Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3340084 A
Publication typeGrant
Publication dateSep 5, 1967
Filing dateNov 15, 1963
Priority dateFeb 19, 1959
Publication numberUS 3340084 A, US 3340084A, US-A-3340084, US3340084 A, US3340084A
InventorsAlfred Eisenlohr
Original AssigneeGen Electric
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method for producing controlled density heterogeneous material
US 3340084 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Sept. 5, 1967 3,340,084

METHOD FOR PRODUCING CONTRQLLED DENSITY HETEROGENEOUS MA I'ERIAL A. EISENLOHR Original Fi1e d Feb. 19, 1959 JNVEN TOR. A71 FRED f/Jf/Vl 0M6 BY 5% arm/e4 United States Patent 3,340,084 METHOD FOR PRGDUCING CONTROLLED DENSITY HETEROGENEOUS MATERIAL Alfred Eisenlohr, Cincinnati, Ohio, assignor to General Electric Company, a corporation of New York Original application Feb. 19, 1959, Ser. No. 794,400, now Patent No. 3,147,087, dated Sept. 1, 1964. Divided and this application Nov. 15, 1963, Ser. No. 332,325 2 Claims. (Cl. 117-22) ABSTRACT OF THE DISCLOSURE A method for flame depositing a ductile metal matrix simultaneously with particles of a material which remain dispersed and entrapped in and discrete from the matrix. This provides a heterogeneous material having a reduced shear strength for rubbing or abrading seal applications. Preferred is an aluminum matrix with about 2.5l0 weight percent entrapped graphite.

This is a division of application Ser. No. 794,400, filed Feb. 19, 1959, and now US. Patent 3,147,087.

This invention relates to a heterogeneous material of controlled density and to the method for producing such material. More particularly it relates to a flame deposited method and to a material of principally a metallic nature, the density of which may be varied by varying the amount of porosity, of mechanically entrapped material through variation of the conditions of flame deposition.

The efliciency of fluid motivating apparatus having cooperating rotating members such as in pumps, turbines and the like, depends in part of the positive movement through the apparatus from section to section of the fluid being acted upon, without intersection leakage. The prevention of such leakage is particularly important, troublesome and diflicult to achieve in apparatus such as gas turbines designed to operate at high temperatures and pressures. Low temperature operating machines have included sealing materials such as rubber, plastic, cloth flock and soft, low-melting metal alloys. Such materials are not suitable :for use at elevated temperatures because they will decompose or melt away.

One reported prevention of intersection leakage, or interstage leakage in the case of a turbine, involves attaching to the surface of either rotating or stationary members a uniform density, homogeneous, generally friable material, such as carbon, which will withstand the intended operating temperatures. It is diflicult, however, to achieve a sound bond or attachment of such a friable material to its holding member. In addition, the friable material which generally is not sufliciently ductile and has little shock resistance, must withstand both thermal and impact shocks. It must be nonabrasive to the cooperating part with which it acts as a seal.

It is an object of this invention to provide a strong, controlled density heterogeneous material suitable for use at elevated temperatures, which is easily abraded underspecified condition yet nonabrasive to the materials with which it rubs.

An additional object is to provide a method for applying such a material to a holding member to achieve a strong bond.

Another object of this invention is to provide a com posite, abradable material of controlled density tightly bonded to a holding member.

Patented Sept. '5, 1967 Still another object is to provide a method for flame depositing a heterogeneous, abradable material for use at elevated temperatures and including mechanically entrapped nonabrasive particles to break the continuity of the matrix of the material.

My controlled density, heterogeneous abradable material, in one form, comprises a porous matrix of ductile material complemented by mechanically entrapped, dispersed discrete particles which may have elevated temperature lubricity and which reduce the shear strength of the matrix material. My composite material comprises my heterogeneous abradable material joined with other portions of progressively increasing density.

According to one aspect of my method, my heterogeneous material is produced by flame depositing a ductile metal matrix while simultaneously depositing particles which are discrete from the matrix metal yet complement the matrix to produce the heterogeneous material including the particles as entrapped, dispersed bodies.

