Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3261349 A
Publication typeGrant
Publication dateJul 19, 1966
Filing dateAug 29, 1963
Priority dateAug 29, 1963
Publication numberUS 3261349 A, US 3261349A, US-A-3261349, US3261349 A, US3261349A
InventorsWallace Frederick J
Original AssigneeAmerican Cystoscope Makers Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Endoscope
US 3261349 A
Abstract  available in
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

MR1 u U mm Minn mm m um i u WWW W Wm H awn w w muw PM July 19, 1966 F. J. WALLACE ENDOSCOPE 5 Sheets-Sheet 1 Filed Aug. 29, 1963 6 a 9m 9 l A 3 N l I 6 2 R 3 0 July 19, 1966 F. J. WALLACE ENDOSCOPE 5 Sheets-Sheet 2 Filed Aug. 29, 1963 Jlufly 19, 1966 F. J. WALLACE ENDOSCOPE 3 Sheets-Sheet 5 Filed Aug. 29, 1963 United States Patent Office 326L349 Patented July I9, 1966 3,261,349 ENDOSCOPE Frederick J. Wallace, New York, N.Y., asslgnor to American Cystoscope Makers, Inc., Pelham Manor, N.Y., a corporation of New York Filed Aug. 29, 1963, Ser. No. 305,304 9 Claims. (Cl. 1286) This invention relates to endoscopic instruments for the examination of internal body orifices, and more particularly relates to such instruments which utilize optic fibers for illumination of the internal orifices.

An endoscope must meet limitations of size and shape dictated by the anatomical structure of the orifice in WhlCh it is to be used. Also, an endoscope must provide for light, vision and operating instruments or high frequency electrodes. For precision in diagnosis or other procedure, a fine, brilliant image that is accurate in regard to both color and definition is essential to the operator. Withln the relatively small lumen or space inside the tubular por tion of known rigid endoscopes, there is a complete electrical circuit of which a lamp is a part. The lamp circuit requires an insulated conductor or wire to carry current from a contact near the proximal end, to the lamp frequently located at the distal end. The circuit must function perfectly under water and must not be affected by other solutions during sterilization, a requirement most difiicnlt to fulfill in any electrical structure. While the instruments are water-tight when they leave the factory, due to the fact that they must be opened for the replacement of lamps, their ability to exclude moisture is almost entirely dependent upon the care exercised by the user in again sealing the instruments.

In known endoscopic instruments most premature buming out of lamps results from attempts to obtain unusually brilliant illumination. The extent of illumination is limited by the filament of the lamp itself. It is the practice to make use of a current regulator and observe the lamp filament closely while gradually increasing the current. The limit of safe current is reached when the definite reddish tint of the lamp suddenly becomes white. Further increase in illumination by increasing the current beyond this point results in premature burning out of the lamp. Once the lamp burns out it is necessary to remove it, thus introducing the possibility of the prolerns de scribed above.

Problems also arise from the disinfection of parts of the endoscope containing lamps or lenses. It is not practicable to boil or autoclave any part of the endoscope which contains lamps. The usual chemical disinfectants may not be used or leaks and short circuits in the wiring may follow. As a result it is necessary to use special disinfectant methods and solutions in cleaning known endoscopes.

It is an object of the present invention to provide means for illuminating internal orifices which means provide significantly brighter illumination than was heretofore possible and may be sterilized by boiling, autoclaving or chemicals without deleterious results.

It is another object of the present invention to provide endoscopic instruments having illuminating means with an expected life equivalent to that of the rest of the instrument, which means do not require maintenance or replacement of parts in normal use.

It is still another object of the present invention to provide particular endoscopic instruments utilizing as an illuminating means a bundle of optic fibers which may be shaped at its distal end to configurations especially adapted to the particular use of the instrument.

It is another object of this invention to provide a fiber optic bundle for the illumination of internal orifices which is in a form rigid enough for insertion into such orifices.

