Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3273640 A
Publication typeGrant
Publication dateSep 20, 1966
Filing dateDec 13, 1963
Priority dateDec 13, 1963
Publication numberUS 3273640 A, US 3273640A, US-A-3273640, US3273640 A, US3273640A
InventorsHuntington Morgan G
Original AssigneePyrochem Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Pressure pulsing perpendicular permeability process for winning stabilized primary volatiles from oil shale in situ
US 3273640 A
Abstract  available in
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Sept 20 1966 n M. G. HUNTINGTON 3 27 PREaSURE PULSLNG PERPENDIGULAR PERMEABILITY PROCESS P055 WINNING STABILIZED PRIMARY VOLATILES FROM OIL SHA Flled Dec. 13, 1963 LE IN SITU 2 Sheets-Sheet 1 M J an STEAM PRESSURE PSlA ATTORNEYS United States Patent 3,273,640 PRESSURE PULSING PERPENDICULAR PERME- ABILITY PROCESS FOR WINNING STABILIZED PRIMARY VOLATILES FROM OIL SHALE IN SITU Morgan G. Huntington, Galesville, Md., assignor to Pyrochem Corporation, Salt Lake City, Utah, a

corporation of Utah Filed Dec. 13, 1963, Ser. No. 330,334 9 Claims. (Cl. 1667) This invention relates to improvements in the in situ exploitation of oil shale and other hydrocarbonaceous impregnations and particularly relates to the pyrolysis, destructive steam distillation and to the initial vapor phase catalytic hydrogenation of the volatile matter. This invention further relates to the production of a primary condensate oil which is substantially free of reactive hydrocarbon unsaturates and of oxygeneated organic compounds and which is, therefore, essentially stable in respect to molecular size.

Although a very great deal of engineering knowledge has been accumulated in the exploitation of various types of liquid petroleum reservoirs, very little of such conventional oil field experience is immediately and directly applicable to the in situ winning of oil from such impervious and benzene insoluble impregnations as the Rocky Mountain oil shales.

No in situ shale oil recovery process has so far been successfully demonstrated. A number of retorting systems which involve mining, crushing and heating the shale in the absence of air have established the fact that about two-thirds of the initial calorific value of the shale is slowly converted to condensable oil vapors upon heating to a temperature of about 700 F. and more rapidly converted between 800 and 900 F. One-third of the remainder is in the form of permanent hydrocarbon gases and the balance of the original heating value is retained as a coke polymer in the calcined host. About 300 B.t.u. of heat is absorbed per pound of shale during the processes of pyrolysis and of destructive distillation above 800 F. but below the temperature of carbonate destruction which begins above 1150 P.

All grades and types of shale oil which have so far been extracted from Rocky Mountain oil shales by potentially large scale processes, other than those methods disclosed by the present inventor, are less valuable than commercial grades of petroleum because of the lower gasoline yield and because of excessive processing and investment costs. The inferior quality of all previously produced shale oil is due particularly to the average high molecular weight of compounds formed in such oils by intermolecular reaction subsequent to pyrolysis and distillation and which have been allowed to condense from the vapor phase without prior catalytic hydro-stabilization.

While it is well known that kerogen, the impregnating hydrocarbonaceous solid material which occurs in the Rocky Mountain magnesium marls commonly called oil shales can be largely converted to benzene-soluble liquids by heating, a second and a very serious problem of physical recovery remains to be solved. In order to extract fluids from impregnated rock hosts through bore holes drilled therein, two conditions must be met as is the case in all oil field practice: (1) The impregnated material must be permeable to the fluid, and (2) some kind of driving and/or displacing force, such as gas, Water or gravity, must already exist in the reservoir or it must be artifiicially supplied.

Rocky Mountain oil shale is an impervious and impermeable laminar sequence of magnesium marlstone containing very finely divided grains of hydrocarbonaceous solids which are petrographically similar to certain constituents of cannel and boghead coals. Oil shale resembles dark colored marble and has a hardness of about five on Mohs scale, which is about as hard as window glass. Its shear strength perpendicular to the bedding planes is 3000 to 4600 pounds per square inch, while parallel to the bedding planes, its shear strength is only 900 to 1800 pounds per square inch. Its tensile strength is 340 to 800 pounds per square inch.

The hydrocarbonaceous matter called kerogen is a mixture of amorphous, structureless solids ranging in color from yellow to brown or black. Occasional identifiable pollen grains, spores and microfos'sils are embedded in the organic matter. Only about 15 percent of it is soluble in common solvent such as benzene at moderate temperatures and pressures. Despite extreme variation in richness of the various beds, the composition of kerogen is fairly constant as is represented by the following data:

It should be noted that part of the kerogen bears a remarkable and close resemblance to the petrographic constituents of certain high volatile coals. (Compare Bureau of Mines Technical Paper 642.) This is not unexpected since geologically, the origins of oil shale and coal are similar in that they are both fresh water deposits and the organic content of each is the result of vegetable matter decaying and coalifying in place.

