Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3274937 A
Publication typeGrant
Publication dateSep 27, 1966
Filing dateApr 11, 1963
Priority dateApr 11, 1963
Also published asUS3303737
Publication numberUS 3274937 A, US 3274937A, US-A-3274937, US3274937 A, US3274937A
InventorsJames C Kyle
Original AssigneePhysical Sciences Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Detonation squib
US 3274937 A
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

Sept. 27, 1966 J. c. KYLE 3,274,937

DETONATION SQUIB Filed April 11, 1963 2 sheets-sheet 1 Sept. 27, 1966 J. c. KYLE 3,274,937'

DETONATON SQUIB Filed April 11. 1963 2 Sheets-Sheet 2 United States Patent O 3,274,937 DETONATION SQUIB James C. Kyle, Glendora, Calif., assignor, by mesne assignments, to Physical Sciences Corporation, a corporation of California Filed Apr. 11, 1963, Ser. No. 272,384 12 Claims. (Cl. IGZ-70.2)

This invention relates to a detonator or squib of the type employed, for example, on aerial vehicles such as rockets and miss-iles. Such a detonator confines an explosive charge which is electrically detonated for some useful purpose, for example, to separate two stages of ya rocket or missile in response to van electrical signal. Typically, a detonator is a metal fitting adapted to screw into a tapped bore at the location where the explosive force is required, the outer end of ythe fitting Ibeing ladapted for connection to a control circuit.

The primary requisite is, of course, reliability, since the success of the whole project may depend upon the proper functioning of such a detonator. One kind of reliability to be sought is structural reliability to forestall any possibility of mechanical failure prior `to the moment of detonation and to forestall mechanical failure caused by the explosion per se. A second kind of reliability is in the functioning of the firing circuit, it being mandatory that detonation occur only when the tiring voltage reaches a precisely predetermined magnitude.

The present invention achieves mechanical reliability by employing a suitably rugged metal body or housing to confine the explosive charge and by mounting the components of the firing circuit in the metal housing in a sealed manner by suitable ceramic material. It has been found that mounting a conductor of the firing circuit in a longitudinal bore of the detonator housing by means of a suitable ceramic and then heating the assemblage to a high temperature results in a construction that is not only fluid tight, but is also capable of withstanding the maximum force that can be generated by the explosive charge. The high structural strength results from the ceramic material fusing both to the conductor that it surrounds and to the surrounding metal of the detonator housing.

To make the detonator immune to applied voltages below a desired critical voltage, the detonator incorporates a suitable spark gap formed by two spaced electrodes. The mounting of the circuit components in fused ceramic introduces a problem, however, in that the high temperature processing for the fusing of the ceramic affects the lmetal surfaces of the two electrodes that form the spark gap.

The invention solves this problem by dividing the detonator into two sections or assemblies which separate at the spark gap, the two electrodes being carried by the two assemblies respectively. This construction makes it possi-ble to fire the two assemblies separately to bond the two electrodes by fused ceramic and then subsequently to process the two electrodes to expose clean metal before joining the two assemblies -permanently to form the final product.

In the presently preferred practice of the invention, one of the two assemblies includes the detonator housing with the detonation cavity at one end of the housing and the second assembly is in the `form of a ceramic insert that telescopes into the detonation cavity to form the inner end of the detonation cavity. With the insert backed against an inner shoulder of the housing and effectively sealed in its assembled position, there -is no possibility of the explosion creating a separation force between the two interconnected assemblies.

For assurance of functional reliability, the spark gap between the two electrodes must be repeatedly tested by rice applied voltages before the detonator is loaded with explosive. A serious difficulty is encountered in that if the electrodes are made of the usual metals and insulated from each other by conventional materials including the usual ceramics, it is found that a spark test materially changes the critical breakdown voltage and the repeated pretests required for reliability repeatedly vary the critical voltage usually in a progressive manner.

It is difficult to identify all of the causes that may exist for changes in the critical voltage in response to preliminary spark tests. It is known that the metal employed for the electrodes may be pitted or otherwise directly affected by the spark discharge. It has also been found that conventional insulation materials including various ceramics employed to -form the spark chamber are deteriorated lby the spark discharge. The deterioration may contaminate the spark chamber atmosphere and has been observed to form deposits on the electrode surfaces.

With respect to this problem an important feature of the invention is the discovery that employing a -particular alloy for the electrodes and employing a particular ceramic to form the spark chamber makes it possible to spark test the detonator in advance any desired number of times without changing the critical voltage at which sparking occurs.