Further objects as well as advantages in the present invention will be apparent from the following description and the accompanying drawings, in which:

FIGURE 1 is a side elevational view of a rigid light carrying sheath for an endoscope constructed in accordance with the present invention, partially broken away for convenience;

FIGURE 2 is a transverse cross-sectional view taken generally along lines 2-2 of FIGURE 1;

FIGURE 3 is an end view taken generally along lines 33 of FIGURE 1;

FIGURE 4 is a side elevational view of a specific embodiment of an endoscope constructed in accordance with the present invention;

FIGURE 5 is a longitudinal cross-sectional view of the embodiment of FIGURE 4, partially broken away for convenience;

FIGURE 6 is a view of an obturator useful in conjunction with the embodiment of FIGURE 4;

FIGURE 7 is a top view of an insuillation cap useful with the embodiment of FIGURE 4;

FIGURE 8 is a transverse cross-sectional view taken generally along lines 8-45 of FIGURE 5;

FIGURE 9 is a transverse cross-sectional view taken generally along lines 9-9 of FIGURE 5;

FIGURE 10 is a transverse cross-sectional view taken generally along lines 1010 of FIGURE 5;

FIGURE 11 is a longitudinal cross-sectional view, partially broken away for convenience, of another embodiment of an endoscope constructed in accordance with the present invention;

FIGURE 12 is a side elevational view of a sheath which is useful in connection with the embodiment of FIG- URE 11;

FIGURE 13 is a side elevational view of a light-carrying bundle useful in the embodiment of FIGURE 11;

FIGURE 14 is a side elevational view of a surgical telescope useful in the embodiment of FIGURE 11; and

FIGURE 15 is a detail view, partly in section, of a connecting device useful in connection with the embodiment of FIGURE 11 taken generally along lines lt5l5 of FIGURE 11.

The objects of this invention may be accomplished by forming an endoscope tubular member from two concentric, coaxial, rigid tubes. The concentric tubes may be circular in cross-section but for most applications are preferably slightly elliptical. For some applications it is desirable to taper the concentric tubes. A bundle containing a large number of optic fibers is placed in the annular space between the two tubes.

The proximal end of the optic fiber bundle is formed into a solid rod which is of a suitable configuration, preferably cylindrical, for coupling to a source of light.

Because endoscopes are shaped to conform to the orifice being examined, the distal end of the bundle may be formed into one of a variety of shapes. A preferred shape is that of an annulus substantially coextensive with the ends of the concentric tubes. Preferably the ends of the fiber bundle are optically polished to provide better light dissemination and a protective lens may be placed over the polished end of the bundle, if desired. Using an annular distal configuration, light is transmitted through the bundle to provide high intensity, cold illumination in an annular pattern at the distal end, permitting ready ob servation of internal areas. If desired, the distal end of the bundle may be adapted to illuminate an internal orifice by forming the fibers into a solid rod or other shape.

High intensity illumination is possible using the present invention. Intensities up to 2,000 foot candles or more at a working distance of one-half inch and up to 400 foot candles or more at four inches may be obtained by connecting the device to a fiber optic light source by means of a fiber optic light carrying bundle. Typically the illumination produced by the optic fiber bundle is fifteen times greater than that produced by an incandescent lamp commonly used in same size of endoscope.

Other features of the present invention are the elimination of wires and the elimination of rotating contacts on the instruments which were necessary in prior art instruments in order to provide electrical connections for the internal lamp circuit. The .present invention may be made applicable to all types of endoscopic equipment, particularly examining, operating agnd catheterizing endoscopes. A particular advantage of the present invention is the adaptability of the instrument to small size, for instance, for use in an infant cystoscope.

