US3284962A - Holding tool - Google Patents

Holding tool Download PDF

Info

Publication number
US3284962A
US3284962A US324095A US32409563A US3284962A US 3284962 A US3284962 A US 3284962A US 324095 A US324095 A US 324095A US 32409563 A US32409563 A US 32409563A US 3284962 A US3284962 A US 3284962A
Authority
US
United States
Prior art keywords
members
shell member
slide
holding tool
specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US324095A
Inventor
Albert C Hott
Vinton C Davis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North American Aviation Corp
Original Assignee
North American Aviation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North American Aviation Corp filed Critical North American Aviation Corp
Priority to US324095A priority Critical patent/US3284962A/en
Application granted granted Critical
Publication of US3284962A publication Critical patent/US3284962A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/06Work supports, e.g. adjustable steadies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

Nov. 15, 1966 A. c. HOTT ETAL.
HOLDING TOOL Filed Nov. 15, 1963 m T m V m ALBERT C. HOTT VINTON C. DAVIS United States Patent Ofiice 3,234,962 Patented Nov. 15, 1966 3,284,962 HOLDING TOOL Albert C. Hott, Northridge, and Vinton C. Davis, Van Nuys, Calif., assignors to North American Aviation,
Inc.
Filed Nov. 15, 1963, Ser. No. 324,095 2 Claims. (Cl. 51-217) The present invention relates to a holding tool and more particularly to a thin sectioning tool.
The technical and scientific proficiency of a materials laboratory is a measure of its capability for microscopic examination. Micorscopic examination to be both rapid and precise requires properly dimensioned specimens. For this reason, the rate of microscopic examination depends upon the ability of the laboratory to produce thin specimen sections.
Thin specimen sections are formed by securing a specimen chip to a commercially available glass slide and grinding the specimen in successive stages to the desired thickness. Small holders are used for the glass slides during the coarse and fine grinding stages. These holders are designed to retain several slides for the coarse grinding stages. However, the final grinding stage has been limited in the known art to a single slide because commercial glass slides Vary considerably in thickness. While the fine grinding of a single specimen produces the desired thin section for microscopic examination, it substantially reduces the total production of thin specimen sections in the laboratory, and this directly affects the laboratory proficiency.
Accordingly, it is an object of the invention to provide a new and improved holding tool for thin sectioning.
Another object of the invention is to provide a thin sectioning tool for grinding slide mounted specimens to fine tolerances.
A further object is to provide a tool which compensates for the varying thicknesses of glass slides.
Further objects, features and the attending advantages of the invention will be apparent with regard to the following description read in connection with the accompanying drawings in which:
FIGURE 1 is a perspective view, partly broken away, of the thin sectioning tool of the invention in an operating position;
FIGURE 2 is a transverse cross section, partially shown, of the tool shown by FIGURE 1; and
FIGURE 3 is an enlarged longitudinal cross section, partially shown, of the tool shown by FIGURE 1.
Briefly, in accordance with the invention, a new and improved holding tool for thin sectioning is provided which assists in grinding one or more slide mounted specimens to fine tolerances by compensating for the varying thicknesses of the slides. The tool comprises springloaded first and second members, and an associated clamp means adapted to bear upon the specimen slides and retain the slides for thin sectioning.
Referring now to FIGURE 1, one embodiment of the thin sectioning tool of our invention is shown positioned on a level magnetic chuck 12. Magnetic chuck 12 is similar to those used with well-known precision surface grinders. The chuck 12 can exhibit longitudinal travel, transverse travel, and vertical travel; all with respect to a conventional grinding wheel or the like, such as diamond impregnated wheel 14.
The thin sectioning tool 10 has opposed rectangular bars 16 and 18 which are suitably formed from a non-magnetic material such as aluminum and the like. The bars 16 and 18 are preferably connected by one or more fastening members, such as stripper bolts 20 and 22. The
bolts 20 and 22 extend through respective apertures 24 and 26 in bar 18, and threadably engage bar 16.
Bars 16 and 18 are urged into the spaced-apart relationship shown by FIGURE 1 by suitable spring means. In the tool 10 as shown, compression springs 28 and 30 are positioned on the respective bolts 20 and 22 between bars 16 and 18. The springs 28 and 30 resist clamping forces applied to the bars 16 and 18, and tend to urge the bars to a maximum, spaced-apart relationship; the latter being limited by the bolts 20 and 22.
A shell member 36 associated with the bars 16 and 18 can be assembled from side rails 38 and 40 which are secured to similar end plates 42 by removable fastening means, such as similar screws 46. The side rails 38 and 40 are preferably formed from a magnetic material such as steel and the like. It is contemplated that the assembled shell member 36 can be formed from magnetic material. Shell member 36 can be suitably formed as a singular member; however, it is desirable to assemble the shell member as shown by FIGURE 1 since this construction facilitates positioning the member around the connected bars 16 and 18.
