Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3327872 A
Publication typeGrant
Publication dateJun 27, 1967
Filing dateJun 22, 1965
Priority dateJul 24, 1963
Publication numberUS 3327872 A, US 3327872A, US-A-3327872, US3327872 A, US3327872A
InventorsHomer W Madden
Original AssigneeHomer W Madden
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Container palletizing and depalletizing machine
US 3327872 A
Abstract  available in
Images(12)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

June 27, 1967 H. w. MADDEN CONTAINER PALLETIZING AND DEPALLETIZING MACHINE l2 Sheets-Sheet 1 Original Filed July 24 1963 INVENTOR HM oar/v BY 2 )l. ATTORNEY June 27, 1967 H. w. MADDEN 3,327,372

CONTAINER PALLETIZING AND DEPALLETIZING MACHINE Original Filed July 24, 1963 v 12 Sheets-Sh e 2 H WMODEN ATTORNEY June 27, 1967 H. w. MADDEN CONTAINER PALLETIZING AND DEPALLETTZING MACHINE Original Filed July 24. 1963 12 Sheets-Sheet INVENTOR HWMADDEN ATTORNEY June 27, 1967 H. w. MADDEN 4 3,327,872

CONTAINER PALLEJTIZING AND DEPALLETIZING MACHINE Original Filed July 24, 1965 12 Sheets-Sheet 4 INVENTOR HWMADOE'N ,Byjlnfw ATTORNEY June 27, 1967 H. w. MADDEN 3,327,872

CONTAINER PALLETIZING AND DEPALLETTZING MACHINE Original Filed July 24 1963 12 heetsSh e 5 7.2 36L INVENTOR HWMADDE/V ATTORNEY June 27, 1967 H. W. MADDEN CONTAINER PALLETIZING AND DEPALLETIZING MACHINE l2 Sheets-Sheet 6 Original Filed July 24 1963 I I ENTOR HWMA 0o- ORN June 27, 1967 H. w. MADDEN CONTAINER PALLETIZING AND DEPALLETIZING MACHINE l2 Sheets-Sheet 7 Original Filed July 24, 1963 INVENTOR H 005 N Z 4. J m. 0 .9 6 m O O 7 7 g4 3 M 4 2 n 2 E 5/ a 82 H r \6 6 u 2 5 my m 2 2 o u l 7 a m w u ATTORNEY 1 June 27, 1967 H. w. MADDEN 3,327,372

CONTAINER PALLETIZING AND DEPALLETIZING MACHINE Original Filed July 24, 1963 12 Sheets-Sheet 3 INVENTORv 233 HIV/WA ooz/v ATTORNEY June 27, 1967 H. w. MADDEN CONTAINER PALLETIZING AND DEPALLETIZING MACHINE Original Filed July 24 196-3 12 Sheets-Sheet 9 INVENTOR H W/VA o 0 E N )4 W NE June 27, 1967 H. w. MADDEN CONTAINER PALLETIZING AND DEPALLETIZING MACHINE Original Filed July 24, 1963 l2 Sheets-Sheet 10 kmiiu d ATTORNEY June 27, 1967 H. w. MADDEN 3,327,372

' CONTAINER PALLETIZING AND DEPALLETIZING MACHINE Original Filed July 24, 1963 l2 Sheets-Sheet 11 FUSE MP W

R no V Sm if we PE W AM K 50 a! /62 -R oEPnLLrn-LE HOLD AUTO,

PALLET IN ITo Loan /04- cRTP PERI m6 5T 4/; furs 58! n... /00 cm IAN EN TOR H W/l/ADDELV BY ni x. a a ATTORNEY June 27, 1967 H. w. MADDEN 3,327,872

CONTAINER PALLETIZING AND DEPALLETIZING MACHINE Original Filed July 24, 1963 12 $heetsSheet 1'3 MLLET p was CRR /29 C c c PER 3 RAISED PLAT FORM Pun- CANS I 'LWVER @Rt DETEGIED I46 L 'rFo LEVELRM m'E coNveYoR PL Finzmuuvz voR msaH. CONVEYOR RIGHT INVENTOR HW/VADDEN ATTORNEY United States Patent 3,327,872 CONTAINER PALLETHZING AND DEEALLETIZENG MACHlNE Homer W. Madden, RR. 3, Box 11A, Scottsburg, Ind. 47170 Original application July 24, 1963, Ser. No. 297,349, new Patent No. 3,209,969, dated Aug. 17, 1965. Divided and this application June 22, 1965, Ser. No. 465,930

10 Claims. (Cl. 214-85) This invention relates to a machine for palletizing and depalletizing cans and other containers, and constitutes a division of my co-pending application, Ser. No. 297,349, filed July 24, 1963, now Patent N0. 3,200,969, issued Aug. 17, 1965.

A primary object of the invention is to provide a machine including a bin which is supported for rocking movement between an upright and a tilted position, and which bin is adapted to receive and support a pallet to receive cans or other containers during a palletizing operation, or from which cans or other containers are removed du-ring a depalletizing operation of the machine.

More particularly, it is an object of the invention to provide a tilt bin having conveyor means to facilitate movement of a full or empty pallet into or from the tilt bin, and for supporting the pallet with a portion thereof over a lift structure by which the pallet is raised and lowered within the bin.

Another object of the invention is to provide a machine including a tilt bin having a conveyor carried by .a top portion thereof for restricting and regulating the gravity feed of a tier of cans into the tilt bin and onto the pallet or onto a previously deposited tier of cans.

Still another object of the invention is to provide a tilt bin structure wherein said top conveyor additionally functions for sweeping a top tier of cans from the tilt bin in the depalletizing function of the machine.

Still a further object of the invention is to provide a machine having means for receiving and assemblying cans or containers to be palletized from a chute or other flow line of containers and for thereafter gravity feeding the assembled cans into the tilt bin with the flow thereof being retarded and governed by said top conveyor of the tilt bin.