In some practices of the invention one side of the firing circuit is a grounded side which includes the detonator housing. In the embodiment of the invention selected for the present disclosure, however, two insulated conductor means incorporated in the detonator construction form the opposite sides of the firing circuit.

Briefly described, 4the preferred procedure for fabricating this embodiment of the invention is as follows:

A stainless steel detonator housing is provided with a detonation cavity in one of its ends and a receptacle cavity in the other end for use in connecting the detonator to a firing circuit. Two longitudinal bores interconnect the two cavities, and a pair of identical electrode pins with end sockets in their inner ends are mounted in these two longitudinal bores by a suitable ceramic. The detonator housing with the two electrode pins mounted therein is what may be termed the first assembly, and this assembly is suitably fired at a high temperature to fuse the ceramic both to the electrode -pins and to the housing.

A second pair of shorter electrode pins of substantially smaller cross section than the end sockets of the first electrode pins are designed to telescope into the end sockets. One of the shorter pins is crimped to increase its effective cross section for frictional fit into the corresponding end socket of the corresponding longer electrode pin. The other shorter electrode pin is coated with ceramic of a 'thickness for snug fit into the end socket of the second longer electrode pin. After this coating is fired for fusion, it is cut away to leave two ceramic sleeves separated by a circumferential gap where the metal of the smaller electrode is exposed.

The two shorter pins are then mounted in a ceramic body to form what may be termed the second assembly, which serves as an insert for insertion into the detonation cavity of t-he first assembly to form the bottom of the detonation cavity. When the second assembly is inserted in this manner, the two shorter electrode pins carried by the second assembly mate with the end sockets of the longer electrode pins of the first assembly. The two aS- semblies are then cemented together.

At this point the spark gap may be tested as many times as desired by applying a rising voltage across the spark gap to note at what point sparking occurs. If the results are consistent as required, the final step is to load the detonation cavity with explosive and then to seal the cavity in the usual manner.

The various features and advantages of the invention may be understood from the following detailed description together with the accompanying drawings.

In the drawings, which are to be regarded as merely illustrative:

FIG. 1 is a longitudinal sectional View of the selected embodiment of the invention;

FIG. 2 is an enlarged fragment of FIG. 1;

FIG. 3 is a longitudinal sectional view of the detonator body or housing;

FIG. 4 is an elevational exploded View showing how ceramic beads or sleeves may be assembled on the two longer electrode pins for the purpose of mounting the longer electrode pins in the detonator housing;

FIG. 5 is a longitudinal sectional view of the first assembly comprising the detonator housing with the two longer electrode pins permanently mounted therein;

FIG. 6 is a longitudinal sectional view of the second assembly ready for insertion into the first assembly;

F-IG. 7 is a sectional view illustrating a step in the fabrication of the second assembly or insert;

FIG. 8 is a sectional view showing a later step in the fabrication of the second assembly or insert; and

FIG. 9 is a View partly in section and partly diagrammatic illustrating the manner in which the detonator may be electrically tested a number of times in advance of the loading of the detonator with explosive.

In FIG. 1 showing a completed detonator, a detonator body or housing 10 made of stainless steel is formed with an external` screw thread 12 and a hexagonal flange 14 to permit the housing to be screwed into a tapped bore where the explosive force is required. The inner end of the 4detonator housing 10 is formed with a longitudinal detonation cavity which is filled with an explosive charge 16, and the other end of the housing is formed with what may be termed a receptacle cavity 18 provided with peripheral lugs 20 for connecting the detonator to a firing circuit.

A pair of longitudinal bores 22 extend from the detonation cavity 15 to the receptacle cavity 18 and are occupied respectively by a first pair of relatively long electrode pins 24 and 25 which protrude into the receptacle cavity 18 for electrical connection to the two sides of a ring circuit. The two long electrode pins 24 and 25 are mounted in the two longitudinal bores by means of sleeves 26 of ceramic material which are fused both to the electrode pins and to the surrounding walls of the longitudinal bores. The receptacle cavity 18 has an insulating ceramic layer 28 across its inner end and is further provided with an O-ring 30 to make the electrical connection uid tight. The detonation cavity 15 is sealed by means of an inner gasket 3-2 and an outer metal disk 34 which is welded to the detonator housing.

