Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3310109 A
Publication typeGrant
Publication dateMar 21, 1967
Filing dateNov 6, 1964
Priority dateNov 6, 1964
Publication numberUS 3310109 A, US 3310109A, US-A-3310109, US3310109 A, US3310109A
InventorsBelknap William B, Marx John W, Trantham Joseph C
Original AssigneePhillips Petroleum Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Process and apparatus for combination upgrading of oil in situ and refining thereof
US 3310109 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

March 21, 1967 w, MARX ETAL 3,310,109

PROCESS AND APPARATUS FOR COMBINATION UPGRADING OF OIL IN SITU AND REFINING THEREOF Filed NOV. 6, 1964 of :o GS/DI ow 3 mokww 558mm mmjoou Im IW @v NR 3 o I m moJ 9 :o E mm 5.528 msEmFZ mm m w z 96 3 2m .5256 vajhmm 20 CG; 0K

5 M RP m 0A T E MXN N N R R m AR O w w A Y B United States Patent Ofifice 3,310,109 Patented Mar. 21, 1967 3,310,109 PROCESS AND APPARATUS FOR COMBENATION UPGRADING OF OIL IN SITU AND REFENING THEREOF John W. Marx, William B. Belknap, and Joseph C. Trantham, Bartlesville, Okla, assignors to Phillips Petroleum Company, a corporation of Delaware Filed Nov. 6, 1964, Ser. No. 409,407 7 Claims. (Cl. 166-7) This invention relates to a process for producing oil by in situ combustion to upgrade the oil and refining the upgraded oil in the field near the well head.

Low gravity crude oil is particularly difficult to produce even though the pressure in the stratum containing the oil is substantial. In one well known sand bearing a heavy high viscosity crude having an API gravity of 8.5", the primary recovery is limited to about 2 or 3 percent of the in-place oil even though the static reservoir pressure is 1400 p.s.i. This leaves most of the oil in the stratum to be recovered by secondary production methods. It has been found that this 8.5 API gravity oil can be produced by reverse in situ combustion so as to upgrade the oil to about 26 to 27 API gravity as it leaves the well head.

The invention is concerned with a process for producing and upgrading a heavy oil in situ and recovering various fractions of the upgraded oil from the water-containing effiuent from the well head.

Accordingly, an object of this invention is to provide a combination process for upgrading a heavy oil in situ and refining the upgraded oil. Another object is to provide a process for refining an upgraded oil produced by in situ combustion and containing substantial concentrations of water while avoiding the formation of heavy oil-water or water-oil emulsions. A further object is to provide a refining process for recovering various oil fractions from upgraded crude oil produced by in situ combustion and containing large concentrations of water. Other objects of the invention will become apparent to one skilled in the art upon consideration of the accompanying disclosure.

A broad aspect of the invention comprises producing an upgraded oil from a heavy oil-bearing stratum by in situ combustion whereby the upgraded hot eifiuent contains substantial concentrations of Water and is at an elevated pressure, passing the vaporous efiluent from the well head of the production well thru a pressure reducing valve to substantially reduce the pressure thereof and cooling the resulting vapor stream to a temperature not substantially above 500 F. to recover a liquid heavy oil fraction and a separate vapor stream comprising oils boiling above about 500 F. and water. The foregoing procedure comprising cooling the in situ combustion effiuent to a temperature of not more than 500 F. and, preferably, at about 500 F., has the effect of preventing the formation of very refractory water-oil emulsions which are a serious problem when the heavy cut and the water are condensed together. The heavy cut is separately recovered at about 500 F. and the Water in the Well eflluent remains in vapor form and is passed along with the lower boiling hydrocarbons to a second cooling step to cool same to a temeprature substantially below the boiling point of the Water in the vaporous stream and, preferably, to about 100 F. The cooled stream comprising liquid hydrocarbons and water as well as vaporous hydrocarbons is separated into water, liquid oil, and light hydrocarbon gases. The liquid oil fraction is then passed to a conventional fractionator to separate the same into several cuts of different boiling ranges.