Still another object of the invention is to provide a machine including an auxiliary frame disposed to receive cans or containers which are swept from a top tier of palletized cans supported in the tilt bin by said top conveyor of the tilt bin, and which auxiliary frame includes means for conveying the depalletized cans laterally away from the machine.

Various other objects and advantages of the invention will hereinafter become more fully apparent from the following description of the drawings, illustrating a presently preferred embodiment thereof, and wherein:

FIGURE 1 is a side elevational view of the complete machine in one position of the parts thereof during operation of the machine;

FIGURE 2A is an enlarged vertical sectional view of the forward part of the machine, taken substantially along a plane as indicated by the line 2A-2A of FIGURE FIGURE 23 is a longitudinal vertical sectional view of the remaining rear part of the machine and with the parts in positions corresponding to the positions of FIGURE 2A, and taken substantially along a plane as indicated by the line 2B2B of FIGURE 6;

FIGURE 3A is a view similar to FIGURE 2A but illustrating a different position of the parts of the machine as illustrated therein;

FIGURE 3B is a view similar to FIGURE 2B but showing the machine with the parts positioned as in FIG- URE 3A;

FIGURE 4A is a view corresponding to FIGURE 2A and illustrating a third position of certain of the parts of the machine;

FIGURE 43 is a view similar to FIGURE 3B but with the machine parts positioned as in FIGURE 4A, to illustrate another operation of the machine;

FIGURE 5 is a fragmentary top plan view of a part of the machine as illustrated in FIGURES 2A, 3A and 4A;

FIGURE 6 is as enlarged fragmentary cross sectional view taken substantially along a plane as indicated by the line 6-6 of FIGURE 2A;

FIGURE 7 is an enlarged fragmentary horizontal sectional view taken substantially along a plane as indicated by the line 7-7 of FIGURES 2A and 2B;

FIGURE 8 is an enlarged detailed vertical sectional view of a part of the structure as seen in FIGURES 3A and 3B;

FIGURE 9 is a fragmentary transverse sectional view taken substantially along a plane as indicated by the line 9-9 of FIGURE 2B;

FIGURE 10 is a fragmentary transverse sectional view, taken substantially along a plane as indicated by the line 1010 of FIGURE 2B FIGURE 11 is a diagrammatic view illustrating the hydraulic system of the machine, and

FIGURES 12A and 12B are diagrammatic views illustrating the electric circuits of the machine.

Referring more specifically to the drawings, the container palletizing and depalletizing machine in its entirety and as illustrated in FIGURE 1 is designated generally 15 and includes a main frame, designated generally 16, composed of a near or right side 17, as seen in its entirety in FIGURE 1, and a far or left side 18, partly seen in FIGURE 2B. The frame sides 17 and 18 are connected by cross braces 19, 2t) and 21, Each frame side includes a base member 22, .a top member 23 and three uprights 32, 25 and 26 which extend between and are secured to said members 22 and 23. As seen in FIGURE 1 and FIG- URE 2B, the rear uprights 26 extend to substantially above the top members 23. The top frame members 23 support bearings 27 which are secured thereto and in which are journaled trunnions 28 which are fixed to and project laterally from opposite corresponding sides 29 .and 30 of a tilt bin, designated generally 31, and which trunnions 28 are disposed in alignment with one another.

The bin sides 29 and 30 each includes a frame, designated generally 165, having a rear upright 166 and a front upright 167. The frame includes diagonally disposed cross members 168. The trunnions 28 project from the cross members 168 at the points of intersection thereof. Each bin side 29 and 30 also includes a wall 169. The bin 31 also includes a rear wall 17%, as seen in FIGURE 28, which extends between the rear corner posts 166.

The bin 31 includes a bottom 171 which is connected to and extends between the bottom portions of the frames 165 of the bin sides 29 and 3t) and which includes corresponding side portions 172 and an intermediate portion 173 which is downwardly offset relative to said side portions. The portions 172 and 173 each extends from front to rear of the bin 31. Each of the portions 172 supports a roller conveyor, designated generally 174, which extends from front to rear of the bin and which is composed of transversely spaced substantially parallel sides 175 which are secured to and disposed on the bottom portion 172 thereof, and a plurality of rollers 176 which are rotatively supported between the sides 175 and which include upper portions which protrude above the upper edges of said sides. A fluid pressure actuated scissors lift, designated generally 177, is mounted on the downwardly offset bottom portion 173 and in a retracted position, as seen in FIGURE 6, has its top surface disposed below the level of the rollers 176. The scissors lift 177 will hereinafter be described in detail.

Referring to FIGURES 1 and 4B, the corner posts 166 and 167 extend upwardly to above the upper edges of the side walls 169, and each frame 165 includes a top bar 178 which extends between the upper portions of the corner posts 166 and 167 thereof. Crossbars 179 extend between the front corner posts 167 and the rear corner posts 166. The bin 31 includes a top wall 180 which is disposed between the frame sides 165 and which is secured to the undersides of the cross members 179. The rear ends of the frame members 178 are provided with brackets 181 which support bearings 182 which are located behind the rear corner posts 166 and which journal a shaft 183 which extends therebetween. Sprocket wheels 184 are fixed to the shaft 183, between and adjacent the bearings 182, and a smaller sprocket wheel 185 is fixed to the shaft 183 between one of the sprocket wheels 184 and the adjacent bearing 182. A roller 186, at least the periphery of which is formed of rubber or other yieldable material, is fixedly disposed on the shaft 183 between the sprocket wheels 184.