Rigid endoscopes having annularly disposed fiber optics may be prepared by the following procedure. First, using the method described in the application of Lawrence E. Curtiss, Serial No, 76,868, filed December 19, 1960, continuous strands of fiber Optics are wound on a Mylar (polyethylene terephthalate) sheet which is disposed around a drum. As each successive layer of fibers is laid on the drum, a layer of thermosetting resin is placed upon them. The resin is allowed to dry but is not cured; thus it remains tacky but does not become hard and stiff. The sheet is then cut parallel to the axis of the cylinder, and a flat sheet of Mylar having well oriented fibers is obtained.

Second, the inner tube of the endoscope is brought into contact with the flat sheet, and the flat sheet is rolled onto the inner tube in an even number of revolutions sufficient to produce the thickness of the annular bundle that is desired. Because the resin that was applied is tacky, the sheet sticks readily to the tube, and successive convolutions stick to each other.

Third, the inner tube and optic bundle are inserted in the outer tube which is shorter than the inner tube and the fibers used. The distal ends of the fibers are coextensive with the distal ends of both inner and outer tubes. The proximal end is formed into a rod by pulling the fibers together. If necessary a solvent is used to soften the resin. After forming, the rod is inserted through a terminal fitting which supports it, and epoxy resin is added to the rod end and also to the annular distal end. Finally the entire assembly is baked to cure the resin and produce a hard, rigid endoscopic tube.

Where a bend is to be produced in the tube, the fibers may be inserted as above and the bend made after the outer tube is applied, but before baking. The presence of the fibers between the two tubes aids in maintaining the tubes concentric. The resin is soft enough to permit the bundle to bend without breaking the fibers.

Turning now to FIGURES 1, 2 and 3, a generalized embodiment of the device of the present invention is shown. Rigid light carrying sheath is comprised of outer tube 12 and concentric, coaxial, inner tube 14. Disposed within the annular space 15 between tubes 12 and 14 is bundle 16 comprised of a plurailty of individual optic fibers 18. The proximal end of bundle 16 is formed into a solid rod 20 for connection to a light source.

A high intensity light source may be coupled to the rigid bundle 16. For this purpose a high intensity lamp (not shown) may be mounted within a container, and flexible optic fiber light conductor 24 having rigid end portions may be mounted adjacent to the lamp, so that it receives the light from the lamp. The opposite rigid end of the flexible light conductor 24 is fittted with a plug-in connector 25 adapted to be inserted into a receptacle or jack 22 so as to hold the end face of the light carrier 24 in close juxtaposition to the end face of bundle 20. The proximal and distal ends of bundle 16 are optically ground to provide a maximum transmission of light in a controlled pattern to the internal orifice.

An embodiment of the present invention is shown in the proctoscope of FIGURES 4 to 10. The proctoscope is comprised of two rigid concentric tubes and a layer of optic fibers which are positioned in the annular space between the tubes. The distal end of the bundle is formed into an annulus, and the proximal end is formed into a circular rod for connection to a flexible optic fiber lightcarrying bundle.

Referring now to the drawings in detail, proctoscope is comprised of an elongated outer tube 102 containing within it concentric coaxial inner tube 104. Substantially filling the annular space between outer tube 102 and inner tube 104 is optic fiber bundle 106. Distal end 108 of optic fiber bundle 106 is a solid annulus, optically ground. Rim 110 surrounds outer tube 102 at the distal end. At its proximal end outer tube 102 is joined in liquid-tight relation to an annular mounting member 112 which is connected to mounting ring 114. Yoke 116 surrounds annular mounting member 112 and engages terminal support 117 containing collar 118 which supports proximal end 120 of fiber bundle 106. Proximal end 120 of [bundle 106 is optically ground and is joined by receptacle or jack 122 to flexible light-carrying bundle 124, as more fully described below. Planar glass plates 125 protect the ends of bundles 106 and 124. Insufllation cap 126 forms a liquid-tight seal with mounting ring 114. As best shown in FIGURE 7, insufliation cap 126 is equipped with conduit 127 and valve 128 for connection to an external insufflation medium and also contains transparent planar lens 130 to permit visual inspection during insufllation.

