl halide polymer
US6068748 *Aug 25, 1997May 30, 2000Berger; JosephExtended use planar sensors
US6103033 *Mar 4, 1998Aug 15, 2000Therasense, Inc.Process for producing an electrochemical biosensor
US6120676 *Jun 4, 1999Sep 19, 2000Therasense, Inc.Method of using a small volume in vitro analyte sensor
US6134461 *Mar 4, 1998Oct 17, 2000E. Heller & CompanyElectrochemical analyte
US6143164 *Dec 16, 1998Nov 7, 2000E. Heller & CompanySmall volume in vitro analyte sensor
US6162611 *Jan 3, 2000Dec 19, 2000E. Heller & CompanyDetecting preferential monosaccharide levels in human using electrochemical detector; grafting detector into human, generating calibration value and monitoring detector signals
US6175752Apr 30, 1998Jan 16, 2001Therasense, Inc.Analyte monitoring device and methods of use
US6251260Aug 24, 1998Jun 26, 2001Therasense, Inc.Potentiometric sensors for analytic determination
US6284478Dec 4, 1996Sep 4, 2001E. Heller & CompanyElectrochemical sensor; for in situ monitoring of glucose in diabetics
US6321101Oct 20, 1998Nov 20, 2001Pacesetter AbMethod and device for determination of concentration
US6329161Sep 22, 2000Dec 11, 2001Therasense, Inc.A flexible analyte sensor that is adapted for external positioning to an animal and for connection to a device for measuring an electrical signal generated by the sensor; for measuring glucose concentration in diabetes
US6338790Apr 21, 1999Jan 15, 2002Therasense, Inc.Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6447670Oct 20, 1998Sep 10, 2002Pacesetter AbMethod and apparatus for compensating for drift in potential of a reference electrode in electrochemical measurements
US6461496Oct 27, 1999Oct 8, 2002Therasense, Inc.Blood glucose
US6484046Jul 10, 2000Nov 19, 2002Therasense, Inc.Electrochemical analyte sensor
US6514718Nov 29, 2001Feb 4, 2003Therasense, Inc.Subcutaneous glucose electrode
US6551494Apr 6, 2000Apr 22, 2003Therasense, Inc.Small volume in vitro analyte sensor
US6565509Sep 21, 2000May 20, 2003Therasense, Inc.Analyte monitoring device and methods of use
US6576101Oct 6, 1999Jun 10, 2003Therasense, Inc.Small volume in vitro analyte sensor
US6591125Jun 27, 2000Jul 8, 2003Therasense, Inc.Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6592745May 17, 2000Jul 15, 2003Therasense, Inc.Method of using a small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6616819Nov 4, 1999Sep 9, 2003Therasense, Inc.Small volume in vitro analyte sensor and methods
US6618934Jun 15, 2000Sep 16, 2003Therasense, Inc.Method of manufacturing small volume in vitro analyte sensor
US6654625Jun 16, 2000Nov 25, 2003Therasense, Inc.Mass transport limited in vivo analyte sensor
US6749740Dec 28, 2001Jun 15, 2004Therasense, Inc.Small volume in vitro analyte sensor and methods
US6881551Jan 28, 2003Apr 19, 2005Therasense, Inc.Insulated, non-corroding conducting metal or carbon wire-based small subcutaneous glucose sensor, allowing one-point calibration in vivo
US6942518Dec 28, 2001Sep 13, 2005Therasense, Inc.Small volume in vitro analyte sensor and methods
US6973706Mar 31, 2003Dec 13, 2005Therasense, Inc.Comprises forming channels in surfaces of the substrate, and disposing conductive material by non-impact printing to form electrode/sensor; biocompatability
US6975893Nov 25, 2003Dec 13, 2005Therasense, Inc.Mass transport limited in vivo analyte sensor
US7003340Nov 11, 2002Feb 21, 2006Abbott Diabetes Care Inc.Electrochemical analyte sensor
US7058437Apr 17, 2003Jun 6, 2006Therasense, Inc.Methods of determining concentration of glucose
US7225535Sep 12, 2003Jun 5, 2007Abbott Diabetes Care, Inc.Method of manufacturing electrochemical sensors
US7381184Nov 5, 2003Jun 3, 2008Abbott Diabetes Care Inc.Sensor inserter assembly
US7462264Jul 15, 2005Dec 9, 2008Abbott Diabetes Care Inc.Small diameter flexible electrode for in vivo amperometric monitoring of glucose or lactate with sensing layer of glucose-specific or lactate-specific enzyme (glucose oxidase or lactate oxidase) crosslinked with polyvinylimidazole, polyvinylpyridine, or acrylamide-vinylimidazole copolymer
