Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3305911 A
Publication typeGrant
Publication dateFeb 28, 1967
Filing dateAug 5, 1963
Priority dateAug 30, 1962
Also published asDE1460601A1
Publication numberUS 3305911 A, US 3305911A, US-A-3305911, US3305911 A, US3305911A
InventorsHall John D Arcy Henry, Chapman Roy
Original AssigneeIci Ltd
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
US 3305911 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Feb. 28, 1967 R. CHAPMAN ETAL FABRI CS Filed Aug.

l wo F Fig. 4l.A

d I I /A/VEA/TO/ ATTORNEYS United States Patent Otce n 3,305,9 Patented Feb. 28, 19

3,305,911 FABRICS Roy Chapman and John DArcy Henry Hall, Harrogate, England, assignors to Imperial Chemical Industries Limited, London, England, a corporation of Great Britain Filed Aug. 5, 1963, Ser. No. 299378 Claims priority, application Great Britain, Aug. 30, 1962, 33,382/ 62 7 Claims. (Cl. 28-72) This invention relates to fabrics having .an open mesh construction.

We have made the observation that useful fabrics having an open mesh construction can be made by knitting or weaving a fabric from an as-spun synthetic filament yarn capable of being elongated -followed by drawing the fabric in at least one direction in the plane of the fabric.

When drawing the fabrics of most but not all constructions, the filament yarns become drawn, i.e. irreversibly elongated, in the regions between their intersections to a greater extent than that at their crossover regions. This becomes apparent when the drawn fabric is dyed, since it then has dye flecks of darker colour at the crossover regions of the yarns. However these regions should be suiciently strong not to affect adversely the mechanical properties of the fabric.

According to the present invention, therefore, a process for making a fabric having an open mesh construction comprises knitting or weaving a fabric fromv synthetic yarn capable of being irreversibly elongated at least 1.75 times its length, and drawing the knitted or woven fabric uniformly over substantially the whole area of the fabric at least 1.75 times in at least one direction. If desired, the fabric may also be drawn at least 1.75 times in another direction, preferably at right angles to the first draw-` ing direction.

Undrawn or partially drawn yarn may be used in the invention. In the case of polyethylene terephthalate yarn, a birefringence in the range of 2 103 to 20X 10-3 preferably 12X 10-3 to 16 103 is suitable. Such a yarn is capable of being elongated 2-6 times its length.

In the case of polypropylene yarn this should be capable of being elongated at least 1.75 and up to 9 times its length. Suitable polypropylene yarns have a birefringence of l 10n3 to 30 103 and preferably between 10 103 and 20X 10-3.

In the case of polyethylene terephthalate yarn draw ratios of 2.0 to 4.5 times are suitable. Suitable temperatures for drawing the fabric are above the 2nd order transition temperature.

The fabric may be drawn between pairs of rolls, rotating at suitable speeds to give the desired draw ratio in the fabric in the longitudinal direction. For drawing in the transverse direction the fabric may be gripped at the edges by clips which can be made to separate by a given amount corresponding to the desired draw ratio. We have found that equipment used for biaxially orienting film may be used for drawing our fabric.

The fabrics are useful for industrial applications e.g.

as reinforcements for laminates, as laundry bags andv shnets as well as for domestic textile applications, such as net curtains.

If, during the drawing of a fabric made from polyethylene terephthalate, temperatures substantially below the second order transition are used, fabrics having high shrinkage can be made. It will be appreciated that in this context the yarns can be madeito shrink by the application of heat so that at least some of the elongation imparted during drawing is lost. In this connecti the rate of drawing is also of importance, since the w1 done in drawing, generates heat. Under very high rz of drawing, and in the absence of forced cooling, hea generated under virtually adiabatic conditions. W lower rates of drawing, and with forced cooling, the drz ing process can be made to function under almost i thermal conditions, e.g. at room temperature. For cc ing, draughts of cold air or liquids e.g. water may used. After drawing the fabrics may be subjected heat-setting to impart dimensional stability, and genera improved fabric appearance.