My method for producing my composite material includes first flame depositing a low porosity, metal bonding portion and then depositing my heterogeneous material as an outer portion on that bonding portion.

I intend to include in the meaning of flame depositing unit, equipment, apparatus, etc., all types of machines capable of receiving a solid material such as in the form of powder, rods, tubes, pellets, etc., changing at least a portion of such material from solid to molten form and then propelling that material outward from the equipment as toward a workpiece. Examples include electric are types, combustion types, plasma jet types, etc.

When deposited directly on a holding member such as for use as an abradable seal, my abradable heterogeneous material becomes the outer portion of my composite material or structure. Between the outer portion and the base metal or holding member, in such a case, is a relatively thin bonding portion comprising densely flame sprayed material. If desirable to build up thicker amounts of material, intermediate portions may be flame deposited between the outer and bonding portions. Generally such intermediate portions include decreasing amounts of entrapped material as they approach the bonding portion. However, the porosity of the outer and intermediateportions may be about the same because the same type of equipment and same depositing conditions may be used.

I have found that in the practice of my method, I can produce an abradable seal particularly useful in elevated temperature, elastic fluid flow apparatus to prevent interstage leakage with negligible abrasion of parts mating with and forming a cooperating part of such a seal.

The subject matter which I regard as my invention is particularly pointed out and distinctly claimed in the concluding portion of this specification. However, my material and its method of formation together with further objects and advantages thereof, may be best understood by reference to my description take in connection with the accompanying drawing in which:

FIG. 1 is a greatly enlarged view of a partial section of my composite material in a two-portion arrangement; FIG. 2 is a greatly enlarged View of a partial section of my material in a three-portion arrangement;

FIG. 3 is a sectional view of my heterogenous material keyed for separate attachment to a holding member;

FIG. 4 is a sectional view of my composite material in a two-portion arrangement employing the bonding portion as a key or foot for separate attachment;

FIG. 5 is a fragmentary sectional view of a seal formed of my material positoned with a cooperating blading member;

FIGS. 6 and 7 are diagrammatic illustrations of arrangements of spray apparatus for the practice of my methods.

The present invention is particularly concerned with the formation of a heterogeneous abradable seal material suitable for. elevated temperature operation, tightly bonded and attached to a holding member, such as a stationary band or casing, or to a rotating member, such as a blade or bucket, in elastic fluid flow apparatus. Although I prefer my flame depositing method for producing my controlled density heterogeneous material on a holding member for such uses as an abradable seal, it is understood that my material may be separately manufactured by flame deposition techniques. For example, my material may be produced in configurations best suited for mechanical attachment after manufacture to a holding or backup strip by any method of attaching rigid or semi-rigid materials to such members.

My heterogeneous abradable material 12, FIG. I, is shown as the outer portion of a two-portion system comprising my composite material. Such a system includes low porosity bonding portion 10 produced by flame depositing an elevated temperature resistant material such as molybdenum, chromium, nickel, columbium, tungsten, tantalum or their alloys, such as in wire, rod, tubular or powder form. Bonding portion 10 has a tightly bonded structure and a relatively rough surface which allows the subsequently applied outer portion to mechanically attach more easily to the bonding portion. It is to be noted that the flame depositing technique results in a dilfused, metallurgical bond between the various portions so that both mechanical and'metallurgical bonds are achieved.

Outer portion 12 comprises a matrix 14 of a relatively ductile material capable of withstanding the operating temperatures in its intended use and an entrapped dispersed material 16 which may have elevated temperature lubricity. Examples of dispersed materials, sometimes referred to as interrupter or chipbreaker materials are graphite, mica, molybdenum disulfide, boron nitride, vermiculite asbestos and the like. Some of such materials have a layer lattice structure which gives them the property of elevated temperature lubricity thus to aid in the prevention of galling or abraded material accumulation on elements abrading such materials.

Entrapped material 16 and pores or voids 18, resulting fiom the conditions of flame deposition, lower the overall density of my heterogeneous outer portion material.