US7550069Sep 12, 2003Jun 23, 2009Abbott Diabetes Care Inc.Non-leachable or diffusible redox mediator; for glucose or lactate concentrations; to monitor glucose in diabetic patients and lactate during critical care events
US7563350Sep 15, 2003Jul 21, 2009Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US7582059Sep 6, 2007Sep 1, 2009Abbott Diabetes Care Inc.Sensor inserter methods of use
US7620438Mar 31, 2006Nov 17, 2009Abbott Diabetes Care Inc.Method and system for powering an electronic device
US7721412Aug 16, 2005May 25, 2010Abbott Diabetes Care Inc.Method of making an electrochemical sensor
US7766829Nov 4, 2005Aug 3, 2010Abbott Diabetes Care Inc.Method and system for providing basal profile modification in analyte monitoring and management systems
US7811231Dec 26, 2003Oct 12, 2010Abbott Diabetes Care Inc.Continuous glucose monitoring system and methods of use
US7860544Mar 7, 2007Dec 28, 2010Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US7861397Oct 30, 2007Jan 4, 2011Abbott Diabetes Care Inc.Method of making an electrochemical sensor
US7869853Aug 6, 2010Jan 11, 2011Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US7879213Oct 30, 2007Feb 1, 2011Abbott Diabetes Care Inc.Sensor for in vitro determination of glucose
US7885699Aug 6, 2010Feb 8, 2011Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US7906009Jul 30, 2008Mar 15, 2011Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US7909984Feb 7, 2008Mar 22, 2011Abbott Diabetes Care Inc.system for determining the concentration of analyte in a biological fluid from a patient, comprising:at least one substrate associated with at least one transducer;a piercing member adapted to pierce a site on the patient to cause blood to flow therefrom;a sensor positioned adjacent to the site
US7920907Jun 7, 2007Apr 5, 2011Abbott Diabetes Care Inc.Analyte monitoring system and method
US7928850May 8, 2008Apr 19, 2011Abbott Diabetes Care Inc.Analyte monitoring system and methods
US7948369Aug 2, 2010May 24, 2011Abbott Diabetes Care Inc.Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
US7976778Jun 22, 2005Jul 12, 2011Abbott Diabetes Care Inc.Blood glucose tracking apparatus
US7988845Jan 28, 2008Aug 2, 2011Abbott Diabetes Care Inc.Integrated lancing and measurement device and analyte measuring methods
US7996054Feb 20, 2006Aug 9, 2011Abbott Diabetes Care Inc.Electrochemical analyte sensor
US8029442Sep 6, 2007Oct 4, 2011Abbott Diabetes Care Inc.Sensor inserter assembly
US8066639Jun 4, 2004Nov 29, 2011Abbott Diabetes Care Inc.Glucose measuring device for use in personal area network
US8066858Oct 31, 2007Nov 29, 2011Abbott Diabetes Care Inc.Analyte sensor with insertion monitor, and methods
US8083924Sep 29, 2009Dec 27, 2011Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US8083928Sep 29, 2009Dec 27, 2011Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US8083929Sep 29, 2009Dec 27, 2011Abbott Diabetes Care Inc.Small volume in vitro sensor and methods of making
US8087162Sep 29, 2009Jan 3, 2012Abbott Diabetes Care Inc.Methods of making small volume in vitro analyte sensors
US8091220Oct 31, 2007Jan 10, 2012Abbott Diabetes Care Inc.Methods of making small volume in vitro analyte sensors
US8103456Jan 29, 2009Jan 24, 2012Abbott Diabetes Care Inc.Method and device for early signal attenuation detection using blood glucose measurements
US8105476Jul 30, 2007Jan 31, 2012Abbott Diabetes Care Inc.Integrated lancing and measurement device
US8112240Apr 29, 2005Feb 7, 2012Abbott Diabetes Care Inc.Method and apparatus for providing leak detection in data monitoring and management systems
US8114270Feb 7, 2008Feb 14, 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US8114271Sep 29, 2009Feb 14, 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US8117734Oct 30, 2007Feb 21, 2012Abbott Diabetes Care Inc.Method of making an electrochemical sensor