One suitable form of apparatus comprises means forward drawing and sideways drawing the fabric w means for heat setting the `fabric on a stenter before is wound up. The forward drawing means compri hot nip rollers which may be heated by hot water c to about 85 C. and cold nip rollers. The draw point located between the two sets of nip rollers beneath infra red heater. The draw ratio is determined by i relative speeds of the cold and hot nip rolls. The f` ward drawn fabric is fed from the cold nip rolls intc sideways draw stenter where it is held by self-grippi clips with means for controlling the temperature for l ample between and 100 C. Following this sidewz draw stenter is a second and larger part where the fab is heat set and which is provided with means for movi the fabric and heating it to temperatures up to ab( 240 C. Means are provided for cooling the fabric forced air before it is wound up on a beam which driven from the fabric forwarding means on the sten` by an arrangement adapted to compensate for the bui up of fabric on the beam.

Evenly drawn fabrics can be obtained by this successi drawing technique, first length-wise and then in wid The fabric is preferably provided with selvedges to fac itate gripping for drawing in width.

A preferred embodiment of the invention will now described by way of example with reference to the companying drawings which are photographic represen tions on a reduced scale of fabric samples and in whic FIG. l shows a sample warp-knitted from undra polyethylene terephthalate yarn,

FIG. 2 shows a similar sample as shown in FIG. after drawing 3.5 times in length only,

FIG. 3 shows a similar sample as shown in FIG. after drawing 3.5 times in width only, and

FIG. 4 shows a similar sample as shown in FIG. after drawing 3.5 -times in bot-h length and width.

Referring to FIG. l, the fabric has been knitted fr( 80 denier yarn on a 28 gauge high speed warp-knitti machine to 60 courses per inch, using a marquisette cc struction. y

After drawing the fabric to 3.5 times in length on a pattern effect is obtained as shown in FIG. 2. Drawi the fabric in width, but not in length results in a patte as shown in FIG. 3.

Because of the different drawing effected in one djr tion, not only a different pattern effect is obtained, l: on dyeing such fabrics a multi-tone suc-h as a two to effect may be obtained from a single dye bath. Su fabrics find application as curtain nets.

Referring'to FIG.A 4, a fabric with a Wide open me is obtained after'drawing the fabric, as shown in FIG. to 3.5 times its length followed by drawing to 3.5 tim its width. Such fabrics are sheer, light in weight a1 suitable for reinforcement in coated or laminated stru tures.

Example 1 Warp knitted reverse locknit fabric was knitted from denier undrawn polyester yarn of birefringence Useful fabrics were obtained, which on examination showed that:

(1) Heat setting at 200 C. at 25 ft./min. does not noticeably weaken any of the above structure knitted from 15x10-3 birefringence yarn, although some weakening was observed in the case of a similar fabric knitted from undrawn yarn of 8X10-3.

(2) In the above examples 5, 6 `and 7 were more evenly drawn (along the individual filaments) than 2, 3 and 4. This is a direct consequence of knitting construction. In all cases however the overall effect is one of extreme regularity of drawing.

What we claim is:

1. A process for making knitted and woven fabrics [0 3- The yafn el'ystellitlty WaS S0 Small that there 15 having an open mesh construction over substantially the n0 appreciable embflttlement The fbfle WHS OT- entire area of the fabric comprising making the fabric d'dfaWH 1H length by a taeter 0f 3-0 `21h85" 'C' Utd from undrawn synthetic yarn capable of being irreversibly equently CODtlHUOllSlY Sideways-drawn 111 Width 1H elongated at least 1.75 times its length, said yarn being plane of the fabric by a factor of 4 .2 at 100 C. selected from the group consisting of polyethylene ter- 1 tige Same COIltHll'lOllS PfOeeSS the fabfle WHS heat Set 20 ephthalate and polypropylene; and uniformly drawing the 00. C- before "bhelttg Wollnd UP et a Speed 0f 75 feet fabric at a temperature above the second order transition mmute- The 11119211 W1d-th Of the fa'brlcs was .16" temperature in at least one direction uniformly over subth nal W1dth 48 It W111be 110t1ed that the wldth stantially the whole arca cf thc fabric in the plane of the ot increased by the factor of the sideways draw ratio fabric at least 1 75 time3- 111s@ C011tra 1t1011 Occurs in the forward-drawing stage, 25 2. A process as in claim 1 wherein the fabric is also iely` from 16 to about 12". The drawn denier is drawn at least 1.75 times in a second direction. VOXlmetely 25 Speeds 0f UP t0 300 feet Per mlDUte 3. A process as in claim 2 wherein the two directions be use@ The mesh Obtaltled by thlS USe Of the Presin which the fabric is drawn are at right angles to each invention is considerably larger than could be ob- Otihe edvby conventional knitting of such a tine denier yarn. 30 4 A process as in Claim 1 including the Step of sub. Example 2 jecting the drawn fabric to a heat setting operation to i) A warp knitted reverse locknit fabric, having patgggnsmnal Stablhty and generally Improved fabnc tdjtaftlon alSZfSOHW'S: bad 1.0/23 from 1'2/1'0" was 5. A process as in claim 1 wherein the undrawn yarn rom emer u1? ralf/n polyethylene tefeph 35 is polyethylene terepht'halate having a birefringence in the ate polyester yarn of b irefringence 15 X104. The range 2X10-s to 20X10-3 '.1560 vasarwd dra m letlgth by a facto? Of3'0 6. A process as in claim 5 including the step of subhe 1me ofS thselten ybcontnuously drawn in woidth jecting the drawn fabric to a heat setting operation to h p e UC y a ,actor "if 3'0 at 130 C- impart dimensional stability and generally improved fabric ne same continuous process the fabric was 'heat set at 40 appearance. .hec'fullflgeflliyoufg .up at 25 mm' 7. A process as in claim 1 including the step of dyeing ns and conditions in n/Iree 2 nged tlslfng ge the drawn fabric whereby multi-tone eifects are given by Owing data: CCP or e a single dyebath.

P tt t f T iXallple/FabT10 a em no anon Longitudinal giggling), Transverse dgiiug draw factor C. d i'aw factor C. Beek Front d .o/sA 'g 18 8 o i/in. 25 75 2.5 115 Nerjjiiiji: 0i@/iii/o:@irrita/ritirati: iIiZ/'L/J'): T i? 33 iig References Cited by the Examiner UNITED STATES PATENTS 2,475,588 7/1949 Bierman. 2,591,566 4/1952 Livingston 28-72 3,055,048 9/1962 Koppehele 26--57 X 3,140,330 7/1964 Guricrcz 264-288 3,176,374 4/1965 Murray et al. 28-72 3,184,820 5/1965 Kanbar 28-71.3 3,207,654 9/1965 Reilly 57-14'0 X FOREIGN PATENTS 610,171 10/1948 Great Britain. 515,199 8/1955 Canada. 86,725 1/1956 Norway. 590,313 1/1960 Canada. 1,250,397 11/1960 France.

247,889 12/1960 Australia. 100,070 12/1961 Netherlands.

MERVIN STEIN, Primary Examiner.