Following the destructive distillation of oil shale at 800 F.900 F., the porisity of the calcine ranges from 15 to 40 percent. Because the primary mineral matter (chiefly volcanic dust) has an average grain size between 0.5 and 50 microns, the pore size is very small, being for the most part between ten and one-tenth microns. Obviously, this host rock can be considered permeable only to gases and vapors at low pressures and to liquids only at very high differential pressures. I

Oil recovered from oil shale by destructive distillation retains most of the oxygen, sulfur and nitrogen oc curring in the original kerogen and these elements, for the most part, are found in chemically functional groups, attached to what otherwise would be pure hydrocarbon molecules. Because of the disproportionating reactions of thermal cracking which accompany pyrolysis, about half of the hydrocarbon molecules in typical shale oil vapors are characterized by at least one double bond due to the insufliciency of hydrogen. These characteristics produce a highly reactive mixture of tar acids, tar bases, organic compounds of sulfur and unstable hydrocarbons which combine to form the typical molecular complex which is commonly called shale oil.

As disclosed in my Patent 3,106,521, granted October 8, 1963, and in my co-pending application Serial No. 307,162, filed September 6, 1963, shale oil produced by any other means than the inventions therein described is highly reactive and unstable. When allowed to condense from the initial vapor phase, the condensate immediately begins to change its molecular structure by polymerization of olefins and by intermolecular reaction between olefins, tar bases, tar acids and organic sulfur compounds. As -a result, re-distillation yields some 50 to 60 percent of residuum having a molecular weight in the order of 200 to 5000 and even higher and which is solid at room temperature. The distillation of shale oil by all processes except that of the present invention, my co-pending application Serial No. 307,162 and of my Patent 3,106,521, noted above, produces about 40 percent of light fraction and about 60 percent of very heavy residuum. The lighter fraction, which boils below 600 F., invariably consists of 40 to 50% of unsaturated and very reactive hydrocarbons. These olefins, if not saturated by hydrogen immediately, combine with themselves and other hydrocarbon molecules to form high molecular weight complexes which are not readily covnerted into marketable products.

It is a principal object of this invention to inject heated hydrogen into the extracted primary shale oil vapors and to maintain most of the organic vapors at a sufliciently high temperature to prevent condensation before and while being led over suitable solid catalysts to promote the saturation of olefins into hydrocarbons and to remove all organically combined oxygen as water vapor and thereby destroy the tar acid content of the vapors before condensation occurs; and it is particularly an object of this invention to prevent subsequent liquid phase polymerization and intermolecular reactions so far as is lymerization and intermolecular reactions so far as is possible by completing substantial catalytic hydrogenation before allowing the steam-entrained vapors to condense from the initial vapor phase.

The physical functions of this process invention may incorporate some or all of the controlled rock-parting principles disclosed in my US. Patent No. 2,969,226 when the object is to exploit a sequence of selected strata and to maximize the horizontal area exploited from each borehole.

In order to extract valuable hydrocarbons from oil shale by the in situ means of this invention, it is first necessary to establish fluid flow of a thermal carrier medium such as hot water and/or steam, through a pressure parted and sand fractured plane of weakness between an injection borehole and one or more production 'wells, as is known in oil field art. Secondly, it is necessary to preheat the host shale adjacent to the parted seam and the boreholes and conduits to a temperature above that at which most all vapors condense but below that temperature at which appreciable and rapid pyrolysis occurs. Thirdly, the host rock must be further heated to a temperature at which the organic impregnation converts to oil vapors, gas and residual carbon. Fourth, the host rock must become permeable to steam and to oil vapors and to gases immediately above and below the horizontal plane made pervious by sand fracturing. Fifth, a driving or extracting force must be provided which Will expel the recoverable substances from the host rock, and at the same time, perform as a displacing medium to effectively prevent the re-impregnation of the once-impoverished host. Sixth, the entraining steam must be largely condensed at a temperature and pressure at which the greater part of the oil vapors remain in the vapor phase in order to reduce the partial pressure of steam before catalysis. Seventh, the initial oil vapors must be reheated to catalytic temperature, mixed with preheated hydrogen and led over sufficient catalyst to fix oxygen, nitrogen and sulfur as hydrides and to saturate the more reactive olefins.

Other objects of the invention will be pointed out in the following description and claims and illustrated in the accompanying drawings, which disclose, by way of example, the principle of the invention and the best mode which has been contemplated of applying that principle.

In the drawings:

FIG. 1 is a schematic view in vertical section through the ground and a strata of oil shale showing injection and production boreholes therein.

FIG. 2 is a flow sheet diagram of the processing of steam entrained oil shale volatiles of this invention.

FIG. 3 is a diagrammatic representation of the pattern of drilling the production and injection boreholes.

FIG. 4 is a graph of steam pressure against temperature showing the steam saturation curve and illustrating the temperature and pressure limits within which the process operates.

FIG. 5 is a graph of pressure against time illustrating the pre-heating of the host rock and the pulsating pressure applied to the host by the process of this invention.

Referring now to the drawings for a description in detail of the process of this invention, there is shown in FIG. 1 an injection well 10 and a production Well 12. These wells are produced by drilling an injection borehole 14 and a production borehole 16 from the surface of the ground through a known strata of oil shale 18.

The wells 10 and 12 will have casings 20 and 24 respectively which are placed and cemeted at 22 and 26 respectively to be gas tight to just about the top of the oil shale formation 18 under exploitation.

The oil shale formation 18 will have a number of planes of weakness which may be opened up between the injection well 10 and production Well 12 by sand fracturing methods as are known in the art. In the illustration in FIG. 1 there is graphically illustrated a bedding plane 29 which has been sand fractured by processes known in the art to provide a series of horizontal pervious planes tributary between the boreholes. The pressure parting is accomplished by inserting granular material and the planes are held open by the granular material within the parted planes as is known in the oil field production practice art.