A second shorter pair of electrode pins 35 and 36 are mounted in a ceramic insert 40 which has a peripheral cylindrical wall 42 of stainless steel that is bonded by ceramic cement to the surrounding wall of the detonator housing 10. The inner ends of the two short electrode pins 35 and 36 lare interconnected by an explosive wire 44 in a well-known manner, the explosive wire being welded to the two pins and extending across an axial cavity 45 of the ceramic insert, this cavity being provided for a shaped charge effect.

The inner ends of the two longer electrode pins 24 and extend through an insulating ceramic layer 46, the inner ends being enlarged to form radial shoulders 48 and being further formed with end sockets S0 and 52 respectively to receive the leading ends of the two shorter electrode pins 35 and 36. The leading ends of the two shorter electrode pins 35 and 36 are substantially smaller in cross section than the end sockets into which they fit. The short electrode pin 36 is crimped or offset as shown to increase its effective cross section to fit snugly into the end socket 52 for the purpose of electrically connecting the short electrode pin 36 with the corresponding longer electrode pin 25. As best shown in FIG. 2, the

short electrode pin 35 is provided with a ceramic coating to make it fit snugly into the end socket 50 of the corresponding longer electr-ode pin 24. The ceramic coating is interrupted by a circumferential gap 54 whereby the ceramic coating is separated into two axially spaced ceramic sleeves 55a.` and 5511.

It is apparent that when a n'sing Voltage is applied across the two longer electrode pins 24 and 25, a firing circuit is formed through the explosive wire 44 with the circuit broken by the circumferential gap 54 where a radial air space separates the short electrode pin 35 from the surrounding wall of the corresponding longer electrode pin 24. When the voltage rises to a predetermined magnitude, the firing circuit is closed by a spark across this radial gap to ignite the explosive wire 44.

Any explosive force that gets past the ceramic insert 40 to reach the inner ends of the two long electrode pins 24 and 25 is successfully withstood because of the effectiveness with which the two long electrode pins are bonded to the surrounding detonator housing 10. In this regard, it is to be noted that the interface between each of the long electrode pins and the wall of the surrounding longitudinal bore is of substantial area and longitudinal dimension for exceedingly high strength. It is also to be noted that the interface between each of the long electrode pins and the surrounding ceramic material is also extensive, and in addition the radial shoulder 48 of each long electrode pin backs against the ceramic material in positive engagement therewith.

METHOD OF FABRICATION As heretofore indicated, an important feature of the invention is the discovery that using electrodes of a particular alloy in combination with a ceramic material made of a particular mixture results in a spark gap chamber in which sparking creates no deterioration whatsoever and any number of preliminary sparking tests may be conducted without affecting the breakdown voltage at which sparking occurs. The electrode alloy is Inconel 600, which may analyze, for example, approximately 7'7.60% nickel, 15.57% chromium, 6.38% iron, 0.21% manganese, 0.14% silicon, and 0.02% carbon.

The ceramic material is prepared in three stages. The irst stage employs a mixture A comprising the following materials in parts by weight:

Percent Li2CO3 0.74 KZCO3 7.26 Pb304 31.00 As2O3 10.12 A1203 0.78 S102 49.00 C0304 1.10

This mixture which melts at 1480 to 1520 F. is smelted in a covered crucible at approximately 1800 F. until it is homogenized. The smelt is then quenched in water and thereafter is wet ground and passed through a suitable screen such as a 400 mesh screen.

The second stage employs the following mixture B:

Mixture B is processed in the same manner as mixture A to result in a finely divided product.

The third stage consists in mixing the products of mixtures A and B in equal parts by weight and smelting to produce a homogeneous product which is cooled and ground to a ne powder. This final powder product may be used in any suitable manner to form the ceramic sleeves 26 of FIG. 1 that bond the two long electrode pins 24 and 25 in their assembled positions in the detonator housing 10.

In the preferred practice of the invention, the ceramic material is molded into beads or sleeves of appropriate dimensions for mounting the two long electrodes in the two longitudinal bores 22. Thus, FIG. 4 shows three ceramic beads or sleeves 26a dimensioned to t over the enlarged end portion lof each of the two electrode pins 24 and 25, and FIG. 4 fur-ther shows two longer beads or sleeves 26h molded from the ceramic material and dimensioned to fit over the portion of the electrode pin that is of smaller diameter.