Stud 132 connected to mounting ring 114 supports handle 134 which is held in place by thurnb screw 136 cugaging stud 132. By means of mounting rod 138, connected to mounting ring 114, proximal telescope 140 is maintained in spaced relation to planar lens 130 and is arranged for clear vision down the interior length of inner tube 104. Obturator 142 may be utilized with the proctoscope in well known manner.

For removably connecting the endoscope to a high intensity light source (not shown), flexible light-carrier 124 is fitted with plug-in connector 123 for insertion into a receptacle or jack 122 removably mounted on collar 118. The end portion 121 of flexible light-carrier 124 carrying planar lens 125 is positioned in jack 122 and is anchored in place by means of its engagement with plug-in connector 123, which in turn is in frictional engagement with jack 122. The interior surface of jack 122 makes good surface-to-surface contact with the exterior surface of terminal support 118 and has annular recess 119 for clampingkengagement with annular spring 127 carried by the ac In use, proctoscope 100 is inserted into the internal cavity of a patient with obturator 142 in place to provide a smooth rounded end as an aid to insertion. The optic fiber bundle is connected at its proximal end to light-carrying bundle 124, the opposite end of which is presented to a source of light. The light transmitted by bundle 106 exits at its distal end 108 and illuminates the internal cavity under view through telescope 140. If desired, insufllation may be carried out through insufflation cap 126 by manipulation of valve 128 in conduit 127 which is connected to a source of suitable insutflation fluid.

FIGURES 11-15 detail the embodiment of a urethroscope utilizing the present invention. Urethroscope 200 is made up of sheath 202, rigid light-carrier 204 and surgical telescope 206. As best shown in FIGURE 11, rigid light-carrier 204 is further comprised of outer tube 208 and concentric inner tube 210, coaxial with outer tube 208. Optic fiber bundle 212 is disposed in annular space 214 between outer tube 208 and inner tube 210. Distal end portion 216 of bundle 212 is formed into an annulus and optically ground. Proximal end portion 218 is formed into a generally cylindrical rod, the end face of which is optically ground. Proximal end portion 218 is positioned within and supported by annular terminal support 220 which is brazed to housing 222. To facilitate the manipulation and arrangement of the fiber bundle around inner tube 210, outer tube 208 terminates near the distal end of housing 222, while inner tube 210 terminates near the proximal end of housing 222. At its proximal end, housing 222 is formed into clamp 224 which may be tightened or loosened by screw 226. The clamp holds telescope 206 in water-tight connection to the rigid lightcarrier when the urethroscope is assembled.

At its distal end housing 222 is held in position on annular mounting member 228 by screw 230 which serves further to support fork 232 containing pin 234, as is best shown in FIGURE 13.

Sheath 202 comprises an elongated tubular member 236 formed of Bakelite or other suitable material and terminating at its distal end in a smoothly rounded end wall 238 defining an axial opening forming the end of internal passage 240. At its proximal end tubular member 236 is joined in liquid-tight relation to annular mounting member 242 provided with internal shoulder 244. Proximally of shoulder 244 the inner surface 246 of mounting member 242 is tapered so that the cavity formed thereby has a diameter which increases toward the proximal end of urethroscope 200.

Tubular member 236 is held in place against annular mounting member 242 by collar 248. Collar 248 is connected to the distal end of member 242 and encircles tubular member 236 immediately adjacent to member 242. Mounting member 242 also contains inlet conduit 250, which communicates with passage 240 through an opening formed adjacent the proximal end of tubular member 236 for the introduction, for instance, of an irrigating fluid through the interior of the sheath, into the body cavity.

As best shown in FIGURES 12, 13 and 15 winged connector 252 is joined to mounting member 242 by screw 254 and is yieldably urged toward mounting member 242 by spring 256. Connector 252 coacts with pin 234 on fork 232 to hold sheath 202 and rigid light-carrier 204 in abutting relationship and form a liquid-tight joint between them. Fork 232 is pivotally connected by screw 230 as described above.