The borehole 20 has three fluid conduits 32, 34 and 36 therein controlled by valves 33, 35 and 37 respectively. Similarly, production well 12 has fluid conduits 40, 42 and 44 controlled by valves 41, 43 and 45. Fluid is injected through conduit'32 under the control of valve 33, vapors may be withdrawn if desired from conduit 34 under control of valve 35 and liquids such as water condensate may be Withdrawn through deep pipe 36 by a pump or the like under the control of valve 37. In the production well 12, the vapors including steam entrained oil shale volatiles may pass out conduit 42 under the control of valve 43, additional fluid may be injected if desired through conduit 40 under the control of valve 41 and condensate may be removed through deep pipe 44 under the control of valve 45.

After parting the plane of weakness 29, the next step in the process is pre-heating the formation including the sides of the parted plane 29 by pumping hot water at substantially steam saturation temperature in through one of the pipes in injection Well 10 and removed through pipe 44 in production well 12. Water at a high temperature is used for pre-heating due to the superior heat transfer characteristics of water over that provided by a gas or vapor such as steam. The water is preferably at a temperature within the range of 400 to 550 F. That is, the temperature of the Water is above the temperature at which excessive condensation of the oil entrained vapors in steam might occur. That is, the formation must be pre-heated to a temperature such that the steam and oil entrained vapors would not condense. As shown in the steam saturation curve of FIG. 4, this would be about 425 at 325 p.s.i.g. The upper limit of pre-heating by the water is the temperature at which pyrolysis of the oil shale 18 begins, i.e., in the order of 550 to 600 F. It is however desirable to preheat as high as possible with pressurized water as it provides more efficient heat transfer as noted above.

After the pre-heating step, the hot water is removed through pipe 44 and the recovery of the volatiles from i the shale formation begins by introducing superheated steam through pipe 32 under the control of valve 33 to raise the temperature of the oil shale in the formation 18 to about 825, or at least to a temperature sufficient to accomplish pyrolysis or distillation of the kerogen entrained within the shale.

The pyrolyzed shale will leave certain voids and the shortest paths for steam penetration into the voids are those which extend transversely to the plane of parting 29, and since the plane of parting is substantially horizontal, the interstices in the shortest path will be perpendicular thereto; hence, the portion of the title, Perpendicular Permeability.

The next step in the process is for promoting permeability and for obtaining an output from the formation above and below the parted plane or seam 29 by a pulsing eflect applied to the superheated steam. This is graphically illustrated in FIG. 5 wherein the pressure after pre-heating is pulsed with respect to time so that with high pressure the steam penetrates into the voids and edges of the oil shale formation in the bedding plane and then the pressure is lowered to allow flow out of the formation and on out of the production well. The highest pressure in the pressure pulsing is about equal to rock pressure (which may be roughly figured as approximately 1 p.s.i. per 'foot of overburden). The lowest pressure of the pressure pulsing is, in the illustrated example, between 325 and 350 p.s.i. which is the minimum system pressure which will allow separation of vapor phase oils from liquid water in the partial condenser 46 without execessive condensation of oil vapors. See the saturation curve of FIG. 4. In essence, the high pressure pulsing is [for first penetrating to open up the tributaries to the plane of parting and put the oil shale in the vapor phase by pyrolysis while the second and lower pressure cycle is to force the steam entrained volatiles to the major pervious plane and make the host rock more permeable for the next penetration by high pressure steam.

The pulsating pressure allows the oil shale entrained vapors and steam to be bled toward the production well 12 by the driving and extracting force and especially the extracting force of the pressure pulsing steam.

The next step in the process is to separate a certain portion of the steam entraining the oil vapors from the vapors by condensing the entraining steam at a temperature and pressure sufficient so that the oil vapors remain in the vapor phase. This step is accomplished in order to reduce the partial pressure of steam before a later step of catalysts and it is necessary that the oil vapors remain in the vapor phase. This step may be accomplished partially in the upper portion of production well 24 by cooling the output pipe 42 or may be accomplished as illustrated in a separate condenser shown in FIG. 2.

As shown in FIG. 2, the steam entrained vapors at output pressure and temperature are taken off line 42 under the control of valve 43 and passed to a condenser 46. This condenser accomplishes partial steam condensation at the output pressure and at steam saturation temperature and the condensed steam is drawn off as water through line 48. As a result of such condensation of steam the oil vapors exhibit a much higher partial pres.- sure while still entrained in some steam at saturation temperature, are passed through line 50 to heater 52 wherein a source of heat is utilized to raise the vapors in temperature to that beneficial for a subsequent step of catalysis. This temperature will be within the range of 600 F. to 1300" F.

The heated vapors then are removed from the heater through lines 56 and are joined by heated hydrogen 54 and the heated hydrogen and oil shale vapors in the vapor phase are passed to catalysis chambers illustrated schematically at 58. The purpose of catalysis of the oil shale vapors while still in the vapor phase is set forth more in detail in my co-pending application Serial No. 307,162, referenced above \and in essence it is so that the olefins may be saturated.

