Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3285112 A
Publication typeGrant
Publication dateNov 15, 1966
Filing dateAug 3, 1964
Priority dateAug 3, 1964
Publication numberUS 3285112 A, US 3285112A, US-A-3285112, US3285112 A, US3285112A
InventorsCaswell John W, Ingvald Dale
Original AssigneeLamb Grays Harbor Co Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Vacuum controlling of sheet delivery
US 3285112 A
Abstract  available in
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Nov. 15, 1966 DALE ETAL VACUUM CONTROLLING OF SHEET DELIVERY 2 Sheets-Sheet 1 Filed Aug. 5, 1964 S L% H E E0 N LW R ASm 0 w 3 m A D n LW & MN GH G N 0 J F m y a U I I R w a illllh l g 2 in o a. a B x I m w v I :LQII. a. A :51- k i 3 3 F Nov. 15, 1966 1. DALE ET AL 3,285,112

VACUUM CONTROLLING OF SHEET DELIVERY Fild Aug. 5, 1964 2 Sheets-Sheet 2 INGVALD DALE JOHN W. GASWELL INVENTORS FIG BY If." I

ATTORNE Y5 United States Patent VACUUM CONTROLLING 0F SHEET DELIVERY lngvald Dale and John W. Caswell, Hoquiam, Wash,

assignors to Lamb-Grays Harbor Co., Inc., Hoquiam,

Wash.

Filed Aug. 3, 1964, Ser. No. 387,089 2 Claims. (Cl. 83-152) This invention relates to paper sheet cutting means and an improved cut sheet conveying means. More particularly, it relates to a combination of high speed rotary sheet cutter including feed rolls whereby one or more strips of paper may be drawn together from supply rolls and delivered, one upon the other, to a rotary cutter and all strips simultaneously cut to produce paper sheets of the same length and to discharge the pieces from the cutter for their orderly conveyance to a place of stacking or use.

This application is a continuation-in-part of our earlier application entitled, Cut Size Continuous Sheeter, filed on July 3, 1962, under Serial No. 211,804, now Patent No. 3,150,578.

It is the principal object of the present invention to provide an improved conveyor means that is designed to receive the cut sheets directly from the point of delivery from the cutter blades and to convey them without disorder to a discharge point.

More specifically, the present invention is characterized by the provision of a conveyor means wherein a continuous conveyor belt has its top run mounted for travel from the point of delivery of cut sheets from the cutters to a discharge point across the top wall of a suction chamber; said top wall having a suction slot, or the like, extending along the center line of belt travel, and said belt being formed along its center line with a continuous row of perforations that travel in coincidence with the top wall slot of the suction chamber to cause the sheets to be drawn down tightly against the belt and held during conveyance against disorder.

It is also an object to establish a termination of the suction slot that will release the sheets for easy discharge at the end of the belt travel.

Further objects and advantages of the invention reside in the combination of parts embodied in the means for accomplishing the above stated objects and in the mode of their operation, as hereinafter described.

In accomplishing the above mentioned and other objects, we have provided the improved details of construction, the preferred forms of which are illustrated in the accompanying drawings, wherein- FIG. 1 is a side view of the paper cutter mechanism and conveyor of this invention, as associated with a sheet stacker mechanism.

FIG. 2 is an enlarged, elevational View of the multiple strip cutter, showing that side thereof which is opposite that seen in FIG. 1.

FIG 3 is a top or plan view of the paper cutter and discharge conveyor as seen in FIG. 2.

FIG. 4 is a vertical section of the strip cutter and sheet conveyor, taken on line 4-4 in FIG. 3.

FIG. 5 is a cross-sectional detail taken on line 5-5 in FIG. 4, shown enlarged.

FIG. 6 is a detail of the vacuum chamber and conveyor belt as associated therewith.

To impart a better understanding of the use of the present cutter and conveyor, it will here be explained that the machine of FIG. 1 embodies a succession of cooperatively related and connected mechanisms that are individually designated in their entireties as follows:

R designates the present high speed, rotary paper cutter, which will be best understood by reference to FIGS. 2 and 4.

F designates a feed mechanism whereby the cut sheets upon delivery from the discharge belt of this invention are advanced to a sheet stacker, herein designated by reference character V.

Referring more in detail to the drawings:

It has been shown in FIGS. 1 and 4 that four strips of paper which may be of the same width are individually designated by reference characters a, b, c, and d are being simultaneously drawn from supply rolls each indicated by reference character S, to the cutter R and are brought together between paired, driven feed rollers f and f and delivered between knives whereby they are cut to a predetermined length and the cut pieces or sheets simultaneously delivered from the blades of the cutter onto the downwardly sloping top run of the conveyor belt of this invention for their delivery to the stacker feeder F.