US8118992Sep 29, 2009Feb 21, 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US8118993Sep 29, 2009Feb 21, 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US8123686Mar 1, 2007Feb 28, 2012Abbott Diabetes Care Inc.Method and apparatus for providing rolling data in communication systems
US8123929Sep 29, 2009Feb 28, 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US8136220Oct 30, 2007Mar 20, 2012Abbott Diabetes Care Inc.Method of making an electrochemical sensor
US8142642Jul 30, 2008Mar 27, 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US8142643Sep 29, 2009Mar 27, 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US8149103May 23, 2011Apr 3, 2012Abbott Diabetes Care Inc.Method and apparatus for providing dynamic multi-stage amplification in a medical device
US8149117Aug 29, 2009Apr 3, 2012Abbott Diabetes Care Inc.Analyte monitoring system and methods
US8153063Sep 29, 2009Apr 10, 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US8162829Mar 30, 2009Apr 24, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8163164Sep 29, 2009Apr 24, 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US8168051Oct 30, 2007May 1, 2012Abbott Diabetes Care Inc.Sensor for determination of glucose
US8175673Nov 9, 2009May 8, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8177716Dec 21, 2009May 15, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8182670Sep 29, 2009May 22, 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US8182671Sep 29, 2009May 22, 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US8186044Apr 13, 2007May 29, 2012Abbott Diabetes Care Inc.Method of manufacturing small volume in vitro analyte sensors
US8187183Oct 11, 2010May 29, 2012Abbott Diabetes Care Inc.Continuous glucose monitoring system and methods of use
US8187895Sep 29, 2009May 29, 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US8192611Sep 29, 2009Jun 5, 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US8211363Sep 29, 2009Jul 3, 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US8221685Sep 29, 2009Jul 17, 2012Abbott Diabetes Care Inc.Small volume in vitro sensor and methods of making
US8224413Oct 10, 2008Jul 17, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8226555Mar 18, 2009Jul 24, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8226557Dec 28, 2009Jul 24, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8226558Sep 27, 2010Jul 24, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8226815Sep 29, 2009Jul 24, 2012Abbott Diabetes Care Inc.Small volume in vitro sensor and methods of making
US8226891Mar 31, 2006Jul 24, 2012Abbott Diabetes Care Inc.Analyte monitoring devices and methods therefor
US8231532Apr 30, 2007Jul 31, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8235896Dec 21, 2009Aug 7, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8236242Feb 12, 2010Aug 7, 2012Abbott Diabetes Care Inc.Blood glucose tracking apparatus and methods
US8255031Mar 17, 2009Aug 28, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8260392Jun 9, 2008Sep 4, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8262996Sep 29, 2009Sep 11, 2012Abbott Diabetes Care Inc.Small volume in vitro sensor and methods of making
US8265726Nov 9, 2009Sep 11, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8268144Sep 29, 2009Sep 18, 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US8268163Sep 29, 2009Sep 18, 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US8268243Dec 28, 2009Sep 18, 2012Abbott Diabetes Care Inc.Blood glucose tracking apparatus and methods
US8272125Sep 29, 2009Sep 25, 2012Abbott Diabetes Care Inc.Method of manufacturing in vitro analyte sensors
US8273022Feb 13, 2009Sep 25, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8273227Oct 30, 2007Sep 25, 2012Abbott Diabetes Care Inc.Sensor for in vitro determination of glucose