Bearings 187 are secured to the upper side of the top plate 180 at its forward edge, forwardly of and between the front corner posts 167 to provide journals for a shaft 188 to the ends of which are fixed sprocket wheels 189. The sprocket wheels 189 align with the sprocket wheels 184 and endless chains 190 are trained over said aligned sprocket wheels. Two pairs of angular cleats or sweep members 191 extend between and are secured to complementary portions of the two chains 190 and are located with respect to one another, as seen in FIGURES 1 and 4B. As seen in FIGURE 4B, the bottom flights of the chains 190 and the sweep members 191 carried thereby travel along the underside of the top wall 180 and between the posts 166 and 167 of the two frames 165.

Asseen in FIGURES 1 and 4B, the two rear corner posts 166 have rearwardly extending brackets 192 supporting bearings 193 which journal a shaft 194. A rolier 195, corresponding to the roller 186, is fixed to the shaft 194, and a sprocket wheel 196 is fixed to the shaft 194 between the bearing 193 of the frame side 30 and the adjacent end of the roller 195. A hydraulic motor 44 is supported by the rear wall 170 and drives a sprocket wheel 197. An endless chain 45 is trained around the sprocket wheels 197 and 185 and also meshes with the sprocket wheel 196 for driving the rollers 186 and 195 in opposite directions, as indicated by the arrows 198 and 199, respectively, in FIGURE 48. The sprocket wheels 184 and 189 turn in the same direction as the sprocket wheel 185, as indicated by the arrow 198, so that the bottom flights of the chains 190 travel from front to rear of the bin 31 or from left to right of FIGURE 4B.

As best seen in FIGURE 7, the scissors lift 177 includes an elongated rectangular bottom frame 200 the vertical sides 201 of which have inwardly extending bottorn flanges 202. The scissors lift 177 includes a top plate 203 having transversely spaced depending flanges 204 which are spaced from the side edges thereof. Two pairs of lift arms are provided between the bottom frame 200 and the top plate 203. The outer pair of lift arms 205 straddle the inner pair of lift arms 206. The outer lift arms 205 are rigidly connected together adjacent their forward ends by a cross brace 207 which extends between the bottom edges of the arms 205 and under the arms 286. The inner arms 206 are rigidly connected together, more remote from the forward ends thereof, by an upwardly offset cross brace 208. The pairs of arms 205 and 206 are pivotally connected together intermediate of their ends by a pivot element 209, as seen in FIGURE 33. The rear ends of the outer scissors arms 205 are pivotally connected at 210 to the flanges 204 and the rear ends of the scissors arms 206 are pivotally connected at 211 to the rear ends of the side members 201. The forward ends of the arms 205 have rollers 212 which ride on the flanges 202 and the forward ends of the arms 206 have rollers 213 which ride on the bottom edges of the flanges 204. A hydraulic cylinder 24 is secured to the cross brace 208 and extends forwardly therefrom, and its piston rod 214 is pivotally connected at 215 to a forwardly offset portion 216 of the cross brace 287. The cylinder 24 is inclined downwardly from the cross brace 208 when the scissors lift 17 7 is in a fully retracted position.

One end of a hydraulic cylinder 12 is pivotally connected at 217 to the intermediate bottom cross brace 19 and has a forwardly extending piston rod 218 which is pivotally connected at 219 to the bottom frame 171.

A palletizing frame, designated generally 220, is composed of sides 221 and 222 which are spaced apart a distance corresponding to the spacing between the sides 17 and 18. The frame 220 is positioned to abut the forward end of the frame 16 with the side 221 aligning with the side 17 and the side 222 aligning with the side 18, and said frame 220 is secured to the frame 16 by a suitable fastening means 85. Each of the frame sides 221 and 222 includes two uprights 223 and 224 which extend above the remainder of the frame, as seen in FIGURE 1.

Cross braces 225 extend between the uprights 223 and laterally outward therefrom and cross braces 226 extend between and to beyond the uprights 224. The complementary ends of the braces 225 and 226 provide supports and journals for shafts 227 and 22-8 carrying pulleys or the like 229 about which are trained an endless conveyor 230. A hydraulic motor 35 is supported by the upright 223 of side 221 and is connected by a sprocket wheel and chain drive 36 to the shaft 227 for driving the endless conveyor 230.

A downwardly inclined chute 231 has a bottom 232 and side wall 233- which terminate over the end of the conveyor 230 which is trained around the pulley of shaft 227. As seen in FIGURE 5, the bottom 232 is flared adjacent said terminal end and the other side wall 234 of the chute includes an upwardly offset portion 235 which extends beyond said flared end of the bottom 232 and which is upwardly offset from the upper flight of the endless conveyor 230.

Bearings 236 project laterally from the member 226 to support and journal two vertical shafts 237 and 238. The shaft 237 is connected by a bevel gear drive 239' (FIG. 1) to the shaft 227. An endless chain 240 is trained around sprocket wheels 241 which are fixed to the shafts 237 and 238, and said chain has outwardly projecting lugs 242. The chain andlugs carried thereby travel in directions as indicated by the arrow 243 of FIGURE 5 so that the lugs 242 along the inner flight of the chain travel over a side edge of the upper flight of the conveyor 238, between the wall 233 and a vertical wall 244 which rises from a part of the cross member 226.

A brace structure 245 extends laterally from the cross members 226, in a direction away from the conveyor 230, as seen in FIGURE 5, to provide a support for a hydraulic cylinder 2 and two tubular guide members 246 which straddle said cylinder, as best seen in FIG- URES 2A and 5. Rods 247 extend slidably through the guides 246 and have inner ends secured to a sweep member 248, which in its retracted position of FIGURE 5 is disposed over the upper cross member 226 and in alignment with the wall 244. A piston rod 249 extends through the hydraulic cylinder 2 and is connected to the piston thereof, not shown, and has an inner end connected to the sweep member 248. The outer ends of the rods 247 and 249 are secured to a cross member 250 to insure movement of said rods in unison with one another, and which cross member is mounted for sliding movement between two guide members 251 which project laterally from the upper cross member 226.