The side rails 38 and 40 have inwardly extending flange portons 48 and 50, respectively. Flange portions 48 and 50 can be integrally formed with the respective side rails as shown or separate members connected to the side rails. The flange 50 of side rail 40 is more clearly shown by FIGURE 2. Flanges 48 and 50 are carefully machined so that the distances from the base of shell member 36, i.e. the surface nearest the magnetic chuck 12, to the clamping surface 54 of each flange are dimensionally matched.
A resilient material such as rubber and the like is positioned on, and preferably secured to, the exposed surface of bar 16. This resilient material, as shown by FIGURE 1, can be longitudinally and transversely spaced-apart resilient pads 56. A singular pad of resilient material or several strips of resilient material can also be used, although the multiple pads 56 are preferred.
Operatively, the shell member 36 is removed from its normal position around the spring-loaded and spacedapart bars 16 and 18. Commercial glass slides 60 are positioned on the resilient pads 56 as shown by FIG- URE 1. Each glass slide 60 has a specimen 62 suitably secured thereto in a well-known manner. Shell member 36 is then positioned around the bars 16 and 18 so that the clamping surface 54 of each flange 48 and 50 rests upon the associated ends of the glass slides 60 (see FIG- URE 2).
The weight of the shell member 36 bears upon the glass slides 60 and partially depresses the resilient material of the pads 56. However, the spring means associated with the bars 16 and 18, e.g. compression springs 28 and 30, resist this compressive load and maintain the base of the shell member 36 in an adjacent to but spaced apart relationship with respect to the magnetic chuck 12.
When the magnetic chuck 12 is energized in a conventional manner, the resistance of the spring means is overcome and the base of the shell member bears upon the surface of the chuck. Since the flanges 48 and 50 are dimensionally matched, each glass slide 60 is also forced toward the magnetic chuck 12. The slides 60 compress the resilient material of the pads 56 so that the specimen surfaces of each glass slide 60 are in a common plane.
The varying thicknesses of commercial glass slides are compensated by the thin sectioning tool 10 as more clearly shown by FIGURE 3. For example, the respective ends of a relatively thin glass slide 60A and a relatively thick glass slide 66B are pressed a proportionate distance into the associated resilient pads 56 by the side rail flange 40 when the magnetic chuck is energized. This orients the glass slides 60A and 603 so that the specimens 62 have a common base plane, i.e. the plane defined by the specimen surfaces of each glass slide.
Grinding multiple specimens to a uniform thickness can thus be easily accomplished with an increased degree of accuracy by use of the thin sectioning tool.
As Will be evidenced from the foregoing description,-
certain aspects of the invention are not limited to the particular details of construction illustrated, and it is contemplated that other modifications and applications will occur to those skilled in the art. It is, therefore, intended that the appended claims shall cover such modifications and applications that do not depart from the true spirit and scope of the invention.
Having described the invention, what is claimed is:
1. A holding tool for thin sectioning comprising:
(a) first and second movable members having opposed surfaces in a spaced-apart relationship,
(b) connector means joining said first and second members and limiting the spaced-apart relationship of said first and second members,
(0) spring means associated with said first and second members,
(d) said spring means moving at least one of said first and second members with respect to the other,
(e) resilient means carried by an exposed surface of said first member to receive at least one specimen slide,
(f) a movable shell member generally surrounding said first and second members,
(g) said shell member suitably formed from a magnetic material, and
(h) clamp means associated with said shell member to bear upon the specimen slide so that a magnetic means cooperating with the holding tool attracts said shell member and said clamp means to subthe slide and said resilient means.
2. A thin sectioning tool for holding specimen slides comprising:
(a) first and second movable members having opposed surfaces in a spaced-apart relationship,
(b) at least one of said movable members formed from a nonmagnetic material,
(c) connector means joining said first and second members and limiting the spaced-apart relationship of said first and second members,
(d) compression spring means associated with said connector means and urging said first and second members into the spaced-apart relationship,
(e) resilient means carried by an exposed surface of said first member to receive at least one specimen slide,
(f) a shell member generally surrounding said spacedapart first and second members,
g) said shell member including opposed side rail members suitably formed from a magnetic material so that a magnetic means cooperating With the thin sectioning tool attracts said side rail members, and
(h) inwardly extending flange portions associated with said side rail members and dimensionally matched to bear upon the specimen slides and substantially overcome said spring means so that the slides are depressed into said resilient means and further depressed and retained by the attraction of the magnetic means on said shell member with the exposed slide surfaces in a common plane defined by said matched flange portions.
I References Cited by the Examiner UNITED STATES PATENTS 2,111,299 3/1938 Robbins 2698 3,089,296 5/1963 Brady I 51-277 FOREIGN PATENTS 431,319 7/1935 Great Britain.
HAROLD D. WHITEHEAD, Primary Examiner.

