Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3295327 A
Publication typeGrant
Publication dateJan 3, 1967
Filing dateOct 21, 1964
Priority dateOct 21, 1964
Publication numberUS 3295327 A, US 3295327A, US-A-3295327, US3295327 A, US3295327A
InventorsWaterman Willis D
Original AssigneeHalliburton Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Underground structure
US 3295327 A
Abstract  available in
Images(5)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Jan. 3, 1967 w. D. WATERMAN UNDERGROUND STRUCTURE 5 Sheets-Sheet 1 Filed 001:. 21, 1964 w W M mz p vf% mr f M fl/M/ 5 w. w W z M Jan. 3, 1967 w. D. WATERMAN 3,295'327 UNDERGROUND STRUCTURE Filed Oct. 21, 1964 5 Sheets-Sheet M R o EE M M7 z 0 M W 27 7 if W xw Z Z Wa a Y M B WM w W W z g v v M z Jan. 3, 1967 w. D. WATERMAN UNDERGROUND STRUCTURE 5 Sheets-Sheet :5

Filed Oct. 21, 1964 Jan. 3, 1967 w. D. WATERMAN UNDERGROUND STRUCTURE 5 Sheets-Sheet Filed Oct. 21, 1964 United States Patent 3,295,327 UNDERGROUND STRUCTURE Willis i). Waterman, Salina, Kans., assignor to Hallihurton Company, Duncan, Ghia., a corporation of Delaware Filed Get. 21, 1964, Ser. No. 405,432 1 Claim. (Cl. 61-5) This application is a continuation-in-part of my earlier application, Serial No. 207,658, filed luly 5, 1962. This i-'nvention relates to underground structures and is particularly directed to an improved underground storage vessel.

An important object of the present invention is to provide a novel form of double-wall housing member.

Another object is to provide a structure of this type having a metal liner encircled by a metal shell with reinforcing elements positioned in the space between the liner and shell.

Another object is to provide such a structure in which the liner and shell are circular in cross-section and wherein the reinforcing elements are located in the an- -nulus between them to form a trussed beam, and means defining a passage into the annulus for directing a refrigerating medium into the space between the liner and shell.

Other and more detaiied objects and advantages Will appear hereinafter.

in the drawings:

FIGURES 1, 2, and 3 are side elevations in diagrammatic form, showing steps in forming the shaft in the earth for subsequent reception of the double-wall reinforced structure embodying my invention.

FIGURES 4 and 5 are side elevation views in diagrammatc form, showing steps in the method of placing the double-wall reinforced structure.

FIGURE 6 is a side elevation of the completed structure installed in an underground location.

FIGURE 7 is a sectional view, partly broken away, taken substantially on the lines 7-7 as shown in FIG- URE 6.

FGURE 8 is a perspective view, partly broken away, illustrating a modified form of the double-wall reinforced structure.

FIGURE 9 is a View similar to FIGURE 8, showing a second modification.

FIGURE 10 is a view similar to FIGURE 6, showing a third modification.

FIGURE 11 is an enlarged sectional detaii taken in the location shown by the arrows 11 on FIGURE 10.

FIGURE 12 is a transverse sectional detail taken substantially on the lines 12-12 as shown in FIGURE 11.

FIGURE 13 is a view similar to FIGURE 10, showing a further modification.

FIGURE 14 is an enlarged sectional detail of a portion of FIGURE 13.

FEGURE 15 is a sectional View taken substantially on lines 15-15 as shown on FIGUR'E 14.

Referring to the drawings, an excavation is first made in the earth to form a shallow hole 10 having sloping sides 11 and a horizontal fioor 12. A support structure '13, including a base ring 111, is then installed on the fioor 12. A conventional di'illing machine 15 turns a sectional pipe 16 having a bit 17 at the lower end in a conventional manner. A small diameter hole is thus drilled to the desired depth.

As shown in FIGURE 2, the small hole 18 is enlarged by means of a Wing bit 19, having a pilot 20 and carried on the lower end of the sectional drill pipe 1a. A relatively large diameter shaft 21 is forrned by the bit 10 as the drilling machine 15 turns the drill pipe 16. An underreamer, not shown, is then used to form an enlarged cavity "ice 22 at the lower end of the shaft 21. Cementitious material, such as, for example, concrete, is then introduced into the lower end of the hole by means of a tremie pipe 23. The concrete displaces the drilling fluid in the hole and forms a plug 24, filling the lower end of the shaft 21. The tremie pipe 23 is then withdrawn.

A double-wall housing member, generally designated 25, is constructed in the shop and transported to the jobsite. As shown in the drawings, this member 25 comprises a cylindrical steel liner 26 encircled by a cylindrical steel shell 27. The liner and shell are concentric, and the annular space 23 between them contains steel reinforcing members 29 integrally joined' to the shell and liner by welding. Member 25 thus comprises a trussed `circular beam.