US8273241Sep 29, 2009Sep 25, 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US8275439Nov 9, 2009Sep 25, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8287454Sep 27, 2010Oct 16, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8306598Nov 9, 2009Nov 6, 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8333714Sep 10, 2006Dec 18, 2012Abbott Diabetes Care Inc.Method and system for providing an integrated analyte sensor insertion device and data processing unit
US8346336Mar 18, 2009Jan 1, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8346337Jun 30, 2009Jan 1, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8353829Dec 21, 2009Jan 15, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8357091Dec 21, 2009Jan 22, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8362904Apr 18, 2011Jan 29, 2013Abbott Diabetes Care Inc.Analyte monitoring system and methods
US8366614Mar 30, 2009Feb 5, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8372005Dec 21, 2009Feb 12, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8372261Sep 29, 2009Feb 12, 2013Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US8377378Sep 29, 2009Feb 19, 2013Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US8380273Apr 11, 2009Feb 19, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8391945Mar 17, 2009Mar 5, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8409131Mar 7, 2007Apr 2, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8414749Nov 12, 2008Apr 9, 2013Abbott Diabetes Care Inc.Subcutaneous glucose electrode
US8414750Sep 29, 2010Apr 9, 2013Abbott Diabetes Care Inc.Subcutaneous glucose electrode
US8425743Mar 12, 2010Apr 23, 2013Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US8425758Sep 29, 2009Apr 23, 2013Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US8427298Apr 2, 2012Apr 23, 2013Abbott Diabetes Care Inc.Method and apparatus for providing dynamic multi-stage amplification in a medical device
US8449758Sep 29, 2009May 28, 2013Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US8456301May 8, 2008Jun 4, 2013Abbott Diabetes Care Inc.Analyte monitoring system and methods
US8461985May 8, 2008Jun 11, 2013Abbott Diabetes Care Inc.Analyte monitoring system and methods
US8463351Aug 6, 2010Jun 11, 2013Abbott Diabetes Care Inc.Electrochemical analyte sensor
US8465425Jun 30, 2009Jun 18, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8473021Jul 31, 2009Jun 25, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8473220Jan 23, 2012Jun 25, 2013Abbott Diabetes Care Inc.Method and device for early signal attenuation detection using blood glucose measurements
US8480580Apr 19, 2007Jul 9, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8512239Apr 20, 2009Aug 20, 2013Abbott Diabetes Care Inc.Glucose measuring device for use in personal area network
US8512243Sep 30, 2005Aug 20, 2013Abbott Diabetes Care Inc.Integrated introducer and transmitter assembly and methods of use
US8532731May 8, 2009Sep 10, 2013Abbott Diabetes Care Inc.Methods of determining analyte concentration
US8545403Dec 28, 2006Oct 1, 2013Abbott Diabetes Care Inc.Medical device insertion
US8571624Dec 29, 2004Oct 29, 2013Abbott Diabetes Care Inc.Method and apparatus for mounting a data transmission device in a communication system
US8585591Jul 10, 2010Nov 19, 2013Abbott Diabetes Care Inc.Method and system for providing basal profile modification in analyte monitoring and management systems
US8588881Mar 2, 2007Nov 19, 2013Abbott Diabetes Care Inc.Subcutaneous glucose electrode
US8593109Nov 3, 2009Nov 26, 2013Abbott Diabetes Care Inc.Method and system for powering an electronic device
US8593287Jul 20, 2012Nov 26, 2013Abbott Diabetes Care Inc.Analyte monitoring system and methods
US8597189Mar 3, 2009Dec 3, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8597575Jul 23, 2012Dec 3, 2013Abbott Diabetes Care Inc.Analyte monitoring devices and methods therefor
US8602991Jun 7, 2010Dec 10, 2013Abbott Diabetes Care Inc.Analyte sensor introducer and methods of use
US8612159Feb 16, 2004Dec 17, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8613703May 29, 2008Dec 24, 2013Abbott Diabetes Care Inc.Insertion devices and methods