One method of upgrading the high gravity crude oil is disclosed in the copending application of I. C. Trantham and I. W. Marx, S.N. 383,285, filed July 17, 1964, now

US. Patent No. 3,232,345. However, the invention is applicable to the production of oil produced by any forward or reverse drive in situ combustion process. In a direct or forward drive process the temperature of the produced efiluent is not sufli-ciently high for application of the invention until the fire front approaches or passes the production Well. Since the combustion zone moves in a reverse direction to the flow of air in a reverse burning process and the products from the combustion zone pass thru burned over hot sand behind the combustion front on the way to the production well, the efiluent from the reverse burning process is usually above 1000 F. Due to the fact that some oxygen from the injected air bypasses the hot combustion zone and appears in the production Well, well bore fires destroy substantial quantities of the produced oil and damage well equipment unless precautions are taken. The injection of water or other fluid coolant into the production well adjacent the pro ducing zone to reduce the efiluent temperature to the range of 500800 F. is practiced. This results in incorporating in the upgraded oil a substantial quantity of water in addition to formation or connate water vaporized in the combustion phase of the process and water formed by combustion.

A more complete understanding of the invention may be obtained by reference to the accompanying schematic drawing which is a flow in accordance with a preferred embodiment of the process.

Referring to the drawing, a heavy oil bearing stratum 10 is penetrated by a production well 12. A combustion zone 14 has been moved out from well 12 into the stratum by injection of combustion-supporting gas thru one or more offset injection wells. The produced efiluent is recovered thru tubing string 16 and water injected from line 18 thru spray head 20 in sufficient quantity to reduce the temperature of the hot efiluent to the range of about SOD-800 F.

The hot effluent under substantial pressure in the range of about 500-2000 p.s.i.g. and at a temperature in the range of 500-800 F. is passed thru line 22 to a sand trap 24 for removal of any sand contained in the produced efiluent. The sand-free eflluent is passed thru line 26 to a liquid-gas separator 28. An expansion valve 30 substantially reduces the pressure of the efiluent to the range of about 250400 p.S.i.g. and, preferably, to about 300 p.s.i.g.

Expanded efiluent is cooled in a suitable cooler, preferably, an air fin type cooler 32 to reduce the temperature to not more thanabout 500 P. so that the oil in the vaporous stream boiling above this temperature is condensed and is recovered from separator 28 thru line 34. The uncondensed vapors including water and lower :boil ing hydrocarbons are passed overhead thru line 36 to a second gas-liquid separator 38. Air fin cooler 40 in line 36 economically reduces the temperature of the vaporous stream therein substantially and water cooler 42 further reduces the temperature to substantially below the boiling point of water at ambient pressure, such as about F. This condenses most of the water and the hydrocarbon fraction of the efiluent boiling above 100 F. In separator 38 water and oil are separated by phase separation in the lower section thereof and water is withdrawn thru line 44 while the oil fraction is with-drawn thru line 46 and passed to fractionating tower 48. The overhead gaseous stream from separator 38 is passed thru line 50 and thru a demister 52 from which separated liquid is removed thru line 54 and gaseous material is passed thru line 56 as exhaust gas with gas for analysis being taken off in a side stream thru line 58.

The liquid oil from line 46 is separated into various fractions in fractionator 48 in conventional manner, recovering the heavier oil th-ru line 60 as a bottoms fraction, the intermediate oil thru line 62 as a side cut, and the light oil fraction overhead thru lines 64 and 66 which connect with a surgetank -68. Reflux is passed from surge tank 68 to the upper section of the fractionator via line 70. Reboiler means 72 for heating the lower section of fractionator 48 is provided.