Both the detonator housing and the two electrode pins 24 and 25 are preoxidized by exposure in a furnace for ten minutes at l560 F. to create oxide coatings with which the ceramic material will fuse in a highly effective manner. The ceramic beads or sleeves 26a and 26h are then telescoped over the two electrode pins 24 and 25, and the electrode pins are placed in their assembled positions in the two longitudinal bores 22. The assembly is then tired at 1850 F. for 25 minutes. When the assembly cools down, it is found that the ceramic material forming the ceramic sleeves 26 shrinks in the two bores 22, as may be seen in FIG. 1. The assembly is then tested for leaks along the bores 22 and is additionally tested for the dielectric strength of the ceramic sleeves 26.

The next step is to install the ceramic layer 28 in the bottom of the receptacle cavity 18. First, polyvinyl masking sleeves (not shown) are telescoped over the exposed ends of the two electrode pins 24 and 25, with the masking sleeves terminating short of the bottom of the cavity in accord with the desired thickness of the layer 28. The ceramic layer 28 comprises 40% by weight of the same ceramic material as the ceramic sleeves 26 and 60% thermosetting epoxy known as Helix R-385 produced by Carl H. Biggs Company, 1547 Fourteenth Street, Santa Monica, California. After the layer 28 is applied, the masking sleeves are removed from the electrode pins, and the assembly is placed in an oven at 180 F. for two hours to cure the layer.

The next step is to apply the sealing layer 46 at the inner ends of the electrode pins 24 and 25, which layer may be of the same composition as the layer 28. Since allowance must be made for shrinkage, the layer 46 initially extends beyond the pins of the electrode pins 24 and 25; but after an oven cure of 180 F. for two hours, the layer shrinks. A flat bottom drill is then rotated by hand in the detonation cavity 'to remove the excess material and reduce the layer 46 to a thickness that is flush with the inner ends of the two elec-trode pins 24 and 25.

The various heat treatments, and especially the step of firing the ceramic sleeves 26, results in oxidation of the exposed portions of the two electrode pins 24 and 25. These effects are remedied by rst using a 60 countersinking tool to chamfer the rims of the end sockets 50 and 52 of the two electrode pins 24 and 25, and then a drill in a pin vise is employed to drill out the two end sockets to remove the oxides formed therein. The bottoms of the sockets are then reamed out, and all chips are removed by using jets of dry nitrogen. This operation completes the fabrication of the first assembly, which is shown in its completed form in FIG. 5.

The next step is to coat a short electrode pin 35 with ceramic in preparation for .the fabrication of the second assembly or ceramic insert 40. In practice, a number of the short electrode pins 3S are mounted by their base portions in a suitable fixture and are sprayed uniformly with the ceramic powder constituting the previously described mixtures A and B, 40% to 45% `of the spray mixture being water. The coating may be sprayed to a thickness, for example, of approximately 0.04 inch. The sprayed pins are placed in an oven for one hour at 350 F. and then are placed in a furnace for 71/2 minutes to fuse the ceramic coating to the pins. The furnace is raised to a temperature of 1455 F. and then de-energized when the pins are inserted. The xture carrying the coated pins is mounted on a nickel plate that serves as a heat sink, the nickel plate being preheated to furnace temperature. In addition, the coated pins are covered fby a heavy metal cap which is preheated to the previous oven temperature of 350 F. The coated pins are subsequently air cooled without Lremoving the heavy metal cap, and then a blower is employed to cool the coated pins to room temperature. Finally, the coating is dressed to a thickness lof 0.0335 inch with the guidance of a shadowgraph.

The body of the ceramic insert 40 comprises the following materials in parts by weight:

Percent P13304 45.0 ZnO 8.0

Lazo3 3.o A1203 1.5 H3BO3 14. sro2 20.0 ZrO2 5.0 CeO2 2.0 C0304 This mixture is smelted at 2100 F. to produce a homogeneous mass, which is then quenched and ground to 400 mesh size. With the use of beeswax as a binder, the powdered material is molded to the desired configura-tion of the previously described ceramic insert 40 with bores for the electrode pins 35 and 36, and then the molded body is heated to 350 F. for 20 minutes to volatilize the beeswax. The molded body is then sintered 'at 1120 F. for the 14 minutes with the molded body standing =on one end and then is reversed end to end for an additional firing period of 151/2 minutes. The molded body is then air cooled and subjected to a blower for reduction to room temperature. At this stage, the molded body is small enough in diameter to t into the previously mentioned stainless steel cylinder 42, but is appreciably longer than the steel cylinder.