US8617071Jun 21, 2007Dec 31, 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8622903May 25, 2012Jan 7, 2014Abbott Diabetes Care Inc.Continuous glucose monitoring system and methods of use
US8622906Dec 21, 2009Jan 7, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8636881 *Jul 12, 2010Jan 28, 2014Michael A. MayIntegrated electrochemical reactor and process therefor
US8641619Dec 21, 2009Feb 4, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8647269Apr 20, 2009Feb 11, 2014Abbott Diabetes Care Inc.Glucose measuring device for use in personal area network
US8649841Apr 3, 2007Feb 11, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8652043Jul 20, 2012Feb 18, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8660627Mar 17, 2009Feb 25, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8665091Jun 30, 2009Mar 4, 2014Abbott Diabetes Care Inc.Method and device for determining elapsed sensor life
US8666469Nov 16, 2007Mar 4, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8668645Jan 3, 2003Mar 11, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8670815Apr 30, 2007Mar 11, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8672844Feb 27, 2004Mar 18, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8676513Jun 21, 2013Mar 18, 2014Abbott Diabetes Care Inc.Method and device for early signal attenuation detection using blood glucose measurements
US8688188Jun 30, 2009Apr 1, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8698615Apr 22, 2013Apr 15, 2014Abbott Diabetes Care Inc.Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
US8701282Sep 29, 2009Apr 22, 2014Abbott Diabetes Care Inc.Method for manufacturing a biosensor
US8706180Jun 10, 2013Apr 22, 2014Abbott Diabetes Care Inc.Electrochemical analyte sensor
US8728297Apr 13, 2006May 20, 2014Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US8732188Feb 15, 2008May 20, 2014Abbott Diabetes Care Inc.Method and system for providing contextual based medication dosage determination
US8734346Apr 30, 2007May 27, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8734348Mar 17, 2009May 27, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8738109Mar 3, 2009May 27, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8741590Apr 3, 2007Jun 3, 2014Abbott Diabetes Care Inc.Subcutaneous glucose electrode
US8744545Mar 3, 2009Jun 3, 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8764657Mar 30, 2012Jul 1, 2014Abbott Diabetes Care Inc.Medical device inserters and processes of inserting and using medical devices
US8765059Oct 27, 2010Jul 1, 2014Abbott Diabetes Care Inc.Blood glucose tracking apparatus
US20120006689 *Jul 12, 2010Jan 12, 2012May Michael AIntegrated electrochemical reactor and process therefor
USRE31914 *Apr 29, 1981Jun 18, 1985Becton Dickinson & CompanyOxidation of gas at anode and detection of current generated
DE3504498A1 *Feb 9, 1985Aug 14, 1986Draegerwerk AgGassensor mit mehreren sensorelementen
DE3815004A1 *May 3, 1988Nov 16, 1989GimatVorrichtung zur polarographischen messung des sauerstoffgehalts in fluessigen und gasfoermigen medien
DE4335487C2 *Oct 18, 1993Dec 18, 2003St Jude MedicalSauerstoffsensor
WO1985002465A1 *Nov 28, 1984Jun 6, 1985Honeywell IncElectrochemical sensing of carbon monoxide
WO1987002461A1 *Oct 3, 1986Apr 23, 1987Beckman Instruments IndA method of fabricating rhodium foil-glass electrodes
WO1988009500A1 *May 26, 1988Dec 1, 1988Transducer Research IncElectrochemical micro sensor
WO1999022229A1 *Oct 23, 1998May 6, 1999Ceramatec IncVolume efficient acid based galvanic oxygen sensor
WO1999022230A1 *Oct 20, 1998May 6, 1999Holmstroem NilsMethod and device for determination of concentration
WO1999022232A1 *Oct 20, 1998May 6, 1999Holmstroem NilsMethod and device for sensing
Classifications
U.S. Classification205/783, 204/415, 208/254.00R, 204/406, 204/412
International ClassificationG01N27/49
Cooperative ClassificationG01N27/404
European ClassificationG01N27/404