To illustrate the invention the upgraded oil from stratum is quenched to a temperature in the range of 500-800 F. at a pressure of about 1400 p.s.i.g. About 23 barrels of water per hour and 11 barrels of oil per hour constitute the hot efiluent passing into sand trap 24. Valve is set to control the pressure downstream thereof at about 300 p.s.i.g. Air fin cooler 32 reduces the temperature to about 500 F. when cooling is required to reduce the efiluent temperature. The oil fraction boiling above about 500 F. recovered thru line 34 amounts to 5.3 b./hr. The overhead vapor stream is cooled from about 500 F. to about 100 F. when passing thru heat exchangers and 42 with a substantial portion of the cooling being effected in the air fin cooler. This condenses substantially all of the water in the stream passing into separator 38 along with the oil boiling above 100 F. The condensed Water is recovered thru line 44 at the rate of about 23 b./ hr. and the condensed oil i passed thru line 46 at about 100 F. to fractionator 48. The fractionation in tower 48 is maintained at a pressure of about 50 p.s.i.g. with a reboiler temperature of about 525 F. The heavier oil having a boiling range of 400500 F. is recovered thru line '60 at the rate of about 2 b./ hr. while the intermediate oil fraction having a boiling range of 300400 F. is recovered thru line '62 at the rate of 1.7 b./hr. The light hydrocarbon overhead fraction having a boiling range of 100-300 F. is recovered thru line 66 at the rate of 2 b/ hr.

A counterfiow combustion test was run on the 8.5 API gravity oil referred to above at a pressure of about 250 p.s.i.g. and an oil of 265 API gravity was produced. The test demonstrated that counterflow or reverse combustion at elevated pressures produces rather light oils. A sample of the 26.5 API gravity oil was fractionated in conventional manner into 4 different boiling range fractions and the data from the distillation are presented in the table below.

Certain modifications of the invention will become apparent to those skilled in the art and the illustrative details disclosed are not to be construed as imposing unnecessary limitations on the invention.

We claim:

1. A process for producing selected hydrocarbons from subterranean oil sand penetrated by an injection well and a production well, which comprises the steps of:

(a) heating said oil by in situ combustion of a portion thereof so as to heat and crack another substantial portion thereof to lighter normally gaseous and liquid hydrocarbons, thereby producing an efiluent vapor stream at a temperature in the range of about 500 to 800 F. and a pressure in the range of about 500 to 2000 p.s.i.g.;

(b) recovering the vapor stream of step (a) from said production well;

(c) removing any sand contained in the vapor stream of step (b);

(d) reducing the pressure of the vapor stream of step (c) to about 300 p.s.i.g. and the temperature to not more than about 500 F.;

(e) separating the liquid oil from the vapor fraction of the stream of step (d) under the pressure and temperature conditions of step (d) and separately recovering each fraction;

(f) further cooling the vapor fraction of step (e) to a temperature substantially below the boiling point of water at ambient pressure to separate a water fraction, a liquid oil fraction, and a vapor fraction and separately recovering each fraction; and

(g) fractionating the oil fraction of (f) into an overhead light hydrocarbon fraction, at least one intermediate fraction, and a heavier bottoms fraction.

2. A process for producing selected hydrocarbons from subterranean oil sand penetrated by an injection well and a production well, which comprises the steps of:

(a) heating said oil by in situ combustion of a portion thereof so as to heat and crack another substantial portion thereof to lighter normally gaseous and liquid hydrocarbons, thereby producing an effluent vapor stream in said production well comprising oil and combustion gases at a temperature of at least 1000 F.;

(b) water quenching the efiiuent from step (a) within said production well to a temperature in the range of 500 to 800 F. and a pressure in the range of 500 to 2000 p.s.i.g.;

(c) recovering the vapor stream of step (b) from said production well;

(d) removing any sand contained in the vapor stream of step (c);

(e) reducing the pressure of the sand-free vapor stream of step (d) to about 300 p.s.i.g. and the temperature to not more than about 500 F.;

(f) separating the liquid oil from the vapor fraction of the stream of step (e) under the pressure and temperature conditions of step (e) and separately recovering each fraction;

(g) further cooling the vapor fraction of step (f) to a temperature substantially below the boiling point of water at ambient pressure to separate a Water fraction, a liquid oil fraction, and a vapor fraction and separately recovering each fraction; and

(h) fractionating the oil fraction of step (g) into an overhead light hydrocarbon fraction, at least one intermediate fraction, and a heavier bottom fraction and separately recovering each fraction.