To carry out the next step, `a pair of electrode pins 35 and 36 are mounted in a fixture in the manner indicated in FIG. 7, the leading portion of the electrode pin 35 having a ceramic coating 55 and the leading portion of the electrode pin 36 being uncoated. The two electrode pins have at this stage base portions of excessive length to permit adequate support of the electrode pins in the fixture 58.

The lmolded ceramic block 40a that is eventually to be the ceramic body of the insert 40 is then slipped into the stainless steel cylinder 42 and is slipped over Ithe erect electrode pins 35 and 36 in the manner shown in FIG. 7. As may be seen in FIG. 7, the molded ceramic body 40a and the surrounding cylinder 42 seat in a circular recess 60 in the fixture 58 with the excess length of the ceramic body extending beyond the upper rim of the cylinder 42. A heavy metal block 62 to serve as a weight is provided with a pair of bores 64 to clear the leading ends of the two electrode pins 35 and 36. The Weight 62 is placed over the two electrode pins as shown in FIG. 7 with the weight resting on the upper protruding end `of lthe ceramic body 40a.

With an oven heated to a temperature of 1350-1375 F. and then de-energized, the assembly shown in FIG. 7 is placed in the oven for ten minutes to cause fusion Vof the ceramic. Under the pressure exerted by the weight 62, the heated ceramic settles compactly into the cylinder 42 and -around the base portions of the two electrode pins 35 and 36 with the excess ceramic extruded by the weight over the upper rim of the stainless steel cylinder. When the assembly is removed from the fixture 58, the excess lengths of the base portions of the two electrode pins 35 and 36 are severed, and then the back face of the insert assembly is ground to the desired axial dimension of the assembly. A carbide spade drill is then employed to form the cavity 45 in the ceramic insert.

The final processing of the insert 40 is carried out in the manner indicated in FIG. 8. The leading ends of the two electrode pins 35 and 36 are inserted through a pad 65 of a suitable elastomer for protection against the effects of Sandblasting. A Teflon sleeve 66 is then placed over the end of the electrode pin 35, with the end of the sleeve spaced from the pad 65 by the width desired for the previously mentioned circumferential spark gap 54. The exposed portions of the two electrode pins 35 and 36 are then sandblasted to remove the ceramic coating of the electrode pin 35 between the sleeve 66 and the pad 65 and to abrade the end portion of electrode -pin 36 to expose clean metal. The removal of the portion of the cer-amic 55 from the electrode pin 35 leaves the two previously mentioned ceramic sleeves 55a and 55b. The leading end of the electrode pin 36 is then crimped to the configuration shown in FIGS. 1 and 2, and explosive wire 44 is spot welded to the rear ends of the two electrode pins 35 and 36. The two spot welds are then tested for mechanical strength, and voltage is applied to test the dielectric around the two electrode pins.

FIG. 6 shows the completed second assembly or insert 40 poised for install-ation in the first assembly shown in FIG. 5. With the two short electrode pins 35 and 36 aligned with the longer electrode pins 24 and 25, the insert 40 is advanced -into the detonation cavity 15 of the first assembly to the nal position of the insert where the two electrode pins 35 and 36 telescope into the two corresponding end sockets 50 and 52 of the longer electrode pins 24 and 25. This 'assembly is placed in an oven at 180 F. for five minutes in preparation for cementing the insert 40 to the surrounding metal of the detonator housing 10.

After the five-minute heating period, the cement comprising the previously described mixture of ceramic and epoxy is applied by means of a hollow needle to form a small fillet around the rim of the stainless steel cylinder 42, such a fillet being indicated `at 68 in FIG. 2. The assembly is then oven cured for four hours yat 120 F., during which period the cement fillet 68 migrates by capillary attraction over the length of -the outer circumference of the stainless steel cylinder 42 for effectively bonding the two assemblies together.

The device as completed to this stage is then suitably tested electrically, for example, by means of a fixture 70, shown in FIG. 9, having two prongs 72 and 74 for electrical contact with the rear ends of the two short electrode pins 35 and 36 respectively. A metal sleeve 75 is placed on the exposed end of the long electrode pin 25, and a circuit 76 is completed between the prong 74 and the metal sleeve 75 for application of voltage to test the electrical continuity between the long electrode pin 25 and the corresponding short electr-ode pin 36. A second metal sleeve 78 is placed on the long electrode pin 24, and a test circuit 80 is completed between the sleeve 78 and the prong 72 for the purpose of applying a rising voltage across the spark gap between the electrode pins 24 and 35. If the spark occurs `consistently at the desired voltage, the fabrication of the detonator is cornpleted by adding the explosive charge 16 to fill the detonation cavity and by further applying the gasket 32 and the closure disk 34.