Assistant Examiners.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2475588 *Feb 28, 1946Jul 12, 1949Howard R BiermanDeceleration harness comprising undrawn synthetic fibers or the like
US2591566 *Nov 20, 1951Apr 1, 1952Sanson Hosiery Mills IncStocking and method of producing same
US3055048 *Nov 12, 1959Sep 25, 1962American Viscose CorpSimultaneous blaxial stretching of film with a tenter frame
US3140330 *Dec 15, 1961Jul 7, 1964Union Carbide CorpProcess for stretching plastic net
US3176374 *Apr 29, 1963Apr 6, 1965Ici LtdMethod of treating filamentary tows
US3184820 *Apr 29, 1963May 25, 1965Maurice S KanbarApparatus for orienting the structure of synthetic yarn
US3207654 *Mar 16, 1962Sep 21, 1965Gen Tire & Rubber CoReinforced plastic covering materials
AU247889B * Title not available
CA515199A *Aug 2, 1955Celanese CorpStretched fabric
CA590313A *Jan 5, 1960Hoechst AgHeat treatment of linear polyester filaments before stretching
FR1250397A * Title not available
GB610171A * Title not available
NL100070A * Title not available
NO86725A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3387448 *Dec 30, 1963Jun 11, 1968Chadbourn Gotham IncStretched and stabilized yarns and fabrics
US3395744 *Feb 4, 1966Aug 6, 1968Firestone Tire & Rubber CoReinforcing fabric for tires
US3426940 *Nov 21, 1966Feb 11, 1969Phillips Petroleum CoPressure vessels
US3527862 *Jan 22, 1965Sep 8, 1970Teijin LtdProcess for the manufacture of polyester synthetic fibers
US3543359 *Aug 25, 1967Dec 1, 1970Whitaker Co FredMethod of producing multicolored yarn
US3547891 *Apr 2, 1969Dec 15, 1970Eastman Kodak CoHeat formable polyester film
US3549743 *May 15, 1967Dec 22, 1970Chemcell LtdMultistage drawing technique
US3701164 *Jan 14, 1970Oct 31, 1972Phillips Fibers CorpPanty-hose
US3716446 *Jan 21, 1971Feb 13, 1973Johnson & JohnsonPrivacy cubicle curtain cloth
US3987136 *Nov 12, 1973Oct 19, 1976Barmag Barmer Maschinenfabrik AktiengesellschaftProcess for the production of a synthetic fiber cord
US4005569 *Oct 2, 1974Feb 1, 1977Claude CorbiereTextured yarn
US4098097 *Apr 25, 1977Jul 4, 1978Metallgesellschaft AktiengesellschaftFabrics made from as spun untwisted yarn
US4199633 *May 16, 1978Apr 22, 1980Phillips Petroleum CompanyNapped double knit fabric and method of making
US4223059 *Apr 27, 1978Sep 16, 1980Biax Fiberfilm CorporationProcess and product thereof for stretching a non-woven web of an orientable polymeric fiber
US4280342 *Feb 21, 1979Jul 28, 1981Ab AiserProtective pad or garment for the human body or parts thereof
US4336638 *Oct 17, 1978Jun 29, 1982Netlon LimitedApparatus for stretching plastic webs
US4793330 *Jun 18, 1985Dec 27, 1988Isopedix CorporationOrthopedic cast system
US4861535 *Jun 12, 1986Aug 29, 1989Hoechst AktiengesellschaftProcess for preparing formable sheet structures
US5143679 *Feb 28, 1991Sep 1, 1992The Procter & Gamble CompanyMethod for sequentially stretching zero strain stretch laminate web to impart elasticity thereto without rupturing the web
US5156793 *Feb 28, 1991Oct 20, 1992The Procter & Gamble CompanyMethod for incrementally stretching zero strain stretch laminate web in a non-uniform manner to impart a varying degree of elasticity thereto
US5167897 *Feb 28, 1991Dec 1, 1992The Procter & Gamble CompanyMethod for incrementally stretching a zero strain stretch laminate web to impart elasticity thereto
US5174936 *Sep 18, 1991Dec 29, 1992Hoechst AktiengesellschaftProcess for preparing yarn component suitable for use in formable sheet structures
US20060121097 *Nov 12, 2005Jun 8, 2006Lodge Richard WTreatment articles capable of conforming to an underlying shape
U.S. Classification28/163, 264/290.2, 264/235.8, 139/420.00R, 66/202, 28/169
International ClassificationD03D15/00, D06C29/00
Cooperative ClassificationD10B2331/04, D06C29/00, D10B2401/14, D10B2503/02, D03D2700/0133, D10B2321/022, D03D15/00, D03D9/00, D10B2505/02
European ClassificationD03D15/00, D03D9/00, D06C29/00