3. The process of claim 2 wherein the oil in said sand is a heavy viscous crude oil and the combustion of step (a) is a reverse drive operation with air being injected thru said injection well and ignition initiated at said production well.

4. The process of claim 2 wherein temperature reduction in step (e) is elTected principally by indirect heat exchange with air in air fin cooler and in step (g) first by indirect heat exchange with air in an air fin cooler and then by indirect heat exchange with Water.

5. Apparatus comprising in combination:

(1) a well head connected by casing and tubing with an oil producing zone;

(2) a sand trap connected by a first conduit with said Well head for flow of fluid from said zone to said trap;

(3) a first liquid vapor separator having an inlet for an oil feed, an outlet for liquid oil in a lower section, and a vapor outlet in an upper section;

(4) a second conduit connecting said sand trap with the oil feed inlet of (3);

(5) an expansion valve and an air fin cooler down stream thereof in said second conduit;

(6) a second liquid-vapor separator having a feed inlet in an intermediate section, a water outlet in a lower section, -a liquid oil outlet in a section intermediate said water outlet and said feed inlet;

(7) a third conduit connecting the vapor outlet of the first separtor of (3) with the feed inlet of the second separator of (6);

(8) an air fin cooler and a water cooler downstream thereof in the third conduit of (7 (9) a fractionator having a feed inlet for liquid oil in an intermediate section, an outlet for a bottoms fraction, an outlet for an overhead fraction, an outlet for an intermediate fraction, a reboiler connected with the lower section; a reflux means connected with the upper section thereof and with the overhead outlet; and

(10) a fourth conduit connecting the liquid oil outlet of the second separator of (6) with the feed inlet of the fractionator of (9).

6. The apparatus of claim 5 including:

(11) spray means adjacent the lower end of the casing and the producing zone of (1) and (12) a water line connected With the spray means of 7. Apparatus comprising in combination:

(1) a well head connected by casing and tubing with an oil producing zone;

(2) a first liquid-vapor separator having an inlet for an oil feed, an outlet for liquid oil in a lower section, and a vapor outlet in an upper section;

(3) a first conduit connecting said well head with the feed inlet to the first separator of (2);

(4) an expansion valve and an indirect heat exchanger downstream thereof in the first conduit of (3);

(5) a second liquid-vapor separator having a feed inlet in an intermediate section, a water outlet in a lower section, a liquid oil outlet in a section intermediate said water outlet and said feed inlet;

(6) a second conduit connecting the vapor outlet of the first separator of (3) with the feed inlet of the second separator of (5);

(7) indirect heat exchange means in the second conduit of (6); Y

(8) a fractionator having a feed inlet for liquid oil in an intermediate section, an outlet for a bottoms fraction, an outlet for an overhead fraction, an outlet for an intermediate fraction, a reboiler connected With the lower section; a reflux means connected with'the upper section thereof and with the overhead outlet; and

(9) a third conduit connecting the liquid oil outlet of the second separator of (5) with the feed inlet of the fractionator of (8).

References Cited by the Examiner UNITED STATES PATENTS 2,327,187 8/1943 Hill 208354 X 2,426,110 8/ 1947 McCorquodale et al. 208354 X 2,900,312 8/1959 Gilmore 208354 3,202,219 8/1965 Parker 1667 X 3,240,270 3/1966 Marx 16611 X 3,254,711 6/1966 Parker 1667 CHARLES E. OCONNELL, Primary Examiner.