A circular bottom wall 30, formed of steel plate, closes the lower end of the liner 26. A pipe coupling 31 is mounted centrally of this bottom wall 30 and projects therethrough. A grout delivery pipe 32 extends centrally through the member 25 and is connected to the coupling 31 at its lower end. A grout distributor assembly 33 is connected to the coupling 31 below the bottom wall 30. This assernbly 33 includes a central hollow member, having a plurality of tubular spokes 34 radiating therefrom.

A short hollow tubular member 35 closed at its lower end also projects below the bottom wall 30 and communicates with the interior of the liner 26, to form a sump.

The d'iameter of the shaft 21 is only slightly larger than the outer diameter of the cylindrical shell 27, while the cavity 22 is considerably larger. The member 25, which may be constmcted in the shop under ideal cond'itions, is transported to the jobsite and then placed upright position over the shaft 21. Conven'tional means are employed for lowering the double-wall member 25 into the shaft which is initially filled with drilling fluid. Since the lower end 30 of the member 25 is closed, the member may be '*iloated into position, displacing the mud fiuid 22 from the hole 21 and enlarged cavity 22. Control of the member 25 during the lowering operation is facilitated by controlling the buoyancy thereof, and this is effected by admitting drilli'ng fiuid into the interior of the liner 26. As the member 25 moves downward into the shaft, drilling fiuid is displaced upward' through the clearance space between the shell 25 and the hole 21 and also through the annular space 28 between the shell 27 and the liner 26.

FIGURE 4 shows the position of the parts at the end of the lowering operation. In this position, the lower end of the member 25 projects into the enlarged cavity 22, and the grout distributor device 33 lies immediately above the cementitious plug 24. Drilling fluid remains in the enlarged cavity 22 and in the shaft 21 outside the member 25 and also remains inside the annular space 28. Excess drilli'ng fluid displaced from the cavity 22 and shaft 21, and not transferred into the interior of the liner 25, is pumped from the hole 10 by conventional means, not shown.

Grout delivery pipes 37 are then installed in the annular space 28 so that their lower ends termi-nate near the lower end of said space 28, and grout is then forced downward through the pipes 32 and 37 into the lower end of the enlarged cavity 22. This action displaces the remaining drilling fluid and causes it to escape upward through the annulus 28 and through the clearance space between the shaft 21 and the shell 27. A trough 30 may be provided at the surface, if desired, to facilitate in removing the drilling fiuid thus displaced by means of pump 39 and discharge pipe 40. Efiicient displacement of drilling uid' by means of grout is assured by the action of the radiating hollow spokes 34 on the grout distributor 33. After the drilling fluid has been completely displaced by grout from the large cavity 212 and shaft 21, additional grout material is introduced through the pipes 37 while the pipes are withdrawn in an upward direction, thereby assuring complete filling of the annular space 23 with cementitious material.

In FIGURE 6 there is shown a cross-section of the completed installation. Metal landing shoes 41 fixed to the lower end of the double-wall member 25 are shown in position and embedded within the cementitious sheath 42. These landing shoes 41 are omitted in FIGURES 4 and for clarity of illustration. The interior of the liner 26 is pumped free of drilling fiuid, and the grout pipes 32 and 37 are withdrawn. A metal plug 43 replaces the coupling 31. A tubular extension 44 projects upward from the liner 26 and is connected thereto by means of a welded joint 45. An enclosure 46 formed by reinforced concrete walls 47 surrounds the upward extension 44, and the member 14 may be joined integrally to form a part of the walls 47. A reinforced concrete cover 48 may be provided and mounted to slide horizontally to expose the central opening 49, when desired.

From the above description, it will be understood that the double-wall member 25, with its reinforcing elements forming a trussed circular beam, forms an exceptionally strong underground housing or silo for a missile. Moreover, the relatively light weight of the double-wall structure permits its fabrication under factory conditions rather than field conditions, and subsequent installation without danger of collapse. My divisional application entitled Method of Constructing an Underground Structure, Serial No. 495,372, filed September 1, 1965, is directed to a method of constructing an underground structure of the type described.

The modified form of my invention, shown in FIG- URES 10, 11, and 12, to which my divisional application entitled Underground Storage Vessel, Serial No. 551,710, fiied May 20, 1966, is directed, relates to a storage vessel 56 for liquid petroleum gas. The vessel comprises a steel and prestressed concrete structure that is capable of storing vapor-phase products under high pressures. A hole 51 is drilled in the earth having a diameter and depth to accommodate the size of the storage vessel. As an example, the diameter may be about 20 feet and the clepth about 250 feet, for a vessel of 10,000-barrel volume. A portion 52 of the hole 51 is reamed to a larger diameter near the upper end of the vessel 50, for example, about 25 to 32 feet below the ground surface 53. This reamed section 52 of the hole 51. provides space for the later construction of a concrete disk or cap 54 that is thus effectively keyed to undisturbed earth materials.