Without prompt vapor phase hydrogenation, conventional shale oil may contain approximately 40% olefins which combine with each other and with oxygenated compounds to form unmanageable polymers. However, if the shale oil distillate is kept in the vapor phase and hydrogen is added thereto and vapors are passed through and over a solid catalyst (such as suitably supported cob'alt molybdate or the best solid non-poisoning catalyst known in the art for the use of saturating olefins in producing stable hydrocarbons) then the beneficial result mentioned above will occur. This same type of contact catalysis removes organic oxygen as water vapor almost as readily thereby eliminating tar acids.

The stabilized distillate is then drawn through line 60 and passed to a primary fractionator 62 of the type known in the art. From the bottom of the fractionator 64 may be withdrawn the plus 400 F. fuel oils while the gasoline fraction may be taken off line 66 of the fractionator and passed to an acid wash to remove pyridine and its homologs and any other basic compounds. The 200 F. overhead from the fractionator passes out through line 68 to a condenser 70. The condensate from condenser 70 passes to a water separator 72 where water is separated from light oils, the water being taken off line 74 and the light oils off line 76. The permanent gases from condenser 70 are taken through line 78 to agas scrubber 80 for absorbing most of the carbon dioxide, carbon monoxide, H S and NH These dissolved and combined gases are removed with liquids through line 82 and the remaining permanent gases passed through line 84 to a hydrocarbon absorber system 86 to remove the hydrocarbon gases through line 88 leaving only substantially hydrogen to be taken ofl line 90 and this hydrogen may then be re-heated by waste heat in the system and recycled to line 54 to be used in the system.

After one plane 29 has been operated on, the pipes may be moved upwardly a predetermined distance and cement, such as shown in holes 10 and 12 as cement plugs 133 and 135 respectively, may be filled in to cover the exploited seam 29. Then another bedding plane illustrated diagrammatically in 31 may be opened up by sand fracturing and the process repeated on the next adjacent desirable bedding plane. In a similar manner, plane 27 has already been worked and has been sealed off as shown by the cement 133 and 135. The system will not leak substantial amounts of the pre-heating hot water or the driving and entraining steam due to the nature of the oil shale which is quite hard and impermeable in its natural state. Where sealing of pervious zones becomes necessary, conventional methods are applicable.

The arrangement of production and injection wells 12 and 10 shown in FIG. 3 is one possible arrangement drilling on .a hexagonal pattern wherein each of the injection wells drives the distilled steam entrained vapors toward any one of the six production wells by selective valving arrangements.

While there have been shown and described and pointed out the fundamental novel features of the invention as applied to the preferred embodiment, it will be understood that various omissions and substitutions and changes in the form and details of the device illustrated and in its operation may be made by those skilled in the art without departing from the spirit of the invention. It is the intention, therefore, to be limited only as indicated by the scope of the following claims.

What is claimed is:

1. An in situ process for winning oil shale from an oil shale formation, the formation including a production bore hole and an injection bore hole drilled therein, as well as a path of lateral fluid communication through the otherwise impervious oil shale between the production and injection bore holes, the process comprising;

(a) preheating the oil shale adjacent the path of lateral fluid communication with hot water to a temperature just below that at which pyrolysis of the oil shale begins,

(b) introducing superheated steam under pressure into the path of lateral fluid communication through the injection bore hole,

(c) cyclically varying the superheated steam pressure between the limits of rock pressure and a lower pressure sufiicient to prevent undue steam condensation,

(d) removing steam and oil shale entrained vapor from the production well, and

(e) treating the removed steam and oil entrained vapor after first reducing the partial pressure of steam by contact catalysis in the presence of hydrogen.

2. An in situ process for winning oil shale from an oil shale formation having a production well and an injection well extending therein, the process comprising;

(a) establishing a path of lateral fluid communication between the injection well and the production well through the oil shale formation,

(b) introducing steam under pressure and at a temperature and in sufficient quantity to cause plyrolysis of the shale into the path of lateral fluid communication from the injection well,

() cyclically varying the pressure of the steam in the path of lateral fluid communication,

(d) removing steam and oil entrained vapors from the production well,

(e) reducing the partial pressure of steam in the removed vapors without condensing the oil shale vapors, and

(f) treating the oil shale vapors in the presence of hydrogen by contact catalysis to stabilize the product .by saturating olefins.

3. A process as defined in claim 2 further comprising heating the oil shale vapors to .a temperature beneficial to catalysis before the contact catalysis step and also preheating hydrogen prior to contact catalysis.

4. A process as defined in claim 2 further comprising pre-heating the path of lateral fluid communication through the shale by hot water prior to introducing steam.

5. A process as defined in claim 4 wherein the preheating is accomplished at a temperature just below where pyrolysis of the oil shale begins, in the order of 550 F.

6. A process as defined in claim 5 wherein the approximate limits of the cyclically varying pressure are rock pressure and a lower pressure sufficient to prevent undue steam condensation.

7. An in situ process for winning stabilized primary volatiles from oil shale by pressure pulsing techniques comprising; providing at least one injection well and one production well, pressure parting a bedding plane in the in situ oil shale formation between the injection and production wells, pre-heating the formation on the sides of the parted plane to a temperature between a lower temperature at which there would be excessive condensation of steam and oil entrained vapors and an upper limit at which pyrolysis of the oil shale formation begins, further heating the oil shale adjacent the parted plane after said pre-heating with superheated steam injected into the oil shale via the injection well to a temperature suflicient to cause pyrolysis of the host oil shale, cyclically varying the pressure of the superheated steam to open up tributaries perpendicular to the plane of parting and volatilize the oil shale and to displace the steam and make the host formation permeable, bleeding the steam and oil 5 shale entrained vapors out through the production well, condensing at least some of the entraining Steam t a 8 temperature and pressure such that the entrained oil vapors remain in the vapor phase in order to reduce the partial pressureof steam, re-heating the vapors after the condensing step to a temperature beneficial for catalysis, and accomplishing contact catalysis on the oil shale vapors in the presence of heated hydrogen.