S. J. NOVOSAD, Assistaiit Examiner.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2327187 *Aug 31, 1939Aug 17, 1943Stanolind Oil & Gas CompanyRecovery of distillate hydrocarbons from well fluids
US2426110 *Oct 14, 1942Aug 19, 1947Sun Oil CoDistillation of crude petroleum
US2900312 *Oct 16, 1957Aug 18, 1959Phillips Petroleum CoFractionation
US3202219 *Feb 9, 1962Aug 24, 1965Phillips Petroleum CoApparatus for protection of in situ combustion wells
US3240270 *May 2, 1958Mar 15, 1966Phillips Petroleum CoRecovery of hydrocarbons by in situ combustion
US3254711 *Aug 29, 1963Jun 7, 1966Phillips Petroleum CoNatural gasoline conservation during in situ combustion
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3380913 *Dec 28, 1964Apr 30, 1968Phillips Petroleum CoRefining of effluent from in situ combustion operation
US3442332 *Feb 1, 1966May 6, 1969Percival C KeithCombination methods involving the making of gaseous carbon dioxide and its use in crude oil recovery
US3759324 *May 25, 1972Sep 18, 1973Kobe IncCleaning apparatus for oil well production
US3802501 *Jun 22, 1973Apr 9, 1974Kobe IncCleaning apparatus for oil well production
US4303127 *Feb 11, 1980Dec 1, 1981Gulf Research & Development CompanyMultistage clean-up of product gas from underground coal gasification
US4778586 *Jun 5, 1987Oct 18, 1988Resource Technology AssociatesViscosity reduction processing at elevated pressure
US4818371 *Jun 5, 1987Apr 4, 1989Resource Technology AssociatesViscosity reduction by direct oxidative heating
US5008085 *Mar 31, 1989Apr 16, 1991Resource Technology AssociatesApparatus for thermal treatment of a hydrocarbon stream
US6581684Apr 24, 2001Jun 24, 2003Shell Oil CompanyIn Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US6588503Apr 24, 2001Jul 8, 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to control product composition
US6588504Apr 24, 2001Jul 8, 2003Shell Oil CompanyIn situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US6591906Apr 24, 2001Jul 15, 2003Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US6591907Apr 24, 2001Jul 15, 2003Shell Oil CompanyIn situ thermal processing of a coal formation with a selected vitrinite reflectance
US6607033Apr 24, 2001Aug 19, 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to produce a condensate
US6609570Apr 24, 2001Aug 26, 2003Shell Oil CompanyIn situ thermal processing of a coal formation and ammonia production
US6688387Apr 24, 2001Feb 10, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6698515Apr 24, 2001Mar 2, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a relatively slow heating rate
US6702016Apr 24, 2001Mar 9, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US6708758Apr 24, 2001Mar 23, 2004Shell Oil CompanyIn situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US6712135Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a coal formation in reducing environment
US6712136Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US6712137Apr 24, 2001Mar 30, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US6715546Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6715547Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US6715548Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6715549Apr 24, 2001Apr 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US6719047Apr 24, 2001Apr 13, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US6722429Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6722430Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US6722431Apr 24, 2001Apr 20, 2004Shell Oil CompanyIn situ thermal processing of hydrocarbons within a relatively permeable formation
US6725920Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US6725921Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation by controlling a pressure of the formation
US6725928Apr 24, 2001Apr 27, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a distributed combustor
US6729395Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US6729396Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US6729397Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US6729401Apr 24, 2001May 4, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation and ammonia production
US6732794 *Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6732795Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US6732796Apr 24, 2001May 11, 2004Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US6736215Apr 24, 2001May 18, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US6739393Apr 24, 2001May 25, 2004Shell Oil CompanyIn situ thermal processing of a coal formation and tuning production
US6739394Apr 24, 2001May 25, 2004Shell Oil CompanyProduction of synthesis gas from a hydrocarbon containing formation