A platform, designated generally 252, comprises spaced substantially parallel side members 253. A plurality of rollers 2"4 extend transversely between and are journaled by said sides 253 and are disposed so that coplanar upper portions of the rollers 254 are positioned slightly above the level of the upper edges of the sides 253. As indicated in FIGURE 5, a flat plate 255 may be substituted for the rollers 254, depending upon the type of containers being palletized. As seen in FIGURE 2A, a rod 256 which is supported by the uprights 223 extends through bearing members 257 which are secured to the undersides of the members 253, for pivotally supporting an inner end of the platform 252 adjacent the upper cross member 225 and the side of the conveyor 238, located adjacent thereto. As seen in FIGURE 3A, the platform 252 has side walls 258 which are supported by and rise from the side members 253. Hydraulic cylinders 5 are pivotally connected to and extend upwardly from the frame sides 221 and 222 and have upwardly extending piston rods 259 which are pivotally connected at 260 to the members 253 for supporting the platform 252 in either an elevated substantialy horizontal position, as seen in FIGURE 2A, or in an inclined position as seen in FIGURES 1 and 3A.

The platform 252, as best seen in FIGURE 8, includes a plate 261 forming a bridge member and which has depending side flanges 262 which engage between outer ends of the sides 253 and are pivotally connected thereto by pivot pins 263. A roller 254 is journaled between inner ends of the flan es 262 and beyond an inner edge of the plate 261. A rod 264 extends between and through outer portions of the flanges 262, for a purpose which will hereinafter become apparent. Full springs 265 are anchored to the members 253 and are connected to the flanges 262 for causing said flanges and the parts carried thereby to rock clockwise about the pivots 263 for elevating the roller 254 carried by the flanges 262 to its dotted line position of FIGURE 8, above the level of the other rollers, to provide a container stop.

As best seen in FIGURES 1, 2B, 3B and a depalletizin unit, generaly designated 266, includes a frame 267 which is swingably supported by pivot elements 268 on the upper ends of the rear corner posts 26, so as to be disposed behind the frame 16. Slotted braces 269 are pivotally connected at 270 to the frame 267 and are adjustably connected by fastenings 271 to thecorner posts 26 for supporting the frame 267 at a desired incline, as seen in FIGURES 1, 2B and 3B. Shafts 272 are journaled on the ends of the frame 267 and each supports two grooved pulleys 273. Two belts 274 are trained around the aligned pulleys 273 of the two shafts 272. The frame 267 supports spaced substantially parallel walls 275 and 276 which define an upwardly opening channel therebetween and which walls straddle the upper flights of the endless belts 274 and upper portions of the pulleys 273. A hydraulic motor 43 is mounted on one end of the frame 267 and is connected by a sprocket wheel and chain drive 277 to one of the shafts 272 for driving said shaft and its pulleys 273 and the other shaft 272 and the pulleys 273 thereof through the endless belts 274.

Assuming that the machine is to be used for depalletizing, the bin 31 is positioned in an upright position, as seen in FIGURE 2B with the lift 177 fully retracted. Two roller tables 38 are positioned within the frame 220 in front of and in alignment with the roller conveyors 174. These roller tables 38, as seen in FIG- URE 1, are supported by legs 278 and are of a height and width corresponding to the roller conveyors 174, so that a pallet 279 can be supported on the rollers of the two tables 38. The pallet 279, as shown in FIGURES 2B and 4B would initially contain six tiers of cans or containers 280, separated by separator plates or sheets 281. The fully loaded pallet 279 would then be pushed from left to right on the tables 38 through the open front of the bin 31 and onto the roller conveyors 174, as seen in FIGURES 2B and 6. With a leading sweep member 1591 of a pair of said sweep members disposed under the sprocket wheels 189, the hydraulic cylinder 24 is pressurized to elevate the lift 177. Since the pallet 279 while resting on the roller conveyors 176 spans or bridges the retracted lift 177, as seen in FIGURE 6, when the cylinder 24 is pressurized to extend the lift 177, the top plate 283 of the lift will rise into engagement with the underside of the pallet 279 for elevating said pallet and the tiers of containers 280 which are supported thereon. The lift 177 is elevated until the upper tier of cans 280 is substantially in contact with the top plate 180 of the bin 31. The hydraulic cylinder 12 is then pressurized for rocking the bin 31 clockwise about its pivots 28 from its position of FIGURE 2B to its position of FIGURE 4B. The braces 269 are clamped to the rear posts 26 by the fastenings 271 to support the depalletizing unit 266 at a desired angle as seen in FIGURE 4 B. Fluid pressure is furnished to the hydraulic motor 43 for driving the sprocket wheels 277 in a desired direction so that that upper flights of the conveyor belts 274 Will travel in either direction desired between the walls 275 and 276. Fluid pressure is also supplied to the hydraulic motor 44 for driving the sprocket wheel 197 and chain 45 so that the chains 191) and the roller 186 Will turn in the direction as indicated by the arrow 198 and the roller 195 will turn in the opposite direction as indicated by the arrow 19-9. The rear wall 170' of the bin terminates below the level of the top plate 188 to provide an upper rear opening 282 at the rear of the bin 31, and a plate 283 extends rearwardly across the bottom of said opening 282 to the periphery of the roller 195. As the chains 190 are driven, the leading sweep member 191 on the bottom flight of said chains engages the cans 280' of the forwardmost row of cans of the top tier to push the top tier of cans rearwardly, so that the transverse rows of cans of the top tier, commencing with the rear row thereof, passes through the opening 282 and off of the plate 283 into engagement with the oppositely revolving metering rolls 186 and 195 which feed the rearmost row of cans from the bin 31 and discharge said cans into the upwardly opening channel formed by the walls 275 and 276. The row of cans fall between the walls 275 and 276 and come to rest on their sides on the upper flights of the belts 274 which convey the cans longitudinally of the unit 266 for discharge from one or the other ends of said unit, toward which the top flights of the belts 274 are traveling. The cans 288 which are thus depalletized may be carried away from the unit 266 on any suitable chute or other conveyor, not shown, disposed beyond the end of the frame 267 toward which the cans are moved.