8. An in situ process for winning stabilized primary volatiles from oil shale by pressure pulsing techniques comprising drilling at least one injection and one production well, pressure parting and holding open a bedding plane in the oil shale formation between injection and production wells, pre-heating the formation on the sides of the parted planes by means of hot water to a temperature between the lowest temperature in which there would be excessive condensation of oil, and an upper temperature at which pyrolysis of the oil shale begins, in the order of 550 F., removing the pre-heating hot water, further heating the oil shale adjacent the parted plane after said pre-heating by injecting superheated steam into the oil shale via the injection well at a temperature suflicient to cause pyrolysis of the host oil shale, in the order of 850 F. upwards, cyclically varying the pressure of the superheated steam between an upper pressure equal substantially to rock pressure and a lower pressure sutficient to prevent undue steam condensation, thereby open up tributaries perpendicular to the plane of parting, pyrolyze the oil shale, and then displace the steam and make the host rock permeable, driving the steam entrained vapors out through the production well, condensing enough of the steam from the steam entrained vapors at the output pressure and saturation temperature to significantly lower the partial pressure of steam in the vapor mixture, reheating the vapors to a temperature beneficial to catalysis, and accomplishing contact catalysis on the reheated vapors in the presence of hydrogen.

9. An in situ oil shale process as defined in claim 8 wherein there are a plurality of production wells for each injection well.