US6742587Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US6742588Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US6742589Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US6742593Apr 24, 2001Jun 1, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US6745831Apr 24, 2001Jun 8, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US6745832Apr 24, 2001Jun 8, 2004Shell Oil CompanySitu thermal processing of a hydrocarbon containing formation to control product composition
US6745837Apr 24, 2001Jun 8, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US6749021Apr 24, 2001Jun 15, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a controlled heating rate
US6752210Apr 24, 2001Jun 22, 2004Shell Oil CompanyIn situ thermal processing of a coal formation using heat sources positioned within open wellbores
US6758268Apr 24, 2001Jul 6, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US6761216Apr 24, 2001Jul 13, 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
US6763886Apr 24, 2001Jul 20, 2004Shell Oil CompanyIn situ thermal processing of a coal formation with carbon dioxide sequestration
US6769483Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US6769485Apr 24, 2001Aug 3, 2004Shell Oil CompanyIn situ production of synthesis gas from a coal formation through a heat source wellbore
US6789625Apr 24, 2001Sep 14, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US6805195Apr 24, 2001Oct 19, 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US6983852Sep 24, 2003Jan 10, 2006Specialized Tech Inc.Desanding apparatus and system
US6994168Apr 24, 2001Feb 7, 2006Scott Lee WellingtonIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US7032660Apr 24, 2002Apr 25, 2006Shell Oil CompanyIn situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US7383958Dec 1, 2005Jun 10, 2008Specialized Tech IncDesanding apparatus and system
US7640987Jan 5, 2010Halliburton Energy Services, Inc.Communicating fluids with a heated-fluid generation system
US7735935Jun 1, 2007Jun 15, 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US7770643Aug 10, 2010Halliburton Energy Services, Inc.Hydrocarbon recovery using fluids
US7809538Jan 13, 2006Oct 5, 2010Halliburton Energy Services, Inc.Real time monitoring and control of thermal recovery operations for heavy oil reservoirs
US7832482Oct 10, 2006Nov 16, 2010Halliburton Energy Services, Inc.Producing resources using steam injection
US7866386Oct 13, 2008Jan 11, 2011Shell Oil CompanyIn situ oxidation of subsurface formations
US7866388Jan 11, 2011Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US7942203May 17, 2011Shell Oil CompanyThermal processes for subsurface formations
US8011451Sep 6, 2011Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US8113272Oct 13, 2008Feb 14, 2012Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US8146661Oct 13, 2008Apr 3, 2012Shell Oil CompanyCryogenic treatment of gas
US8146669Oct 13, 2008Apr 3, 2012Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US8151907Apr 10, 2009Apr 10, 2012Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8162059Apr 24, 2012Shell Oil CompanyInduction heaters used to heat subsurface formations
US8162405Apr 24, 2012Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US8172335May 8, 2012Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8177305Apr 10, 2009May 15, 2012Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8196658Jun 12, 2012Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US8220539Jul 17, 2012Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8224163Oct 24, 2003Jul 17, 2012Shell Oil CompanyVariable frequency temperature limited heaters
US8224164Oct 24, 2003Jul 17, 2012Shell Oil CompanyInsulated conductor temperature limited heaters
US8225866Jul 21, 2010Jul 24, 2012Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8230927May 16, 2011Jul 31, 2012Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US8233782Jul 31, 2012Shell Oil CompanyGrouped exposed metal heaters
US8238730Aug 7, 2012Shell Oil CompanyHigh voltage temperature limited heaters
US8240774Aug 14, 2012Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US8256512Oct 9, 2009Sep 4, 2012Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US8261832Sep 11, 2012Shell Oil CompanyHeating subsurface formations with fluids
US8267170Sep 18, 2012Shell Oil CompanyOffset barrier wells in subsurface formations
US8267185Sep 18, 2012Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US8272455Sep 25, 2012Shell Oil CompanyMethods for forming wellbores in heated formations
US8276661Oct 2, 2012Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US8281861Oct 9, 2012Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US8327932Apr 9, 2010Dec 11, 2012Shell Oil CompanyRecovering energy from a subsurface formation