After the top tier of cans have thus been removed from the bin 31 and depalletized, the uppermost separator 281 is removed and may be placed upon a rack 284 which is mounted between and secured to the uprights 223 and 224, as seen in FIGURE 1, for example. The hydraulic cylinder 12 is then pressurized at its outer end and depressurized at its inner end for causing the bin 31 to rock counterclockwise, as seen in FIGURE 1, back to an upright position. The hydraulic cylinder 24 is then further pressurized to elevate the pallet 279 sufficiently to elevate the then uppermost tier of cans 280 to a position directly beneath the top wall 180, after which the inner end of the cylinder 12 is again pressurized to tilt the bin 31 back to its position of FIGURE 4B, for repeating the depalletizing operation previously described.

After the bottommost tier of cans 280 have been depalletized in the aforesaid manner, the bin 31 is returned to an upright position and the lift 177 is returned to a fully retracted position by depressurizing the hydraulic cylinder 24, so that the pallet 279 will rest upon the two roller conveyors 174, as seen in FIGURE 6.

Two roller tables 42, one of which is seen in FIGURE 4B, may be positioned to extend outwardly from the rear of the frame 16 so that the unloaded pallet 279 may be pushed rearwardly on the roller conveyors 174 through a bottom opening 285 of the rear wall 170 and onto the roller tables 42 from which the empty pallet can be conveyed away from the machine 15. This is advantageous since another full pallet may have been placed upon the roller tables 38 prior to completely depalletizing the containers on the pallet 279 located in the bin, and so that immediately after the empty pallet 279 has been removed from the bin 31 through its bottom rear opening 28-5, another loaded pallet may be conveyed from the tables 38 through the open front of the bin 31 and onto the roller conveyors 174, for repeating the depalletizing operation.

An operators platform 39 is secured to the frame 16, preferably to the side 23 thereof, and a console or cabinet 37 is also secured to said frame side and to the platform or stand 39. The machine 15 is electro-hydraulically operated, depending solely on electricity as the only external source of power and control coupled to a closed hydraulic system which includes a pump, cylinders, motors and valves. A major portion of the hydraulic system is contained in the console or cabinet 37, and this likewise applies to most of the electrical system. In accomplishing the depalletizing operation, previously described, an operator on the stand 39 closes a switch 159 on the console 37 to complete an electric circuit to an electric motor 75 (FIGURES 11 and 12A), and also closes a switch 160 to warm up photoelectric cells 49, 58, 51 and 54 (FIGURES 1 and Switch 161 is actuated to select automatic, switch 162 is actuated to select depalletize, and switch 158 is actuated to select either right or left discharge of the depalletized cans from the unit 266. A pushbutton 116 is actuated to energize a latching type relay 118 which closes a contact 129. Since contact 130 and 13-1 and photo-electric cell 50 are in circuit closing positions, this will energize solenoid 146 of valve 66 so that hydraulic fluid will be supplied by the pump 74 from the reservoir 73 to pressurize the hydraulic cylinder 24 and thus elevate the scissors lift and the pallet of cans contained thereon. The top row of containers 280 is detected by the photo-electric cell to break the circuit of the solenoid 146 to close the valve 66 and interrupt upward movement of the scissors lift when the top tier of containers 280* are in the position as seen in FIGURE 48. The photo-electric cell 50 also functions at the same time by the closing of its contacts 128 and 120 to energize coil 119 to open contact 130 and close contact 132. A solenoid 148 of the valve 67 is energized by the closing of contact 132 so that the hydraulic fluid is supplied through said valve to the lower end of the cylinder 12 to effect tilting of the bin 31 until the switch 41 is engaged by one of the members 168 for energizing relay coil 121. This closes relay contacts 134 for energizing the solenoid 154 of valve 72 for supplying hydraulic fluid to the motor 44 for driving the chains 1% and rollers 186 and 195, as previously described, to effect removalof the top tier of cans 288 from the bin 31. The sweep member 191 which is pushing the top tier of cans 280 contacts the switch 48 (FIG- URE 1) to energize relay coil 123, the contacts 134 of which energize the solenoid 149 of valve 67. Actuation of the switch 48 also causes solenoid 154 to be de-energized for interrupting operation of the motor 44. When solenoid 149 is energized fluid is supplied to the upper end of the cylinder 12 and bled from the lower end thereof to cause the bin 31 to rock back to an upright position. When this has been accomplished, another frame member 168 engages the switch 40' to break contact 122 and close contact 131, to de-energize solenoid 149 and to again energize coil 146- of valve 66 to again pressurize the cylinder 24 for further lifting the scissors lift 177.

The aforedescribed cycle of operation is repeated until the scissors lift 1.77 reaches its maximum height, when the limit switch 83' energizes unlatching relay coil 124 of relay 118 and energizes relay 125 whereby the solenoid 147 of the valve 66 is energized for bleeding the cylinder 24 to allow the lift 177 to retract to its lower- 3 most position, at which time limit switch 127 is contacted and energizes the unlatching coil 126 of relay for moving the valve 66 to a neutral position.