Claims (1)

1. A HOLDING TOOL FOR THIN SECTIONING COMPRISING: (A) FIRST AND SECOND MOVABLE MEMBERS HAVING OPPOSED SURFACES IN A SPACED-APART RELATIONSHIP, (B) CONNECTOR MEANS JOINING SAID FIRST AND SECOND MEMBERS AND LIMITING THE SPACED-APART RELATIONSHIP OF SAID FIRST AND SECOND MEMBERS, (C) SPRING MEANS ASSOCIATED WITH SAID FIRST AND SECOND MEMBERS, (D) SAID SPRING MEANS MOVING AT LEAST ONE OF SAID FIRST AND SECOND MEMBERS WITH RESPECT TO THE OTHER, (E) RESILIENT MEANS CARRIED BY AN EXPOSED SURFACE OF SAID FIRST MEMBER TO RECEIVE AT LEAST ONE SPECIMEN SLIDE, (F) A MOVABLE SHELL MEMBER GENERALLY SURROUNDING SAID FIRST AND SECOND MEMBERS, (G) SAID SHELL MEMBER SUITABLY FORMED FROM A MAGNETIC MATERIAL, AND (H) CLAMP MEANS ASSOCIATED WITH SAID SHELL MEMBER TO BEAR UPON THE SPECIMEN SLIDE SO THAT A MAGNETIC MEANS COOPERATING WITH THE HOLDING TOOL ATTRACTS SAID SHELL MEMBER AND SAID CLAMP MEANS TO SUBSTANTIALLY OVERCOME SPRING MEANS AND DEPRESS THE SLIDE AND SAID RESILIENT MEANS.
US324095A 1963-11-15 1963-11-15 Holding tool Expired - Lifetime US3284962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US324095A US3284962A (en) 1963-11-15 1963-11-15 Holding tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US324095A US3284962A (en) 1963-11-15 1963-11-15 Holding tool

Publications (1)

Publication Number Publication Date
US3284962A true US3284962A (en) 1966-11-15

Family

ID=23262054

Family Applications (1)

Application Number Title Priority Date Filing Date
US324095A Expired - Lifetime US3284962A (en) 1963-11-15 1963-11-15 Holding tool

Country Status (1)

Country Link
US (1) US3284962A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3344774A (en) * 1965-06-29 1967-10-03 Ici Ltd Web support
US3385263A (en) * 1965-08-13 1968-05-28 Shandon Scient Company Ltd Levelling apparatus
US3669333A (en) * 1970-02-02 1972-06-13 Western Electric Co Bonding with a compliant medium
US3759436A (en) * 1970-03-02 1973-09-18 Gen Electric Solder shield for contacts on printed circuit boards
US3839830A (en) * 1973-04-27 1974-10-08 Fox Grinders Inc Anti-vibration work rest for grinders
US3943666A (en) * 1974-07-31 1976-03-16 Dysan Corporation Method and apparatus for burnishing flexible recording material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB431319A (en) * 1935-01-07 1935-07-04 Wafios A G Maschf Improvements in devices for grinding the ends of valve and like springs
US2111299A (en) * 1937-01-22 1938-03-15 Omer E Robbins Magnetic sine table
US3089296A (en) * 1959-05-25 1963-05-14 Ex Cell O Corp Work holding fixture for grinding half round grooves

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB431319A (en) * 1935-01-07 1935-07-04 Wafios A G Maschf Improvements in devices for grinding the ends of valve and like springs
US2111299A (en) * 1937-01-22 1938-03-15 Omer E Robbins Magnetic sine table
US3089296A (en) * 1959-05-25 1963-05-14 Ex Cell O Corp Work holding fixture for grinding half round grooves

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3344774A (en) * 1965-06-29 1967-10-03 Ici Ltd Web support
US3385263A (en) * 1965-08-13 1968-05-28 Shandon Scient Company Ltd Levelling apparatus
US3669333A (en) * 1970-02-02 1972-06-13 Western Electric Co Bonding with a compliant medium
US3759436A (en) * 1970-03-02 1973-09-18 Gen Electric Solder shield for contacts on printed circuit boards
US3839830A (en) * 1973-04-27 1974-10-08 Fox Grinders Inc Anti-vibration work rest for grinders
US3943666A (en) * 1974-07-31 1976-03-16 Dysan Corporation Method and apparatus for burnishing flexible recording material

Similar Documents

Publication Publication Date Title
US2337248A (en) Gauging tool
US3284962A (en) Holding tool
US6765465B2 (en) Magnetic clamping arrangement
DE102007024602A1 (en) planar motor
JPH01216735A (en) Multiple clamping device
US3206655A (en) Magnet system comprising two structurally identical parts
GB1512133A (en) Force measuring member for incorporation between a force receiving plate and base plate
CH401158A (en) Method and device for manufacturing magnetic heads and magnetic head manufactured therewith
DE880841C (en) Permanent magnet clamping device
US2397517A (en) Crankshaft holding and pin aligning means
US2611435A (en) Die set
US3178620A (en) Means for securing a non-magnetic workpiece to a magnetic chuck
US3256753A (en) Method of making die structure
US3589659A (en) Clamping device
CN208663465U (en) A kind of end-face grinder
US2466382A (en) Variable reluctance device
DE874691C (en) Slider
CN219521329U (en) Workpiece processing positioning device
US2324853A (en) Core clamp
US1537622A (en) Method of forming slip-measuring gauges
JPS6135934Y2 (en)
US3140430A (en) Standard magnet structure with predetermined air-gap
DE10351478B4 (en) Measuring element for detecting forces exerted on thin brake disks
US2724223A (en) Screw thread grinding attachment
US2368032A (en) Tailstock lock