The various ceramic materials that are employed are especially effective for forming bonds with stainless steel surfaces and have thermal coefficients of expansion that are -compatible with stainless steel. With the electrode pins made of the specified alloy and with the two ceramic sleeves 55a and 55b made of the specified ceramic material, no deterioration is created by Spark tests, and the device may be spark tested any number of times without change in the breakdown voltage at which sparking occurs. The electrodes that form the spark gap are held in position by ceramic fused at a high temperature, but the fabrication of the device in two separate assemblies, one of which plugs into the other, makes it possible to abrade the electrodes to expose clean metal after the firing operations are carried out.

My description in specific detail of the selected practice of the invention will suggest various changes, substitutions, and other departures from my disclosure within the spirit and scope of the appended claims.

What is claimed is:

1. In a detonation device wherein detonation `is accomplished by closing a circuit through .an explosive element and wherein walls form a spark gap chamber, the improvement comprising said Walls being made of a ceramic material containing the following ingredients in approximately the following proportions:

2. In a detonation device wherein detonation is accomplished by closing a circuit through an electricallyresponsive explosive element, the combination of:

a housing member;

a first cond-uctor permanently mounted in said housing member with an outer end of the conductor exposed for connection into said circuit, said first conductor being formed with a socket at its inner end;

a first mass of ceramic material fused to the first conductor and disposed between the first conductor and the housing member,

a second conductor in series with said explosive element and having a portion telescoped into said socket in the first conductor to act in series with the first conductor;

and a pair of nonconducting sleeves embracing said portion of the second conductor and formed from a mass of ceramic material fused to the second conductor at Aa position corresponding to the fusing of the first mass of ceramic material to the first conductor, said sleeves being spaced :apart longitudinally to form an annular gap around said second conductor for radial sparking between the two conductors.

3. A combination as set forth in claim 2 in which said -two conductors are made of an alloy consisting essentially of approximately 77% nickel, approximately 15- 16% chromium and approximately 6-7% iron.

4. In a detonation device wherein detonation is accomplished by closing Ia circuit through `an electricallyresponsive explosive element, the combination of:

a first assembly including a first mass of ceramic material 'and .a first electrode mounted in and fused to said ceramic material, the first electrode being provided with a female portion;

and a second assembly including la second mass of ceramic material and a second electrode mounted in and fused to said second mass, the second mass of ceramic material and the second electrode being disposed in the first electrode at a position at which the first electrode is mounted on the first mass of ceramic material, said two assemblies mating with the second electrode being disposed in the female portion of the rst electrode in spaced relationship to the first electrode forming a spark gap between the two electrodes.

5. A combination as set forth in claim 4 in which said electrodes are made of an alloy consisting essentially of approximately 77% nickel, approximately 15-16% chromium land approximately 6-7% iron.

6. In a detonation device wherein detonation is accomplished by closing a circuit through an electrically-responsive explosive element, the combination of:

a first yassembly including `ceramic material and a first set of two electrode pins mounted therein and fused thereto;

a second assembly comprising ceramic material and a second set of pins mounted therein and fused thereto, said two assemblies being adapted to mate to form the final detonation device, one of said two sets of pins being formed with end sockets to receive end portions of the other set when the two assemblies iare mated;

and two insulating sleeves mounted on one of the two end portions, said two sleeves being spaced tapant axially to form an annular spark gap between the two electrodes when the two assemblies are mated.

7. In a detonation device f the character described having two electrodes for connection to a firing circuit with the two electrodes spaced apart to form a spark gap to prevent current flow below a predetermined critical voltage, said electrodes being made of an alloy containing approximately 77% nickel, approximately 15% chromium and approximately 6% iron; and the electrodes being insulated from each other by ceramic material made from a mixture comprising SiO2 approximately 49%, Pb304 approximately 15.50%, Na2CO3 approximately 9.7%, HSBOQ approximately 9.55%, As203 approximately 5.06%, Li2CO3 approximately 4.40%, K2CO3 approximately 3.63%.