The palletizing function of the machine 15 is com menced with the platform 252 in its raised position of FIGURES 4A and 5. Containers 280 are fed by gravity down the inclined chute 231 and off of said chute onto the upper flight of the endless conveyor 231 Due to the gravity flow of the cans 280, as the cans reach the laterally flared chute wall portion 235, alternate cans will be deflected to the right by the pressure of the cans therebehind. Those cans forming the left row, as seen in FIGURE 5, will be engaged and moved by the lugs 242 of the endless conveyor 240 which travels slightly faster than the conveyor 230 for causing the cans to assume the two row arrangement as illustrated. When the leading can reaches the position as seen in FIGURE 5, fluid pressure to the hydraulic motor 35 is shut off for interrupting operation of the conveyors 230 and 240, and at the same time the left hand end of the cylinder 2 is pressurized to move the piston rod 249 from left to right of FIG- URE 5, for displacing the pusher member 248 transversely across the endless conveyor 230 for moving the portions of the two rows of cans, located between the ends of said pusher member, off of the conveyor 230 and onto either the rollers 254 or plate 255 of the platform 252. This sequence of operations is repeated until the platform 252 is completely filled with cans 280, as seen in FIGURE 2A, and the cans of the leading row are abutting the raised roller 254 which is supported by the flanges 262.

An empty pallet279 is fed into the bin 31 from the tables 42, through the opening 166 onto the conveyors 174, after which the lift 177 is extended to elevate said pallet so that its top surface is approximately level with the plate 286. The bin 31 is then tilted to or slightly beyond its position of FIGURE 1 by pressurizing the lower end of the cylinder 12, as previously described. The cylinders 5 which support the platform 252 in a raised position are then depressurized to allow said platform to gradually swing downwardly. As seen in FIGURE 43, the forward edges of the side walls 162 have notches 286 in which are mounted stop elements 287. As the platform 252 approaches its position of FIGURE 1, the ends of the rod 264 engage the stops 287 to cause the bridge member 261, flanges 262, and the rollers 254, carried by said flanges, to rock counterclockwise, as seen in FIG- URE 8, from the dotted line to the full line position of said parts, to place said roller 254- in approximately the same plane as the other rollers of the platform and to position the bridge member 261 approximately in the plane of the top surfaces of the rollers 254, so that the cans 280 can move by gravity ofi" of the platform 252 and onto the top surface of the pallet 279 or a separator 281 disposed thereon. As seen in FIGURE 3B, a trailing one of one of the pairs of sweep members 191 will be engaged by the leading row of cans 280 which are being discharged by gravity from the platform 252 into the bin 31. It will be apparent that the gravitational movement of the containers 280 down the inclined platform 252 and onto the inclined pallet 279 will provide considerable energy which will drive the chains 196 and hydraulic motor 44. In this operation the motor 44 will function similar to a pump for effecting a retarding or braking action on the travel of the cans.

After a tier of cans has thus been pal-letized, the empty platform 252 is returned to its raised position by pressurizing the lower ends of the cylinders 5, and as the platform swings upwardly the springs 265 will return the bridge 261, flanges 262 and the roller 254, carried thereby, to their alternate dotted line positions in which said roller functions as a stop. The bin 31 is returned to an upright position and the lift 177 is lowered sufficiently so that a separator 281 when placed upon the top of the previously palletized tier of cans will be at approximately the level of the uppermost separator 281 as seen in FIG- URE 3B, after which the bin 31 may be returned to its tilted position, as heretofore described. The operation previously described is then repeated for reloading the platform 252 preparatory to discharging another tier of cans into the bin 31, as previously described. When the pallet 279 has been filled with approximately six tiers of cans, and after the bin 31 has been returned to an upright position, the lift 177 is completely retracted so that the pallet is supported on the conveyors 174. The loaded pallet is then removed through the open front of the bin 31 onto the tables 38, preparatory to repeating the palletizing operation.

The aforedescribed palletizing operations can be accomplished by an operator on the stand 39 who actuates the switches 159 and 160 to complete the electric circuit to the motor 75 and to warm up the photoelectric cells 49, 50, 51 and 54, respectively, as previously described. The switch 161 is actuated to select automatic operation and the switch 162 is moved to a palletizing position. Assuming that the photo-electric cell 54 (FIGURE has a broken beam due to the chute 231 being filled by containers 280, and that the pusher member 248 is retracted as seen in FIGURE 5 against the switch 159, and that the limit switch 55 is closed due to not being engaged by a container 280, when the switch 162 is actuated as aforementioned, the relay coil 112 will be energized for closing contacts 144 to thus energize solenoid 155 of valve 70 to supply hydraulic pressure to operate the motor 35 for driving the endless conveyor 230 and the conveyor 240, as aforedescribed, to move two rows of cans 280 across the pusher member 248. A leading can 280 strikes the switch 55 for breaking the circuit of the coil 112 and thus de-energizing the solenoid 155 to stop operation of the motor 35 and for completing an electric circuit including the relay 159', switch 33 (FIG- URE 1) and relay 113. Solenoid 152 of valve 68 is energized by contacts 141 of relay 113 to pressurize the left hand end of cylinder 2 (FIGURE 5) so that the pusher element 248 is displaced from left to right for moving the cans onto the platform 252, as previously described, and which can only be accomplished if the platform is in a raised position and in engagement with the switch 33. When the pusher element 248 is fully extended the member 250 will engage and actuate the switch 58 causing relay coil 114 to be energized and close contact 242 for energizing the solenoid 153 of valve 68 to thereby pressurize the right hand end of the cylinder 2 and allow the cylinder to be bled from the left hand end thereof through the valve 68 for returning the pusher element 248 to its position of FIGURE 5. The aforedescribed cycle of operation is repeated automatically until the platform 252 is completely loaded and the leading row of cans 280 breaks the beam of the photo-electric cell 51 (FIGURE 5) and closes contact 93, or the photo-electric cell 54 breaks the circuit due to the fact that the cans cease to be backed up on the chute 231.