For removably connecting the urethroscope to a high intensity light source (not shown), a flexible light-carrier 258 is fitted with a plug-in connector 260, shown cut away in FIGURE 11, for insertion into receptacle or jack 262 which is removably mounted on terminal support 220. The end portion 264 of flexible light-carrier 258 is positioned in connector 260 and is anchored thereto, for instance, by use of epoxy resins as described above. The interior surface of jack 262 makes good surface-to-surface contact with the exterior surface of terminal support 220 and connector 260. Jack 262 has annular recesses 266 for clamping engagement with annular springs 268 carried by terminal support 220 in slot 270 and by connector 260 in slot 272.

In operation the urethroscope may be introduced into the body cavity and the fiber optic bundle 212 connected to a source of light. The internal cavity will then be illuminated by light emitted from the distal end 216 of optic fiber bundle 212. The illuminated cavity may be visually observed through telescope 206.

The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed.

What is claimed is:

1. In an endoscopic instrument for the examination of internal orifices the improvement comprising first and second rigid concentric tubes defining an annular space between them, a plurality of optic fibers disposed in said annular space, said fibers and said tubes being rigidly adhered together along substantially the entire length of 6 said instrument, the proximal ends of said optic fibers extending adjacent the proximal ends of said tubes being adapted for coupling to a light source and the distal ends of said optic fibers being adapted to illuminate the internal orifice.

2. In an endoscopic instrument for the examination of internal orifices the improvement comprising first and second rigid concentric tubes defining an annular space between them, a plurality of optic fibers disposed in said annular space, said fibers and said tubes being rigidly adhered together along substantially the entire length of said instrument, the distal ends of said optic fibers being formed into a solid annular ring adapted for illumination of the internal orifices, and the proximal ends of said optic fibers extending adjacent the proximal ends of said tubes being formed into a solid rod for coupling to a light source.

3. In a urethroscope comprising an elongated cylindrical endoscopic sheath, a light carrier disposed within the sheath and a telescope, the improvement in which the light carrier further comp-rises a rigid outer tube having a proximal end and a distal end, an annular mounting member joined to said outer tube adjacent the proximal end thereof, an inner tube concentric with said outer tube and defining an annular space therewith, the distal end of said inner tube being substantially coextensive with the distal end of said outer tube, a plurality of optic fibers disposed in said annular space, said fibers and said tubes being rigidly adhered together along substantially the entire length of said instrument, the proximal ends of said optic fibers extending adjacent the proximal ends of said tubes being adapted for coupling to a light source and the distal ends of said optic fibers being adapted to illuminate the internal orifice, a housing connected to said mounting member and encircling said proximal end of said inner tube and having a channel at an angle to the axis of said inner and outer tubes, the proximal ends of said optic fibers passing through said channel in said housing.

4. In a urethroscope comprising an elongated cylindrical endoscopic sheath, a light carrier disposed within the sheath and a telescope, the improvement in which the light carrier further comprises a rigid outer tube having a proximal end and a distal end, an annular mounting member joined to said outer tube adjacent the proximal end thereof, an inner tube concentric with said outer tube and defining an annular space therewith, the distal end of said inner tube being substantially coextensive with the distal end of said outer tube, a bundle of optic fibers substantially uniformly disposed in said annular space between said tubes, said fibers and said tubes being rigidly adhered together along substantially the entire length of said instrument, the distal end portion of said bundle being formed into a solid annulus and optically ground, a housing connected to said mounting member and encircling said proximal end of said inner tube and having a channel at an angle to the axis of said inner and outer tubes, the proximal end of said bundle passing through said channel in said housing and being formed into a solid rod recessed from the end of said channel.