It has been shown in FIG. 1 that the rotary cutter R is mounted at the higher end of a rigid main frame structure that is fabricated from angle and channel iron pieces. The cutter R is here shown to be of unitary formation and supported on laterally spaced horizontal beams 12, which in turn, are mounted by paired laterally spaced vertical legs 13.

As best shown in FIGS. 2, 3, and 4, the cutter F comprises the usual fly knife mounting axle 14, equipped with a spirally directed knife or blade 14' that coacts, as the axle revolves, with a fixed blade bar 15 to cut the paper strips and discharge the pieces, as cut to exact length, onto the top run of a sheet discharge belt 16, which as best shown in FIG. 4, operates about parallel, driven rollers 17, 18 and 19, to deliver the cut sheets endwise and ultimately to the feed section F of the combination.

Driving of the paper cutter R is effected by means of an electric motor 20 that has a driving belt connection 21 with the drive shaft of the fly knife mounting axle 14, as shown in FIGS. 3 and 4.

The discharge belt 16 of the cutter R is provided along its central longitudinal line with a continuous row of spaced perforations, 25 and it is mounted for travel at its opposite ends about the rollers 18 and 19 and with its top run sliding on and passing across the top wall 30 of a vacuum chamber 31 that is fixed in the frame of the cutter; this top wall 30 being formed with a slit 32 with which the row of perforations 25 of the belt 16 register in their travel across the chamber, thus to apply suction through the belt perforation that will cause the stacked sheets of paper as successively sheared from the four strips to be drawn to and held against the belt and positively fed thereby into the higher receiving end of the feed section F. The vacuum chamber 31 and slot 32 terminate short of the discharge end of belt 16 for release and discharge of the paper sheets from the belt onto the feed section F.

The feed section F of the machine comprises -a guideway that is supported by and which extends along the top of the main frame structure at a downwardly sloping angle of approximately 10 as Well shown in FIG. 2 and the sheet conveyor belt, as contained therein and onto which the cut sheets are delivered from belt 16 of the cutter R, slopes downwardly accordingly toward its discharge end to the receiving end of the sheet stacking box V which has been described in the previously mentioned pending application.

The paper feed belt 16 of this mechanism operating across the slotted top wall 30 of the vacuum chamber 31 facilitates the rapid cutting and discharge of cut paper sheets to the feed section F for their delivery to the stacker mechanism and also serves, by reason of the suction applied through the chamber slot 32 and belt perforations 25 to hold them against disorder as conveyed.

The paper feedbelt 16 of this mechanism operating at high speed along the slotted top wall of the vacuum chamber. 30 not only holds the paper on the belt by reason of the suction to which it is subjected, thus fa-cili tating a high rate of production of cut sheets but also gathers dust and clippings created in the cutting operation and sucks them into the vacuum line. By holding the stacked sheets against disorder in their delivery a better operation at the stacking station is accomplished.

What we claim as new is:

1. In combination, a paper cutter comprising a fixed cutter bar and a fly knife operable to coact therewith for :paper sheet cutting, means for feeding continuous paper strips into said cutter across said fixed 'bar for their cutting into pieces of predetermined length, a continuously driven conveyor belt having a downwardly inclined portion extending from a point immediately adjacent and substantially beneath said cutter to a discharge point to receive the cut pieces successively thereon from the cutter for conveyance toward said discharge point, a vacuum chamber on and across which the conveyor belt operates; said chamber including a downwardly sloping top wall, a longitudinal slot formed through said top wall and extending throughout the major extent of said inclined portion, said belt being formed throughout its References Cited by the Examiner UNITED STATES PATENTS 2,220,022 10/1940 Pool 83100 X 2,294,407 9/ 1942 Huffman 271-74 2,772,880 12/ 1956 Garrett 271--74 2,895,552 7/ 1959 Pomper et a1 83-400 X 3,019,018 1/ 1962 Hasselquist 27174 3,192,807 7/1965 Haselow et al. 83152 FOREIGN PATENTS 1,269,257 7/ 1961 France.

I WILLIAM W. DYER, 111., Primary Examiner.