At the same time that the operator actuates the switch 162 to select palletizing, the actuated pushbutton 84 which produces an electric pulse in relay 104 to close contacts 87 and 135. This completes circuit 86, 87 for holding the relay 104 so that the pushbutton 84 can be released. The solenoid 147 of valve 66 is thus energized for pressurizing the cylinder 24 to extend the lift 177 until the circuit 86, 87 is broken by the photoelectric cell 49 detecting the top of the pallet 279 for de-energizing solenoid 147 to cause the valve 66 to assume a closed position to hold the extended lift 177 immobile. This also causes contact 88 to be closed and relay coil 105 to be energized for closing contact 137 to energize the solenoid 148 of valve 67, to thereby pressurize the lower end of the cylinder 12 to move the bin 31 to its tilted position and until the switch 41 is actuated thereby, as previously described, to stop the tilting movement of the bin. This movement of the bin 31 to a tilted position can occur only if the photoelectric cell 51 has detected a fully loaded platform 252 for closing contacts 93 to energize coils 107 and 108. The energizing of relay coil 107 completes contacts and 91 and breaks contact 89 while the energizing of relay coil 108 completes contacts 94 and 140. Contact energizes solenoid 151 of valve 69 to bleed the lower ends of the cylinders 5 for lowering the platform 252. Movement of the platform 252 to its position of FIGURE 1 actuates switch 34 for closing contact 143 to energize solenoid 154 of valve 72 to supply fluid to the motor 44. The cans 280 are led onto the pallet by the sweep member 191 immediately in advance thereof, as seen in FIG- URE 3B and as previously described, until the beam of the photo-electric cell 51 is completed, by the platform 252 being emptied of cans, and the sweep 191 actuates the switch 48 to de-energize the solenoid 154 to stop the motor 44 and to complete a circuit, as previously described, for pressurizing the outer end of cylinder 12 and for bleeding the inner end thereof for returning the bin 31 to an upright position. This is accomplished by the solenoid 148 of the valve 67 being energized. When the beam of the photo-electric cell 51 is completed, as just previously mentioned, contact 96 is completed to energize relay coil 110 which causes solenoid of valve 69 to be energized for pressurizing the lower ends of the cylinders 5 to elevate the platform 252. This causes limit switch 33 to be actuated by the raised platform 252 to energize coil 106, so that the solenoid 148 is not energized, for returning the bin to an upright position, until the platform 252 is in a fully raised position.

The raising of the platform 252 and the actuation of the switch 33 thereby causes the cans to again be conveyed by the conveyor 230 and displaced onto the platform 252 therefrom by the pusher element 248 to reload said platform, as previously described.

Swinging of the bin 31 back to an upright position causes swich 40 to be actuated which energizes coil 111 and completes contact 136 for energizing solenoid 146 of valve 66 for bleeding cylinder 24 to lower the lift 177 until the top tier of cans passes below the level of the photoelectric cell 49 so that the beam thereof is completed to close contacts 88 and 90 which are held by the latching type relay 107. Coil 105 is also energized to complete contact 137 which energizes solenoid 148 of valve 67 to cause the tilt bin 31 to resume its tilted position, preparatory to the platform 252 again moving to a lowered position and discharging another tier of cans into the bin. Before the new tier of cans is discharged, the operator from the stand 39 removes a separator 281 from the rack 284 and places it upon the topmost previously deposited tier of cans. The aforementioned cycles of operation are repeated automatically until the pallet 279 is completely loaded at which time the switch 127 (FIGURE 1) is actuated to energize the unlatching relay 115.

The hydraulic circuit as shown in FIGURE 11 includes a reducing valve 77, of conventional construction, to reduce the pump pressure from 1500 p.s.i. to 900 p.s.i. for all of the systems except the lift cylinder 24. Conventional flow regulator valves 76 are provided for controlling the rate of flow to the hydraulic cylinders and hydraulic motors and the speed of operation thereof. The valves 6672 are of the conventional four-way solenoid operated, spring centered type, capable of functioning to block all parts in a neutral position or for connection to the reservoir 73.

As previously described, the motor 44 is capable of functioning as a pump when driven by its shaft rather than by the fluid supplied thereto for retarding movement of a tier of cans into the bin 31 during the palletizing operation. The fluid circuit between the valve 72 and motor 44 includes check valves 79-82 and a pressure control relief valve 78 to control the induced pumping action of the motor 44 caused by the gravitational force of the tier of cans which is exerted against one of the sweep members 191, and to relieve the shock when the valve 72 is closed and which would be injurious to the cans. Accordingly, if the fluid has been flowing from left to right of FIGURE 11 through the motor 44, when the valve 72 is closed, the fluid is bypassed through check valve 79 and relief valve 78 back to the reservoir 73, or through check valve 80 and relief valve 78 to the reservoir, if the flow is in the opposite direction. Check valves 81 and 82 permit flow from the reservoir into the system in the event of a lack of pressure therein between the motor 44 and pump 72.

In FIGURES l2 and 12A, symbols CR1 to CRIO, CRTD and CRLD designate relays of the type that hold closed contact only when current is supplied to the solenoid coil. Symbols CRTP, CRR and CRC designate relays of the mechanical hold type that require only an electric pulse to unlatch the contacts. The photo-electric relay contacts are shown with the receiver to light source beam not interrupted. In the lower left hand corner of FIGURE 12B, switches are shown for controlling manual operation of the machine 15. While these switches have not been described, legends have been utilized in connection therewith and in connection with other parts of this view and of FIGURE 12A to afford a better understanding of the electric circuits employed.

Various modifications and changes are contemplated and may be resorted to, without departing from the function or scope of the invention as hereinafter defined by the appended claims.

I claim as my invention:

1. A machine for depalletizing containers comprising a frame, a bin, means supporting said bin on said frame for rocking movement about a substantially horizontal axis, said bin having side walls, a rear wall, a top wall, a bottom and an open front, said top wall being disposed above and spaced from an upper end of said rear wall, a lift disposed within said bin and supported by said bottom including a vertically movable top portion adapted to support a pallet at different elevations within thebin, means connected to said frame and bin for moving the bin between an upright position and a tilted position with the open front of the bin inclined upwardly, and driven endless conveyor means supported by the upper portion of said bin including a lower flight movable along the underside of said top wall for sweeping the topmost tier of containers from the bin over the upper edge of said rear wall with said bin disposed in a tilted position.