The double-wall casing member 56 is preferably prefabricated in sections and comprises a cylindrical metal liner 57 encircled by a cylindrical metal shell 58. The metal shell 58 is longitudinally corrugated as shown in FIGURE 12. A cage 60 of metal-reinforcing bars is positioned in the annular space between the liner 57 and the corrugated shell 53. The cage 60 includes Vertical bars 61 welded to the liner 57, Vertical bars 62 spaced therefrom in a circumferential series, and horizontal crimped reinforcing bars 63 welded to the Vertical bars 61 and 62 and welded to the liner 57. The Vertical bars 62 are spaced so that they extend into the outer portions of the longitudinal corrugations in the shell 58. Vertical grout pipes 66 are loosely positioned within the reinforcing cage 56.

The double-wall casing member 56 is 'fioated into the hole 51, additional Sections being connected end-to-end as the lowering operation progresses. The rate of lowering the casing member 66 is Controlled by pumping water into the annular space between the liner 57 and shell 53. This annular space is closed at the bottom by means of the annular steel ring 65a. When the entire member 56 has been placed in position adjacent the bottom of the hole 51, a sand layer 67 is placed in the annular space between the corrugated shell 58 and the hole 51.

After placement of the sand layer 67, the annular space between the liner 57 and shell 58 and the interior of the vessel are both filled with water. Cement is then poured through the pipe 71 to form the concrete floor 65 and is allowed to set. Grout is then pumped under pressure through the grout pipes 66 to fill the annular space between the liner 57 and the corrugated shell 58 with cementitious material. The grout pipes 66 are withdrawn upwardly while the pumps continue to force grout through the pipes 66 to fill the annular' space contai'ning the reinforcing cage 60. The pumping pressure is Controlled by limiting the fiow of water displaced from the annular space. The pressure grouting expands the outer shell 58 against the sand layer 67, but the liner 57 is substantially unatfected, because the pump pressure of the grout acts upon the water confined within the vessel. After the grouting operation is complete and the grout pipes 66 are completely withdrawn from the annual space, the curing of the grout takes place while the interior of the vessel is still full of water. The earth exerts a ring-compression force against the vessel for elfectively closing any longitudinal cracks that may develop in the concrete grout. Circumferential cracks are closed by the weight of the vessel and to some degree by elastic rebound of the steel liner and shell and of the reinforcing cage 60. After the water has been removed from the interior of the vessel, the reinforced concrete cap 54 is poured in position within the portion 52 of the hole 51.

It will be observed that after construction of the vessel has been completed by the steps described above, that the corrugated steel shell 58 exerts compressive stresses on the concrete in the annular space between the liner and the shell. No unbalanced forces are exerted on the shell 57 of the vessel during the cementing operation because the closed interior of the vessel is filled with water at that time. The water may be removed from the storage area within the vessel by pumping through a product pipe 70, which projects through the pipe 71 connected to the interior of the vessel at its upper end. T'he liquid petroleum gas may be pumped into the vessel through the annular space between the pipes 70 and 71, thereby forcing the water in the vessel to be discharged through the pipe 70. A submersible pump 72 is attached to the lower end of the pipe 70 for the purpose of disoharging liquid petroleum gas through the interior of the pipe 70. Suitable valve connections, not shown, are provided at the ground surface.

The modified form of the invention shown in FIGURE l3 relates to storage of liquid natural gas in a refrigerated underground pressure vessel. The pressure vessel is of the double-wall construction previously described and includes a metal 'cylindrical liner 81 enclosed by a metal corrugated shell 82. The corrugations of the shell 82 extend circumferentially rather than longitudinally. The annular space 83 between the liner 31 and the shell 82 contains metal reinforcing lbars welded to both the liner 81 and the shell 82. These bars84 may take any suitable or desirable form, and they serve as reinforcing spacers between the liner S1 and the shell 32. The shell 80 is floated into position within the hole 85 in the manner described above, and an insulating type of concrete, preferably containing vermiculite, is placed in position within the hole 85 and outside the corrugated shell 32.

A thermostatically Controlled compressor at the surface together with associated refrigerating means, not shown, cools the annular space between the liner 81 and shell 80 to form a condensing tank of the interior of the vessel. This cold tank draws natural gas from the main 91 through reducer 93 due to lowering of the temperature it is regasified either artificially or by lche ambient temperature of the ground. Alternatively, pressnres in the vessel may be somewhat lower, and a pump may be used to return gas to the main 91.