L. B. TAYLOR, Assistant Examiner.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2220022 *Jul 27, 1937Oct 29, 1940 Conversion of continuous filaments
US2294407 *Oct 13, 1939Sep 1, 1942Miller Printing Machinery CoSheet handling mechanism
US2772880 *Mar 5, 1953Dec 4, 1956E G Staude Mfg Company IncSheet stacker
US2895552 *Aug 10, 1955Jul 21, 1959John Waldron CorpTransverse web cutting apparatus having sheet delivery mechanism using timed vacuum belts
US3019018 *Nov 28, 1960Jan 30, 1962Goodrich Co B FTransfer mechanism for bias cut fabric pieces
US3192807 *Jan 21, 1963Jul 6, 1965Cons Papers IncSheet control system for paper cutters
FR1269257A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3649001 *Jul 15, 1969Mar 14, 1972Eastman Kodak CoMethod for holding a multilayer assembly of materials and parts in alignment
US3721375 *Feb 1, 1971Mar 20, 1973Package Machinery CoWeb feed mechanism for wrapping machines
US3801092 *Oct 20, 1972Apr 2, 1974Xerox CorpVacuum holddown device for moving belts
US6658973 *Nov 21, 1998Dec 9, 2003Lts Lohmann Therapie-Systeme AgDevice for transferring two-dimensional products onto a transportation device
US6733912Apr 3, 2002May 11, 20043M Innovative Properties CompanyFixture pallet apparatus for automated assembly of fuel cell material layers
US6740131Apr 3, 2002May 25, 20043M Innovative Properties CompanyApparatus for automatically fabricating fuel cell
US6749713Apr 3, 2002Jun 15, 20043M Innovative Properties CompanyApparatus and method for separating a fuel cell assembly from a bonding fixture
US6756146Apr 3, 2002Jun 29, 20043M Innovative Properties CompanyApparatus and method for automatically stacking fuel cell material layers
US6780276Apr 3, 2002Aug 24, 20043M Innovative Properties CompanyGap adjuster for laminating rolls
US6868890Apr 3, 2002Mar 22, 20053M Innovative Properties CompanyMethod and apparatus for peeling a thin film from a liner
US7018500Nov 3, 2004Mar 28, 20063M Innovative Properties CompanyApparatus and method for singulating porous fuel cell layers using adhesive tape pick head
US7022207Oct 6, 2004Apr 4, 20063M Innovative Properties CompanyMethod and apparatus for peeling a thin film from a liner
US7171881May 25, 2005Feb 6, 20073M Innovative Properties CompanyAngled product transfer conveyor
US7195690May 28, 2003Mar 27, 20073M Innovative Properties CompanyRoll-good fuel cell fabrication processes, equipment, and articles produced from same
US7432009Apr 3, 2002Oct 7, 20083M Innovative Properties CompanyLamination apparatus and methods
US7569081Mar 9, 2004Aug 4, 20093M Innovative Properties CompanyMethod for converting a fuel cell membrane web to precisely positioned membrane sheets
US7722684Feb 20, 2007May 25, 20103M Innovative Properties CompanyRoll-good fuel cell fabrication processes, equipment, and articles produced from same
US8268511Apr 8, 2010Sep 18, 20123M Innovative Properties CompanyRoll-good fuel cell fabrication processes, equipment, and articles produced from same
US8309218Nov 13, 20123M Innovative Properties CompanyLamination apparatus and methods
US8480838Sep 13, 2012Jul 9, 20133M Innovative Properties CompanyLamination apparatus and methods
US8828620Aug 30, 2012Sep 9, 20143M Innovative Properties CompanyRoll-good fuel cell fabrication processes, equipment, and articles produced from same
US20030188418 *Apr 3, 2002Oct 9, 20033M Innovative Properties CompanyApparatus and method for separating a fuel cell assembly from a bonding fixture
US20030188615 *Apr 3, 2002Oct 9, 20033M Innovative Properties CompanyAngled product transfer conveyor
US20030188616 *Apr 3, 2002Oct 9, 2003Behymer Lance E.Compliant cutting die apparatus for cutting fuel cell material layers
US20030191021 *Apr 3, 2002Oct 9, 20033M Innovative Properties CompanyLamination apparatus and methods
US20040241525 *May 28, 2003Dec 2, 20043M Innovative Properties CompanyRoll-good fuel cell fabrication processes, equipment, and articles produced from same
US20050039851 *Oct 6, 2004Feb 24, 20053M Innovative Properties CompanyMethod and apparatus for peeling a thin film from a liner
US20050194102 *Nov 3, 2004Sep 8, 20053M Innovative Properties CompanyApparatus and method for singulating porous fuel cell layers using adhesive tape pick head
US20050217980 *May 25, 2005Oct 6, 20053M Innovative Properties CompanyAngled product transfer conveyor
US20060102281 *Jan 26, 2006May 18, 20063M Innovative Properties CompanyMethod and apparatus for peeling a thin film from a liner
US20080311403 *Aug 27, 2008Dec 18, 20083M Innovative Properties CompanyLamination apparatus and methods
WO2003084848A1 *Feb 11, 2003Oct 16, 20033M Innovative Properties CompanyAngled product transfer conveyor
Classifications
U.S. Classification83/152, 271/197
International ClassificationB65H29/24
Cooperative ClassificationB65H29/242
European ClassificationB65H29/24B2