5. A urethroscope comprising an elongated cylindrical endoscopic sheath having a proximal and a distal end, a first annular mounting member joined to said sheath adjacent said proximal end and having an annular wall defining a proximally tapered cavity communicating with the interior of said sheath, a collar engaging said sheath and said first member and forming a liquid-tight seal therewith, a conduit connected to said mounting member and communicating with the interior of said cavity; a light carrier further comprising a rigid outer tube having a proximal and a distal end, a second annular mounting member joined to said outer tube adjacent the proximal end thereof, and having a tapered outer surface adapted to uniformly engage the tapered cavity of said first annular member, an inner tube concentric with said outer tube and defining an annular space therewith, the distal end of said inner tube being. substantially coextensive with the distal end of said outer tube, a bundle of optic fibers substantially uniformly disposed between said tubes, the distal end portion of said bundle being formed into a solid annulus, a housing connected to said proximal end of said outer tube, a terminal support connected to said housing and having a passage at an angle to the axis of said inner and outer tubes, the proximal end portion of said bundle passing through said passage in said terminal support and being formed into a solid rod recessed from the end of said passage; means to couple said sheath to said light carrier; a telescope assembly including a stern adapted to extend concentrically through said inner tube, and means to couple said telescope assembly to said light carrier. i

6. In a proctoscope comprising an endoscopic sheath, telescope and insufiiation means aniimproved endoscopic sheath comprising a rigid outer tube, an inner tube concentrically disposed within said outer tube and forming an annular space therewith, a plurality of optic fibers disposed in said annular space, said fibers and said tubes being rigidly adhered together along substantially the entire length of said instrument, the proximal ends of said optic fibers extending adjacent the proximal ends of said tubes being adapted for coupling to a light source and the distal ends of said optic fibers being adapted to illuminate the internal orifice.

7. In a proctoscope comprising an endoscopic sheath, telescope and insufiiation means an improved endoscopic sheath comprising a rigid outer tube, an inner tube concentrically disposed within said outer tube and forming an annular space therewith, a bundle of optic .fibers substantially uniformly disposed within the annular space between said inner and outer tubes and adapted to provide illumination, said fibers and said tubes being rigidly adhered together along substantially the entire length of said instrument, the distal end portion of said bundle being formed into a solid annulus and being substantially coextensive with the distal ends of said inner and outer tubes, means to support the proximal end portion of said bundle, the proximal end portion of said bundle extending adjacent the proximal ends of said tubes being formed into a solid rod adapted for connection to an external light source.

8. A proctoscope comprising a rigid outer tube having a distal and a proximal end, an inner tube concentrically disposed within said outer tube and forming an annular space therewith, a bundle of optic fibers substantially uniformly disposed within said annulus between said inner and outer tubes, the distal end portion of said bundle being formed into a solid annulus and being substantially coextensive with the distal end of said inner and outer tubes, an annular mounting member joined to the proximal end of said outer tube, a mounting ring connected to said annular mounting member, a yoke surrounding said mounting member and having a passage therethrough, a collar connected to said yoke, the proximal end portion of said bundle being formed into a solid rod and supported by said collar and being recessed from said collar, and being adapted for connection to an external light source; a handle connected to said mounting ring; a telescope assembly connected to said mounting ring and held in spaced relation for vision through said inner tube; an insufllation cap enclosing the opening in said mounting ring, a conduit connected to said mounting ring and communicating with the interior ,9)? said ring and adapted for connection to an external insuffiation fluid, and a valve in said conduit for controlling the flow of said insuffiation fluid.

9. A light-conducting optic device comprising an outer tube, an inner tube disposed within said outer tube and defining an annular space therewith, a plurality of optic fibers disposed in said annular space, and a mounting member supporting each of said tubes at the proximal end and adapted for connecting said device to an endoscope disposed within said inner tube, said fibers throughout their extent being adhered together and substantially rigid, the distal ends of said optic fibers being formed into an annulus, the proximal ends of said optic fibers being gathered into a rod and supported by said mounting member at an angle to said tubes and adapted to be connected to an external source of light.