References Cited by the Examiner Craig et al 166-40 5 CHARLES E. OCONNELL, Primary Examiner.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1422204 *Dec 19, 1919Jul 11, 1922Brown Thomas EMethod for working oil shales
US2421528 *Jul 26, 1944Jun 3, 1947Steffen Ralph MUnderground oil recovery
US2692226 *Oct 7, 1950Oct 19, 1954Standard Oil Dev CoShale oil refining process
US2813583 *Dec 6, 1954Nov 19, 1957Phillips Petroleum CoProcess for recovery of petroleum from sands and shale
US2969226 *Jan 19, 1959Jan 24, 1961Pyrochem CorpPendant parting petro pyrolysis process
US3042114 *Sep 29, 1958Jul 3, 1962Research Company Jersey ProducProcess for recovering oil from underground reservoirs
US3106521 *Jul 25, 1960Oct 8, 1963Huntington Chemical CorpMethod for the production of light oils from oil shale through the recombination of hydrogen originally contained therein
US3117072 *Jul 3, 1958Jan 7, 1964Texaco IncRecovery of oil from oil shale
US3155160 *Nov 27, 1959Nov 3, 1964Pan American Petroleum CorpRecovery of heavy oils by steam extraction
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3342258 *Mar 6, 1964Sep 19, 1967Shell Oil CoUnderground oil recovery from solid oil-bearing deposits
US3361202 *Aug 5, 1965Jan 2, 1968Phillips Petroleum CoProcess and apparatus for producing crude oil from separate strata
US3382922 *Aug 31, 1966May 14, 1968Phillips Petroleum CoProduction of oil shale by in situ pyrolysis
US3407003 *Sep 29, 1966Oct 22, 1968Shell Oil CoMethod of recovering hydrocarbons from an underground hydrocarbon-containing shale formation
US3464491 *Dec 18, 1967Sep 2, 1969Pan American Petroleum CorpOil recovery from formations containing channels
US3478825 *Aug 21, 1967Nov 18, 1969Shell Oil CoMethod of increasing the volume of a permeable zone within an oil shale formation
US3521709 *Apr 3, 1967Jul 28, 1970Phillips Petroleum CoProducing oil from oil shale by heating with hot gases
US3581821 *May 9, 1969Jun 1, 1971Petra Flow IncCryothermal process for the recovery of oil
US4059308 *Nov 15, 1976Nov 22, 1977Trw Inc.Pressure swing recovery system for oil shale deposits
US4083404 *May 12, 1977Apr 11, 1978Texaco Inc.Oil recovery process utilizing air and superheated steam
US4163580 *Nov 21, 1977Aug 7, 1979Trw Inc.Pressure swing recovery system for mineral deposits
US4284139 *Feb 28, 1980Aug 18, 1981Conoco, Inc.Process for stimulating and upgrading the oil production from a heavy oil reservoir
US4305463 *Oct 31, 1970Dec 15, 1981Oil Trieval CorporationOil recovery method and apparatus
US4387768 *Apr 13, 1981Jun 14, 1983The Standard Oil CompanyModified in situ retorting of oil shale
US4401163 *Dec 29, 1980Aug 30, 1983The Standard Oil CompanyModified in situ retorting of oil shale
US4408665 *Oct 2, 1978Oct 11, 1983Equity Oil CompanyIn situ recovery of oil and gas from water-flooded oil shale formations
US5014787 *Aug 16, 1989May 14, 1991Chevron Research CompanySingle well injection and production system
US5131471 *Dec 21, 1990Jul 21, 1992Chevron Research And Technology CompanySingle well injection and production system
US6581684Apr 24, 2001Jun 24, 2003Shell Oil CompanyIn Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US6588503Apr 24, 2001Jul 8, 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to control product composition
US6588504Apr 24, 2001Jul 8, 2003Shell Oil CompanyIn situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US6591906Apr 24, 2001Jul 15, 2003Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US6591907Apr 24, 2001Jul 15, 2003Shell Oil CompanyIn situ thermal processing of a coal formation with a selected vitrinite reflectance
US6607033Apr 24, 2001Aug 19, 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to produce a condensate
US6609570Apr 24, 2001Aug 26, 2003Shell Oil CompanyIn situ thermal processing of a coal formation and ammonia production
US6688387Apr 24, 2001Feb 10, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6698515Apr 24, 2001Mar 2, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a relatively slow heating rate
US6702016Apr 24, 2001Mar 9, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US6708758Apr 24, 2001Mar 23, 2004Shell Oil CompanyIn situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US6712135Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a coal formation in reducing environment
US6712136Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US6712137Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US6715546Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6715547Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US6715548Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6715549Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US6719047Apr 24, 2001Apr 13, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US6722429Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6722430Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US6722431Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of hydrocarbons within a relatively permeable formation
US6725920Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US6725921Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation by controlling a pressure of the formation
US6725928Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a distributed combustor
US6729395Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US6729396Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US6729397Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US6729401Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation and ammonia production
US6732794Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6732795Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US6732796Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US6736215Apr 24, 2001May 18, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US6739393Apr 24, 2001May 25, 2004Shell Oil CompanyIn situ thermal processing of a coal formation and tuning production
US6739394Apr 24, 2001May 25, 2004Shell Oil CompanyProduction of synthesis gas from a hydrocarbon containing formation
US6742587Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US6742588Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US6742589Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US6742593Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US6745831Apr 24, 2001Jun 8, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US6745832Apr 24, 2001Jun 8, 2004Shell Oil CompanySitu thermal processing of a hydrocarbon containing formation to control product composition
US6745837Apr 24, 2001Jun 8, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US6749021Apr 24, 2001Jun 15, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a controlled heating rate
US6752210Apr 24, 2001Jun 22, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using heat sources positioned within open wellbores
US6758268Apr 24, 2001Jul 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US6761216Apr 24, 2001Jul 13, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