8. In a detonation device wherein detonation is accomplished iby closing a circuit through an electrically-responsive explosive element, the combination of:

a first assembly including .a first mass of ceramic material and a first electrode mounted in and fused to said ceramic material; and

a second assembly including a second mass of ceramic material and a second electrode mounted in and fused to said second mass, the second mass of ceramic material and the second electrode being disposed in said first electrode at a position at which the first electrode is mounted in and fused to the first mass of ceramic material, said two assemblies being joined together to form a `spark gap between the two electrodes, whereby the two electrodes may be fused to the corresponding ceramic material by firing and then at least one of the two electrodes may be processed to provide a clean metal surface before the two assemblies are joined together, one of said electrodes being formed with an end socket and a portion of the other electrode extending concentrically into said socket to form an annular spark gap -when the two assemblies are joined together.

9. A combination as set forth in claim 8 in which said 10 two electrodes are made of an alloy comprising approximately 77% nickel, approximately 15-16% chromium and approximately 6-7% iron; and in which said portion of said other electrode is insulated in said socket by ceramic material containing:

10. In a detonation device wherein detonation is accomplished by lclosing a circuit upon an electricallyresponsive explosive element upon the application of :a particular voltage to the circuit, the combination of:

a first conductor,

a second cond-uctor having -a female portion for receiving the first conductor, :and first ceramic material fused to the second conductor in enveloping relationship to the first conductor,

second ceramic material fused to the rst conductor and disposed between the rst conductor and the female portion of the second conductor at a position at which the rst ceramic material is fused to the second conductor, the second ceramic material being formed by two portions separated by a gap to provide a spark between the first and second conductors and across the gap to obtain a detonation of the device upon the application of the particular voltage through the circuit.

11. In the detonation device set forth in claim 10, the ceramic material being made of a composition to retain its properties of providing insulation even after the testing of the detonation device by the production of a spark across the gap, and

the rst land second electrical conductors being formed from a material to test the detonator in advance by the production of a spark across the gap without changing the critical voltage at which sparking occurs.

12. In the device set forth in claim 10, the ceramic material fitting snugly within the female portion of the second conductor.

References Cited by the Examiner UNITED STATES PATENTS 2,968,985 1/1961 Seavey 86-1 2,996,944 8/ 1961 Chessin et al 86-1 3,019,116 1/1962 Doucette 106-46 3,059,576 10/ 1962 Haefner 102--28 3,101,669 8/1963 Gatley et al. 102/-28 3,117,519 l/1964 Hamilton et al 102-28 3,208,379 9/1965 McKee et al 102-28 BENJAMIN A. BORCHELT, Primary Examiner.

SAMUEL FEINBERG, Examiner.

G. L. PETERSON, W. C. ROCH, Assistant Examiners.

Dedication 3,274,937.-James Kyle, Glendora, Calif. DETONATION SQUIB. Patent,

dated Sept. 27, 1966. Dedication led June 8, 1970, by the assignee, Physical Sciences Corporation.

Hereby dedicates the entire term of said patent to the Public.

[Ooal Gazette November 10, 1.970.]