US8353347Oct 9, 2009Jan 15, 2013Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US8434555Apr 9, 2010May 7, 2013Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US8448707May 28, 2013Shell Oil CompanyNon-conducting heater casings
US8485252Jul 11, 2012Jul 16, 2013Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8536497Oct 13, 2008Sep 17, 2013Shell Oil CompanyMethods for forming long subsurface heaters
US8562078Nov 25, 2009Oct 22, 2013Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8579031May 17, 2011Nov 12, 2013Shell Oil CompanyThermal processes for subsurface formations
US8627887Dec 8, 2008Jan 14, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8631866Apr 8, 2011Jan 21, 2014Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US8636323Nov 25, 2009Jan 28, 2014Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US8701768Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations
US8701769Apr 8, 2011Apr 22, 2014Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US8739874Apr 8, 2011Jun 3, 2014Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US8752904Apr 10, 2009Jun 17, 2014Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8789586Jul 12, 2013Jul 29, 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US8820406Apr 8, 2011Sep 2, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8833453Apr 8, 2011Sep 16, 2014Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US8851170Apr 9, 2010Oct 7, 2014Shell Oil CompanyHeater assisted fluid treatment of a subsurface formation
US8881806Oct 9, 2009Nov 11, 2014Shell Oil CompanySystems and methods for treating a subsurface formation with electrical conductors
US9016370Apr 6, 2012Apr 28, 2015Shell Oil CompanyPartial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9022109Jan 21, 2014May 5, 2015Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US9022118Oct 9, 2009May 5, 2015Shell Oil CompanyDouble insulated heaters for treating subsurface formations
US9033042Apr 8, 2011May 19, 2015Shell Oil CompanyForming bitumen barriers in subsurface hydrocarbon formations
US9051829Oct 9, 2009Jun 9, 2015Shell Oil CompanyPerforated electrical conductors for treating subsurface formations
US9062525 *Jan 20, 2012Jun 23, 2015Single Buoy Moorings, Inc.Offshore heavy oil production
US9127523Apr 8, 2011Sep 8, 2015Shell Oil CompanyBarrier methods for use in subsurface hydrocarbon formations
US9127538Apr 8, 2011Sep 8, 2015Shell Oil CompanyMethodologies for treatment of hydrocarbon formations using staged pyrolyzation
US9129728Oct 9, 2009Sep 8, 2015Shell Oil CompanySystems and methods of forming subsurface wellbores
US9309755Oct 4, 2012Apr 12, 2016Shell Oil CompanyThermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US20020027001 *Apr 24, 2001Mar 7, 2002Wellington Scott L.In situ thermal processing of a coal formation to produce a selected gas mixture
US20020040778 *Apr 24, 2001Apr 11, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US20020049360 *Apr 24, 2001Apr 25, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce a mixture including ammonia
US20020053431 *Apr 24, 2001May 9, 2002Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce a selected ratio of components in a gas
US20020132862 *Apr 24, 2001Sep 19, 2002Vinegar Harold J.Production of synthesis gas from a coal formation
US20030173080 *Apr 24, 2002Sep 18, 2003Berchenko Ilya EmilIn situ thermal processing of an oil shale formation using a pattern of heat sources
US20030192691 *Oct 24, 2002Oct 16, 2003Vinegar Harold J.In situ recovery from a hydrocarbon containing formation using barriers
US20030192693 *Oct 24, 2002Oct 16, 2003Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US20030196788 *Oct 24, 2002Oct 23, 2003Vinegar Harold J.Producing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation
US20040020642 *Oct 24, 2002Feb 5, 2004Vinegar Harold J.In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US20040074838 *Sep 24, 2003Apr 22, 2004Hemstock Christopher A.Desanding apparatus and system
US20040144541 *Oct 24, 2003Jul 29, 2004Picha Mark GregoryForming wellbores using acoustic methods
US20040145969 *Oct 24, 2003Jul 29, 2004Taixu BaiInhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US20060289353 *Dec 1, 2005Dec 28, 2006Specialized Tech Inc.Desanding apparatus and system
US20080314593 *Jun 1, 2007Dec 25, 2008Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US20130008663 *Jan 10, 2013Donald MacleanOffshore heavy oil production
WO2011033685A1 *Sep 18, 2009Mar 24, 2011Toyo Engineering CorporationMethod of partially upgrading heavy oil at well-site
Classifications
U.S. Classification166/256, 291/11.1, 166/266, 196/98, 166/75.12
International ClassificationC10G9/38, E21B43/40, E21B43/243, E21B43/34, E21B43/16, C10G9/00
Cooperative ClassificationC10G9/38, E21B43/243, E21B43/40
European ClassificationC10G9/38, E21B43/40, E21B43/243