US6763886Apr 24, 2001Jul 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with carbon dioxide sequestration
US6769483Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US6769485Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ production of synthesis gas from a coal formation through a heat source wellbore
US6789625Apr 24, 2001Sep 14, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US6805195Apr 24, 2001Oct 19, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US6820688Apr 24, 2001Nov 23, 2004Shell Oil CompanyIn situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio
US6915850 *Apr 24, 2002Jul 12, 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation having permeable and impermeable sections
US6994168Apr 24, 2001Feb 7, 2006Scott Lee WellingtonIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US7032660Apr 24, 2002Apr 25, 2006Shell Oil CompanyIn situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US7066257 *Oct 24, 2002Jun 27, 2006Shell Oil CompanyIn situ recovery from lean and rich zones in a hydrocarbon containing formation
US7644765Oct 19, 2007Jan 12, 2010Shell Oil CompanyHeating tar sands formations while controlling pressure
US7673681Oct 19, 2007Mar 9, 2010Shell Oil CompanyTreating tar sands formations with karsted zones
US7673786Apr 20, 2007Mar 9, 2010Shell Oil CompanyWelding shield for coupling heaters
US7677310Oct 19, 2007Mar 16, 2010Shell Oil CompanyCreating and maintaining a gas cap in tar sands formations
US7677314Oct 19, 2007Mar 16, 2010Shell Oil CompanyMethod of condensing vaporized water in situ to treat tar sands formations
US7681647Mar 23, 2010Shell Oil CompanyMethod of producing drive fluid in situ in tar sands formations
US7683296Mar 23, 2010Shell Oil CompanyAdjusting alloy compositions for selected properties in temperature limited heaters
US7703513Oct 19, 2007Apr 27, 2010Shell Oil CompanyWax barrier for use with in situ processes for treating formations
US7717171Oct 19, 2007May 18, 2010Shell Oil CompanyMoving hydrocarbons through portions of tar sands formations with a fluid
US7730945Oct 19, 2007Jun 8, 2010Shell Oil CompanyUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7730946Oct 19, 2007Jun 8, 2010Shell Oil CompanyTreating tar sands formations with dolomite
US7730947Oct 19, 2007Jun 8, 2010Shell Oil CompanyCreating fluid injectivity in tar sands formations
US7735935Jun 1, 2007Jun 15, 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US7785427Apr 20, 2007Aug 31, 2010Shell Oil CompanyHigh strength alloys
US7793722Apr 20, 2007Sep 14, 2010Shell Oil CompanyNon-ferromagnetic overburden casing
US7798220Apr 18, 2008Sep 21, 2010Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US7798221Sep 21, 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7831134Apr 21, 2006Nov 9, 2010Shell Oil CompanyGrouped exposed metal heaters
US7832484Apr 18, 2008Nov 16, 2010Shell Oil CompanyMolten salt as a heat transfer fluid for heating a subsurface formation
US7841401Oct 19, 2007Nov 30, 2010Shell Oil CompanyGas injection to inhibit migration during an in situ heat treatment process
US7841408Apr 18, 2008Nov 30, 2010Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US7841425Nov 30, 2010Shell Oil CompanyDrilling subsurface wellbores with cutting structures
US7845411Dec 7, 2010Shell Oil CompanyIn situ heat treatment process utilizing a closed loop heating system
US7849922Dec 14, 2010Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US7860377Apr 21, 2006Dec 28, 2010Shell Oil CompanySubsurface connection methods for subsurface heaters
US7866385Apr 20, 2007Jan 11, 2011Shell Oil CompanyPower systems utilizing the heat of produced formation fluid
US7866386Oct 13, 2008Jan 11, 2011Shell Oil CompanyIn situ oxidation of subsurface formations
US7866388Jan 11, 2011Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US7912358Apr 20, 2007Mar 22, 2011Shell Oil CompanyAlternate energy source usage for in situ heat treatment processes
US7931086Apr 18, 2008Apr 26, 2011Shell Oil CompanyHeating systems for heating subsurface formations
US7942197Apr 21, 2006May 17, 2011Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US7942203May 17, 2011Shell Oil CompanyThermal processes for subsurface formations
US7950453Apr 18, 2008May 31, 2011Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US7986869Apr 21, 2006Jul 26, 2011Shell Oil CompanyVarying properties along lengths of temperature limited heaters
US8011451Sep 6, 2011Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US8027571Sep 27, 2011Shell Oil CompanyIn situ conversion process systems utilizing wellbores in at least two regions of a formation
US8042610Oct 25, 2011Shell Oil CompanyParallel heater system for subsurface formations
US8070840Apr 21, 2006Dec 6, 2011Shell Oil CompanyTreatment of gas from an in situ conversion process
US8083813Dec 27, 2011Shell Oil CompanyMethods of producing transportation fuel
US8113272Oct 13, 2008Feb 14, 2012Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US8146661Oct 13, 2008Apr 3, 2012Shell Oil CompanyCryogenic treatment of gas
US8146669Oct 13, 2008Apr 3, 2012Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US8151880Dec 9, 2010Apr 10, 2012Shell Oil CompanyMethods of making transportation fuel
US8151907Apr 10, 2009Apr 10, 2012Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8162059Apr 24, 2012Shell Oil CompanyInduction heaters used to heat subsurface formations
US8162405Apr 24, 2012Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US8172335May 8, 2012Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8177305Apr 10, 2009May 15, 2012Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8191630Apr 28, 2010Jun 5, 2012Shell Oil CompanyCreating fluid injectivity in tar sands formations
US8192682Apr 26, 2010Jun 5, 2012Shell Oil CompanyHigh strength alloys
US8196658Jun 12, 2012Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US8220539Jul 17, 2012Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8224163Oct 24, 2003Jul 17, 2012Shell Oil CompanyVariable frequency temperature limited heaters
US8224164Oct 24, 2003Jul 17, 2012Shell Oil CompanyInsulated conductor temperature limited heaters
US8224165Jul 17, 2012Shell Oil CompanyTemperature limited heater utilizing non-ferromagnetic conductor
US8225866Jul 21, 2010Jul 24, 2012Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8230927May 16, 2011Jul 31, 2012Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US8233782Jul 31, 2012Shell Oil CompanyGrouped exposed metal heaters
US8238730Aug 7, 2012Shell Oil CompanyHigh voltage temperature limited heaters
US8240774Aug 14, 2012Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US8256512Oct 9, 2009Sep 4, 2012Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US8261832Sep 11, 2012Shell Oil CompanyHeating subsurface formations with fluids
US8267170Sep 18, 2012Shell Oil CompanyOffset barrier wells in subsurface formations