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2968985 *Mar 7, 1957Jan 24, 1961Olin MathiesonBlasting caps
US2996944 *Jun 28, 1957Aug 22, 1961Hyman ChessinMethod of making a sparking detonator
US3019116 *Oct 11, 1957Jan 30, 1962Gen ElectricCeramic body and method of making the same
US3059576 *Sep 26, 1958Oct 23, 1962Conax CorpElectrically fired detonator
US3101669 *Sep 7, 1961Aug 27, 1963Graviner Manufacturing CoHermetically sealed detonator
US3117519 *Jan 31, 1962Jan 14, 1964Brown Maurice HElectric initiators for explosives, pyrotechnics and propellants
US3208379 *Feb 21, 1961Sep 28, 1965Special Devices IncSquib arrangement initiated by exploding wire
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3610151 *May 9, 1969Oct 5, 1971Us ArmyNonelectric squib assembly
US4103619 *Nov 8, 1976Aug 1, 1978NasaElectroexplosive device
US4271453 *Jun 18, 1979Jun 2, 1981Nissan Motor Company, LimitedIgniter with coupling structure
US4378738 *Dec 19, 1979Apr 5, 1983Proctor Paul WElectromagnetic and electrostatic insensitive blasting caps, squibs and detonators
US4628818 *Sep 28, 1984Dec 16, 1986Bayern-Chemie Gesellschaft Fuer Flugchemische Antriebe MbhShort circuit spring for an electrical connector
US5179249 *Apr 5, 1991Jan 12, 1993The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationPerformance of blasting caps
US5616881 *May 30, 1995Apr 1, 1997Morton International, Inc.Inflator socket pin collar for integrated circuit initaitor with integral metal oxide varistor for electro-static discharge protections
US7686325 *May 23, 2003Mar 30, 2010Takata-Petri AgGas generator and device for electrically contacting a gas generator
US7975611Apr 3, 2008Jul 12, 2011Schott AgMetal-sealing material-feedthrough
US8015724 *Apr 19, 2005Sep 13, 2011Panasonic Electric Works Co., Ltd.Heating blower with electrostatic atomizing device
US8127681Jan 25, 2007Mar 6, 2012Schott AgMetal-sealing material-feedthrough and utilization of the metal-sealing material feedthrough with an airbag, a belt tensioning device, and an ignition device
US8205554Nov 27, 2007Jun 26, 2012Schott AgFiring apparatus for a pyrotechnic protection apparatus
US8276514May 27, 2010Oct 2, 2012Schott AgMetal fixing material bushing and method for producing a base plate of a metal fixing material bushing
US8327765Apr 7, 2008Dec 11, 2012Schott AgMetal fixing material bushing and method for producing a base plate of a metal fixing material bushing
US8733250Feb 7, 2012May 27, 2014Schott AgMetal-sealing material-feedthrough and utilization of the metal-sealing material feedthrough with an airbag, a belt tensioning device, and an ignition device
DE102006004036A1 *Jan 27, 2006Aug 9, 2007Schott AgMetall-Fixiermaterial-Durchführung und Verwendung einer derartigen Durchführung sowie Airbag und Gurtspanner mit einer Zündeinrichtung
DE102007016692B3 *Apr 4, 2007Jul 24, 2008Schott AgMetal fixing material leadthrough, particularly for fixtures and fittings, has metal pin arranged in passage opening, which is in base body of fixing material
DE102010045624A1Sep 17, 2010Mar 22, 2012Schott AgRing-or plate-shaped element for e.g. igniter of airbag in motor car, has passage opening arranged in central part of element, and release region whose thickness is selected such that passage opening is sectioned with reduced thickness
DE102010045641A1Sep 17, 2010Mar 22, 2012Schott AgVerfahren zur Herstellung eines ring- oder plattenförmigen Elementes
EP0679859A2 *Mar 29, 1995Nov 2, 1995Halliburton CompanyElectrical detonator
EP0881457A2 *May 29, 1998Dec 2, 1998Emerson Electric Co.Igniter assembly and method for actuating it
EP1061325A1 *May 27, 2000Dec 20, 2000CARL-ZEISS-STIFTUNG trading as Schott GlasGlass-metal passages
EP1455160A1Feb 6, 2004Sep 8, 2004CARL-ZEISS-STIFTUNG trading as SCHOTT GLASMetal-fixing-material-passage and method of manufacturing a header with a metal-fixing-material-passage
EP1808667A2Feb 6, 2004Jul 18, 2007Schott AGMetal fusing material and method for manufacturing a carrier for a duct with metal fusing material
EP1813906A1Oct 17, 2006Aug 1, 2007Schott AGGlass-to-fixing-material bushing and use thereof as well as airbag and seat-belt tensioner with an initiatot
EP2187162A2Oct 17, 2006May 19, 2010Schott AGGlass-to-fixing-material bushing and use thereof as well as airbag and seat-belt tensioner with an initiatot
EP2270417A2Oct 17, 2006Jan 5, 2011Schott AgGlass-to-fixing-material seal and use thereof as well as airbag and seat-belt tensioner with an initiator
EP2431703A2Aug 19, 2011Mar 21, 2012Schott AgRing or disk-shaped element and method for manufacturing the same
WO1995033175A1 *May 30, 1995Dec 7, 1995Bernardy Jean ClaudePyrotechnical initiator
WO2008064858A1Nov 27, 2007Jun 5, 2008Schott AgFiring apparatus for a pyrotechnic protection apparatus
Classifications
U.S. Classification102/202.7, 361/325, 102/202.1, 102/202.8
International ClassificationF42B3/185, F42B3/18, F42B3/11, F42B3/195, F42B3/12
Cooperative ClassificationF42B3/103, F42B3/18, F42B3/11, F42B3/185, F42B3/195, F42B3/125
European ClassificationF42B3/185, F42B3/12F, F42B3/11, F42B3/18, F42B3/195, F42B3/103