2. A machine as in claim 1, a pair of metering rolls rotatively supported by the bin in vertically spaced apart relation to one another, means connecting said metering rolls to said endless conveyor to be driven simultaneously with the endless conveyor and in opposite directions to one another for simultaneously engaging upper and lower ends of all containers of a transverse row of a tier of containers being discharged from the bin for discharging all of the containers of said row simultaneously from the bin.

a bin having an open front, means supporting said bin for rocking movement about a substantially horizontal axis, means rocking said bin between an upright position and a tilted position with the open front of the bin inclined upwardly, a lift supported by said bin and adapted to support a pallet within the bin and at different elevations, endless conveyor means supported by said bin for movement therein from front to rear of an upper portion of the bin for sweeping a topmost tier of containers rear-.

6. A machine as in claim 4, said lift being of the I scissors type including a stationary bottom frame secured to a part of the bin and a top section vertically movable within said bin and adapted to engage the pallet, levers disposed between the bottom frame and top section and pivotally connected intermediate of their endsin crossed relation to one another and having complementary ends pivotally connected to complementary ends of the bottom frame and top section, the opposite ends of said levers bearing against and having moving contact with said bottom frame and top section, a fluid pressure responsive means engaging portions of said levers for rocking the levers relative to one another when said fluid pressure responsive means is extended or retracted for raisirfg or lowering said top section, respectively, relative to the bottom frame.

7. A machine as in claim 4, said means supporting the bin for rocking movement comprising a stationary frame, a depalletizing frame supported by the stationary frame behind said bin, spaced walls supported by the depalletizing frame and defining an upwardly opening channel disposed crosswise of the bin and positioned to receive the containers swept from the rear of said bin, and a driven endless conveyor having a top flight disposed for travel between said Walls and in a direction parallel thereto for conveying the depalletized containers transversely from the machine.

8. A machine as in claim 7, a pair of metering rolls journaled on said bin and disposed therebehind and in spaced apart substantially parallel relation to one another, and a fluid pressure actuated motor supported by said bin and including drive means for driving said metering rolls simultaneously in opposite directions to one another and for driving said first mentioned endless conveyor means simultaneously with the metering rolls, said metering rolls being disposed to simultaneously engage a transverse row of containers of a tier being depalletized for feeding and directing said containers between said walls of the depalletizing unit and from the bin.

9. A machine as in claim 8, means pivotally supporting said depalletizing frame on the stationary frame, and brace means adjustably connected to the stationary frame and engaging said depalletizing frame for supporting the depalletizing frame at an incline relative to the stationary frame and at different angles relative to the tilted bin to facilitate movement of the containers from the bin into the upwardly opening channel formed by said spaced walls.

10. A machine as in claim 9, and a reversible fluid pressure responsive motor supported by the depalletizing frame and connected to and driving the endless conveyor thereof for discharging the depalletizing containers from either end of said frame and from either side of the machine.

References Cited UNITED STATES PATENTS Minaker et a1.

Fenton et a1 2148.5 X Peterson et a1 2144-85 Kohler 2148.5 Zachow 2146 1 4 FOREIGN PATENTS 144,379 3/ 1954 Sweden. 168,852 10/1959 Sweden. 178,221 2/1962 Sweden.

GERALD M. FORLENZA, Primary Examiner.

MARVIN A. CHAMPION, Examiner.

G. F. ABRAHAM, Assistant Examiner.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2338048 *Nov 29, 1940Dec 28, 1943Continental Can CoCan bag unloader and can unscrambling apparatus
US2944702 *Mar 12, 1956Jul 12, 1960Beacon Production Equipment CoPallet unloading machine
US2994444 *Jul 21, 1958Aug 1, 1961American Can CoCan unloading machine
US3067885 *Feb 24, 1959Dec 11, 1962Conrad D KohlerAutomatic panel feeder
US3249242 *May 20, 1963May 3, 1966American Mfg Company IncTransfer apparatus for paper inspection
SE144379A * Title not available
SE168852A * Title not available
SE178221A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3404789 *Jul 14, 1966Oct 8, 1968Danly Mach Specialties IncDestacking apparatus
US3499547 *Feb 19, 1968Mar 10, 1970Schroder HerbertMechanism for transposition of pieces of dough
US3532231 *Jan 16, 1968Oct 6, 1970Westinghouse Electric CorpSlab handling apparatus
US3589534 *Mar 20, 1969Jun 29, 1971Elmer L BrownBale elevator and loader
US3603463 *Apr 1, 1969Sep 7, 1971Fmc CorpApparatus for feeding veneer to plywood assembly station
US3869049 *May 29, 1973Mar 4, 1975Continental Can CoCan depalletizer
US4297067 *Jan 14, 1980Oct 27, 1981Outokumpu OyMethod and apparatus for handling packed layers of support rods in an electrolytic refining plant
US4358236 *Sep 17, 1979Nov 9, 1982Dudley Robert GDe-palletizing/palletizing apparatus for cans and can-type containerizations
US5102282 *Oct 9, 1990Apr 7, 1992The Procter & Gamble CompanyUnit load transfer device and method
US5451136 *May 26, 1994Sep 19, 1995Alvey, Inc.Automatic depalletizer
US5788461 *Feb 2, 1996Aug 4, 1998Alvey, Inc.Automatic depalletizer
US5899659 *Apr 30, 1998May 4, 1999Alvey, Inc.Depalletizer collector belt assembly
US6241449Feb 16, 1999Jun 5, 2001Robert J. KroossApparatus and method for unloading plastic containers stored in stacks of tiers
Classifications
U.S. Classification414/796.8, 414/929, 414/797.2, 198/443, 414/754
International ClassificationB65G57/28
Cooperative ClassificationB65G57/28, Y10S414/108, B65G2201/0244
European ClassificationB65G57/28