References Cited by the Examiner UNITED STATES PATENTS 3,068,739 12/ 1962 Hicks et al 128-397 X 3,089,484 5/1963 Hett 128-6 3,146,775 9/1964 Moore et a1. 128--6 FOREIGN PATENTS 158,149 2/ 1921 Great Britain.

RICHARD A. GAUDET, Primary Examiner.

DALTON L. TRULUCK, Examiner.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3068739 *Jun 23, 1958Dec 18, 1962American Optical CorpFlexible optical probe
US3089484 *Jan 26, 1961May 14, 1963American Cystoscope Makers IncFlexible optical instrument particularly for carrying out surgical procedures
US3146775 *Oct 29, 1962Sep 1, 1964Welch Allyn IncIlluminating means for medical instruments
GB158149A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3384076 *Nov 14, 1966May 21, 1968Propper Mfg Co IncOtoscope head
US3417746 *Feb 27, 1968Dec 24, 1968Welch Allyn IncIlluminating endoscope with disposable elements
US3457000 *Aug 4, 1965Jul 22, 1969Schneider Co Optische WerkeTerminal assembly for lightconducting cable
US3481325 *Mar 31, 1966Dec 2, 1969Jacob A GlassmanGastroscope
US3556086 *Oct 23, 1967Jan 19, 1971Thomas E GordonIlluminating stomatoscope
US3590232 *Mar 27, 1968Jun 29, 1971Radioptics IncAnnular illuminator for dental tools or the like
US4215678 *Feb 28, 1977Aug 5, 1980Propper Manufacturing Co., Inc.Endoscope
US4306546 *Mar 26, 1980Dec 22, 1981Propper Manufacturing Co., Inc.Endoscope
US4500181 *May 25, 1982Feb 19, 1985Olympus Optical Co., Ltd.Illuminating optical system for endoscopes
US4593973 *Jun 27, 1983Jun 10, 1986Sumitomo Electric Industries, Ltd.Composite optical fiber and imaging catheter and method for producing the same
US4671630 *Jan 21, 1986Jun 9, 1987Olympus Optical Co., Ltd.Illuminating optical system for endoscopes
US4802460 *Jun 2, 1987Feb 7, 1989Olympus Optical Co., Ltd.Endoscope illuminating optical system device
US4826280 *Jan 28, 1988May 2, 1989Sumitomo Electric Industries, Ltd.Grooved optical transmission channel
US4885663 *Mar 22, 1988Dec 5, 1989Lumitex, Inc.Fiber optic light emitting panel and method of making same
US5156142 *Nov 19, 1989Oct 20, 1992Effner GmbhEndoscope
US5188094 *Sep 30, 1991Feb 23, 1993Adair Edwin LloydHeat sterilizable electronic video endoscope
US5419312 *Apr 20, 1993May 30, 1995Wildflower Communications, Inc.Multi-function endoscope apparatus
US5423312 *Dec 18, 1992Jun 13, 1995Schott Fiber Optics, Inc.Rigid endoscope having modified high refractive index tunnel rod for image transmission and method of manufacture thereof
US5463712 *Dec 5, 1994Oct 31, 1995Cawood; Charles D.Fiberoptic casing for endoscopes and method of making
US5538497 *Aug 5, 1994Jul 23, 1996OktasEndoscope having parasitic light elements
US5617498 *Aug 18, 1995Apr 1, 1997Cawood; Charles D.Light-transmitting outer casings for endoscopes and methods of making
US5630784 *Jun 6, 1995May 20, 1997Schott Fiber Optics Inc.Method of making and using a rigid endoscope having a modified high refractive index tunnel rod