US8267185Sep 18, 2012Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US8272455Sep 25, 2012Shell Oil CompanyMethods for forming wellbores in heated formations
US8276661Oct 2, 2012Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US8281861Oct 9, 2012Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US8327681Dec 11, 2012Shell Oil CompanyWellbore manufacturing processes for in situ heat treatment processes
US8327932Apr 9, 2010Dec 11, 2012Shell Oil CompanyRecovering energy from a subsurface formation
US8353347Oct 9, 2009Jan 15, 2013Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US8355623Jan 15, 2013Shell Oil CompanyTemperature limited heaters with high power factors
US8381815Apr 18, 2008Feb 26, 2013Shell Oil CompanyProduction from multiple zones of a tar sands formation
US8434555Apr 9, 2010May 7, 2013Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US8448707May 28, 2013Shell Oil CompanyNon-conducting heater casings
US8459359Apr 18, 2008Jun 11, 2013Shell Oil CompanyTreating nahcolite containing formations and saline zones
US8485252Jul 11, 2012Jul 16, 2013Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8536497Oct 13, 2008Sep 17, 2013Shell Oil CompanyMethods for forming long subsurface heaters
US8555971May 31, 2012Oct 15, 2013Shell Oil CompanyTreating tar sands formations with dolomite
US8562078Nov 25, 2009Oct 22, 2013Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8579031May 17, 2011Nov 12, 2013Shell Oil CompanyThermal processes for subsurface formations
US8606091Oct 20, 2006Dec 10, 2013Shell Oil CompanySubsurface heaters with low sulfidation rates
US8608249Apr 26, 2010Dec 17, 2013Shell Oil CompanyIn situ thermal processing of an oil shale formation
US8627887Dec 8, 2008Jan 14, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8631866Apr 8, 2011Jan 21, 2014Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US8636323Nov 25, 2009Jan 28, 2014Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US8662175Apr 18, 2008Mar 4, 2014Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8701768Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations
US8701769Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US8739874Apr 8, 2011Jun 3, 2014Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US8752904Apr 10, 2009Jun 17, 2014Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8789586Jul 12, 2013Jul 29, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8791396 *Apr 18, 2008Jul 29, 2014Shell Oil CompanyFloating insulated conductors for heating subsurface formations
US8820406Apr 8, 2011Sep 2, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8833453Apr 8, 2011Sep 16, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US8851170Apr 9, 2010Oct 7, 2014Shell Oil CompanyHeater assisted fluid treatment of a subsurface formation
US8857506May 24, 2013Oct 14, 2014Shell Oil CompanyAlternate energy source usage methods for in situ heat treatment processes
US8881806Oct 9, 2009Nov 11, 2014Shell Oil CompanySystems and methods for treating a subsurface formation with electrical conductors
US9016370Apr 6, 2012Apr 28, 2015Shell Oil CompanyPartial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9022109Jan 21, 2014May 5, 2015Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US9022118Oct 9, 2009May 5, 2015Shell Oil CompanyDouble insulated heaters for treating subsurface formations
US9033042Apr 8, 2011May 19, 2015Shell Oil CompanyForming bitumen barriers in subsurface hydrocarbon formations
US9051829Oct 9, 2009Jun 9, 2015Shell Oil CompanyPerforated electrical conductors for treating subsurface formations
US9127523Apr 8, 2011Sep 8, 2015Shell Oil CompanyBarrier methods for use in subsurface hydrocarbon formations
US9127538Apr 8, 2011Sep 8, 2015Shell Oil CompanyMethodologies for treatment of hydrocarbon formations using staged pyrolyzation
US9129728Oct 9, 2009Sep 8, 2015Shell Oil CompanySystems and methods of forming subsurface wellbores
US9181780Apr 18, 2008Nov 10, 2015Shell Oil CompanyControlling and assessing pressure conditions during treatment of tar sands formations
US9309755Oct 4, 2012Apr 12, 2016Shell Oil CompanyThermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US9399905May 4, 2015Jul 26, 2016Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US20030131996 *Apr 24, 2002Jul 17, 2003Vinegar Harold J.In situ thermal processing of an oil shale formation having permeable and impermeable sections
US20030205378 *Oct 24, 2002Nov 6, 2003Wellington Scott LeeIn situ recovery from lean and rich zones in a hydrocarbon containing formation
US20070137857 *Apr 21, 2006Jun 21, 2007Vinegar Harold JLow temperature monitoring system for subsurface barriers
US20080035348 *Apr 20, 2007Feb 14, 2008Vitek John MTemperature limited heaters using phase transformation of ferromagnetic material
US20080173444 *Apr 20, 2007Jul 24, 2008Francis Marion StoneAlternate energy source usage for in situ heat treatment processes
US20090194269 *Oct 13, 2008Aug 6, 2009Vinegar Harold JThree-phase heaters with common overburden sections for heating subsurface formations
US20090194282 *Oct 13, 2008Aug 6, 2009Gary Lee BeerIn situ oxidation of subsurface formations
US20090194329 *Oct 13, 2008Aug 6, 2009Rosalvina Ramona GuimeransMethods for forming wellbores in heated formations
US20090200031 *Oct 13, 2008Aug 13, 2009David Scott MillerIrregular spacing of heat sources for treating hydrocarbon containing formations
US20090260823 *Oct 22, 2009Robert George Prince-WrightMines and tunnels for use in treating subsurface hydrocarbon containing formations
US20090260824 *Oct 22, 2009David Booth BurnsHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US20090272578 *Nov 5, 2009Macdonald Duncan CharlesDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US20090321417 *Dec 31, 2009David BurnsFloating insulated conductors for heating subsurface formations
CN1946917BApr 22, 2005May 30, 2012国际壳牌研究有限公司Method for processing underground rock stratum
WO2001081239A2 *Apr 24, 2001Nov 1, 2001Shell Internationale Research Maatschappij B.V.In situ recovery from a hydrocarbon containing formation
WO2001081239A3 *Apr 24, 2001May 23, 2002Shell Oil CoIn situ recovery from a hydrocarbon containing formation
WO2002086018A2 *Apr 24, 2002Oct 31, 2002Shell Internationale Research Maatschappij B.V.In situ recovery from a oil shale formation
WO2002086018A3 *Apr 24, 2002Jan 15, 2004Shell Int ResearchIn situ recovery from a oil shale formation
WO2005106191A1 *Apr 22, 2005Nov 10, 2005Shell International Research Maatschappij B.V.Inhibiting reflux in a heated well of an in situ conversion system
WO2007124412A2 *Apr 20, 2007Nov 1, 2007Shell Oil CompanyTime sequenced heating of multiple layers in a hydrocarbon containing formation
WO2007124412A3 *Apr 20, 2007Oct 16, 2008Shell Oil CoTime sequenced heating of multiple layers in a hydrocarbon containing formation
Classifications
U.S. Classification166/266, 166/271, 166/272.3
International ClassificationE21B43/16, E21B43/24
Cooperative ClassificationE21B43/24
European ClassificationE21B43/24