The following are among the advantages of the apparatus shown in FIGURE 13: Natural gas can be placed in storage during low-use months with relatively small compressing equipment. The operation of the storage is automatic. The vessel is cooled uniformly, thus reducing differential stresses occasioned by the low temperatnres. The refrigerant (methane) also acts as an insulator. elatively small storage facilities can be located along distribution systems to maintain minimal line pressures, much like standapipes on water-supply systems. Natural gas, rather than relatively pure methane, can be stored because the liquid mixture of hydroearbons is returned to the main. The .heat transfer through the reinforcing bars is insignificant because of their small cross-sectional area. No corrosion of the steel liner or Shell occurs because the low Operating temperatures.

Having fully described by invention, it is to be under- Stood that I am not to be limited to the details herein set forth but that my invention is of the full scope of the appended claim.

I claim:

In an underground structure, the combination of: a double-wall member having a cylindrical metal liner encircled by a cylindrical metal shell, said liner and shell defining `'an annular space between them, metal reinforcing elements positioned in said annular space and joined with said liner and said shell to form a continuous trussed beam, cementitious material surrounding said shel-l, means defining a passage into said annular space for directing a refrigerating medium into the space between the liner and the s'hell, and a subsurface reinforced concrete Cap overlying said shell and said liner.

References Cited by the Examiner UNITED STATES PATENTS 460,545 9/1891 Wolf 61-40 480,127 8/ 1892 ORourke 61-81 1,221,068 4/1917 McBean 61-40 1,618,973 3/1927 Briel 61-41 1,847,814 3/1932 Byrne 61-41 1,930,285 10/1933 Robinson 138-148 2,184,380 12/1939 Diebel 220-13 3,097,084 7/ 1963 Putman 62-45 3,151,416 10/1964 Eakin et al 61-.5 X

FOREIGN PATENTS 528,564 5/1954 Belgium. 1,078,027 11/1954 France.

257,682 3/1913 Germany.

564,310 11/1932 Germany. 1,012,274 7/1957 Germany. 1,120,402 12/ 1961 Germany.

169,290 9/ 1921 Great Britain.

664,136 1/ 1952 Great Britain.

74,132 2/ 1954 Netherlands.

CHARLES E. O'CONNELL, Primary Examner.

IACOB SHAPIRO, Examiner.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US460545 *Dec 29, 1890Sep 29, 1891 Method of driving tunnels oe sinking shafts
US480127 *Apr 28, 1892Aug 2, 1892 o rourke
US1221068 *Mar 20, 1916Apr 3, 1917Duncan D McbeanMethod of building and placing piers.
US1618973 *Aug 24, 1921Mar 1, 1927Wilhelm BreilTubbing
US1847814 *Apr 6, 1931Mar 1, 1932Byrne Jr ThomasCaisson construction
US1930285 *May 27, 1929Oct 10, 1933Roy H RobinsonBuilt up metal tube, frame and skeletonized metal member of high strength weight, and method of forming same
US2184380 *Dec 28, 1936Dec 26, 1939Ernest C DeibelThermal exchange barrel
US3097084 *Oct 9, 1961Jul 9, 1963Superior Air Products CoLiquefied gas container
US3151416 *May 15, 1961Oct 6, 1964Inst Gas TechnologyMethod of constructing a liquefied gas container
*DE257682C Title not available
DE528564C *Aug 18, 1926Jul 1, 1931Usines De Melle Sa DesVerfahren zum Ausziehen des Rohrzuckers mittels Essigsaeure aus Melasse oder Sirup
DE564310C *Nov 16, 1930Nov 17, 1932Heinrich RuoffSchachtauskleidung aus Wellblechsegmenten
DE1012274B *Oct 2, 1956Jul 18, 1957Eisen & Stahlind AgLoesbarer Tragkranz fuer Schachtauskleidungen
DE1120402B *Jun 15, 1956Dec 28, 1961Froelich & Kluepfel MaschfabDoppel-Tuebbing-Schachtausbau
FR1078027A * Title not available
GB169290A * Title not available
GB664136A * Title not available
NL74132C * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3436921 *Jun 15, 1966Apr 8, 1969Case Foundation CoApparatus and method of producing shafts and caissons
US3823793 *Oct 2, 1972Jul 16, 1974Asahi Chemical IndSemi-sealed silencer structure
US4821915 *Mar 9, 1987Apr 18, 1989Corespan, Inc.Twin wall fiberglass tank and method of producing the same
US4971225 *May 18, 1989Nov 20, 1990Bravo Sergio MReduce pollution/fire hazard associated with gasoline handling equipment
US4976110 *Apr 7, 1989Dec 11, 1990Altank Industries Ltd.Support system for vacuum insulated cylindrical cryogenic vessels
US5100024 *Jun 5, 1990Mar 31, 1992Bravo Sergio MGasoline collector pit box and submersible unit box
Classifications
U.S. Classification405/56, 138/148, 62/53.1, 220/592.1
International ClassificationF17C3/00
Cooperative ClassificationF17C3/005
European ClassificationF17C3/00B