US5807239 *May 17, 1996Sep 15, 1998Conceptus, Inc.Transcervical ostium access device and method
US5895350 *Jul 16, 1997Apr 20, 1999Vista Medical Technologies, Inc.Electronic endoscope
US6478730Sep 9, 1998Nov 12, 2002Visionscope, Inc.Zoom laparoscope
US6761684 *Aug 10, 2000Jul 13, 2004Linvatec CorporationEndoscope tip protection system
US7041054 *Aug 17, 2004May 9, 2006Jack KlootzLED illumination for surgical endoscopes and industrial rigid boroscopes
US7244228Feb 8, 2002Jul 17, 2007Lubowski David ZSigmoidoscope
US7510524 *Apr 3, 2006Mar 31, 2009Invuity, Inc.Optical waveguide sheath
US7901353Mar 6, 2007Mar 8, 2011Invuity, Inc.Illuminated cannula
US7942814Mar 4, 2005May 17, 2011Visionscope Technologies LlcMiniature endoscope with imaging fiber system
US7967746Oct 17, 2006Jun 28, 2011Karl Storz Gmbh & Co. KgRectoscope having light-emitting elements
US8038602Mar 8, 2005Oct 18, 2011Visionscope LlcPortable imaging system employing a miniature endoscope
US8162824Mar 27, 2009Apr 24, 2012Invuity, Inc.Optical waveguide sheath
US8317689Sep 13, 2000Nov 27, 2012Visionscope Technologies LlcMiniature endoscope system
US8708896Feb 1, 2011Apr 29, 2014Invuity, Inc.Illuminated cannula
US8942530Aug 27, 2012Jan 27, 2015San Marino Capital, Inc.Endoscope connector method and apparatus
DE1566179B1 *May 26, 1967Sep 3, 1970Welch Allyn IncEndoskop,insbesondere Sigmoidoskop,mit Beleuchtung
DE3929285A1 *Sep 4, 1989Mar 14, 1991Wolf Gmbh RichardEndoskopoptik
EP0066374A1 *May 5, 1982Dec 8, 1982Olympus Optical Co., Ltd.Endoscopes
EP0416371A2 *Aug 22, 1990Mar 13, 1991Richard Wolf GmbHOptic for endoscope
EP0715828A1Aug 25, 1995Jun 12, 1996Charles David CawoodLight-transmitting casings for endoscopes and methods of making
EP1774898A1 *Oct 13, 2006Apr 18, 2007Karl Storz GmbH & Co. KGRectoscope having light emitting elements
EP1868488A2 *Apr 4, 2006Dec 26, 2007Spotlight Surgical, Inc.Optical waveguide sheath
WO1995028873A1 *Apr 20, 1995Nov 2, 1995Envision Surgical Systems IncFiber optic scope including fluid delivery port
WO2006108143A2Apr 4, 2006Oct 12, 2006Spotlight Surgical IncOptical waveguide sheath
Classifications
U.S. Classification600/135, 385/117, 362/574, 600/182
International ClassificationA61B1/07
Cooperative ClassificationA61B1/07, A61B1/00195
European ClassificationA61B1/00S8, A61B1/07
Legal Events
DateCodeEventDescription
Jun 10, 1982ASAssignment
Owner name: AMERICAN HOSPITAL SUPPLY CORPORATION, ONE AMERICAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AMERICAN CYSTOSCOPE MAKERS, INC. A CORP. OF N.Y.;REEL/FRAME:004000/0109
Effective date: 19801010
Owner name: AMERICAN HOSPITAL SUPPLY CORPORATION, A CORP. OF I
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AMERICAN CYSTOSCOPE MAKERS, INC. A CORP. OF N.Y.;REEL/FRAME:004000/0109
Feb 5, 1982ASAssignment
Owner name: AMERICAN HOSPITAL SUPPLY CORPORATION, ONE AMERICAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AMERICAN CYSTOSCOPE MAKERS, INC.;REEL/FRAME:003962/0572
Effective date: 19801031