Another arrangement of my composite material including my heterogeneous material as an outer portion, FIG. 2, includes an intermediate portion shown generally at 20, having primarily matrix material 14 as well as pores or voids 18. A plurality of intermediate portions of a varying heterogeneous composition may be placed between bond portion 10 and outer heterogeneous portion 12 in order to achieve any desired graduation of density from a holding member such as 22 to an outer portion 12.

As will later be described in more detail in connection with FIGS. 6 and 7, flame depositing equipment may be arranged and coordinated to produce my material on a holding member starting with the bonding portion, if one is desired, and continuously varying the flame deposited material until the entire composite material is formed. It is to be noted that because of flame depositing techniques, there is no finite line representing the area between portions. Thus our flame deposition method results in a gradual change of composition and density.

My heterogeneous material, FIG. 3, or my two-portion composite material, FIG. 4, may be flame deposited in a mold or on a mandrel later to be removed for separate attachment to a holding member, for example as by a keying arrangement or foot 29 or 29a. In one such arrangement, FIG. 5, my heterogeneous material 12 formed as in FIG. 3 or 4, may be attached as by foot or key 29 to a structure or holding member 23 which may be a rotating shroud or a stationary casing. Blading member 28 cooperates with my heterogeneous material 12 to form an interstage seal as by the cutting or abrading of a path or channel 33 in my material 12 during movement either of blading' member 38 or of holding member 23.

According to one form of my method for depositing a relatively small amount of my controlled density, hetero inch, I prefer first to-produce a roughened, captive type of surface on the holding member such as by machining, knurling, undercutting and the like. Such a captive surface affords a foothold for'a relatively thick layer of sprayed material. Thus, if stresses built up in thicker coatings exceed the bond strength achieved by -flame depositing my material over a' particle blasted surface, the captive type of surface will hold the material in place.

After surface preparation, and prior to or in lieu of deposition of the low porosity bonding portion according to my method, the surface may be covered with a thin portion of the same material as that of the holding memher. In this way exceptionally good adherence andbonding is achieved between the base material and a subsequent portion; a more gradual transition results between the material of the holding member and that of the outer portion.

The bonding portion, when applied directly to the surface of a holding member, should be relatively thin so that it can expand and contract with that material. It need be just thick enough to cover the holding member with a relatively rough, tightly adherent material. When the bonding portion is thin, the dilferences in coefiicients of expansion between the material of the holding member and that of the bonding portionis eliminated as a factor affecting adherence. I have found a bonding portion of about 0.002-0.004 inch in thickness to be satisfactory for such an application.

After flame depositing my bonding portion, I then flame deposit the outer portion 12, FIG. 1, directly to the rough surface of the bonding portion without additional surface preparation. The matrix material 14 may be flame deposited simultaneously with the deposition of particles or dispersed material 16 which complement the matrix material in producing outer portion 12. The outer portion including entrapped, dispersed material 16 may be deposited from various combinations of matrix and dispersed mate rial such as powder mixtures, coated or filled tubes, coated rods, coated or filled hollow spheres, coated particle's, various strand constructions of wires, tubes, rods, etc. However, I prefer to flame deposit my outer portion ma: terial from a powder mixture prepared by intimately blending or mixing ductile matrix powder with powdered material to be dispersed and entrapped.

The matrix material of the outer portion may be any ductile material which can be flame deposited to entrap the dispersed material. As will be described later in connection with specific examples, I have found aluminum to be unusually useful as a matrix material for applications up to about 900-4000 F., and graphite or mica as the dispersed, entrapped material. Tests have shown that boron nitride and molybdenum disulfide can be used as the entrapped material. However, the current cost of tests, it is believed that an entrapment of more than about 8 percent by weight graphite is not practical to produce a suitably bonded material. I have found that about 2.5-5.5 percent by weight entrapped material produces a well bonded abradable structure. I conducted a series of tests varying the ratio of graphite to aluminum from 12:1 to 1:4 to determine the optimum range. I found that no more than about 8-10 percent by weight of entrapped material can be effectively dispersed through the matrix without causing the matrix material to become excessively friable.

Example 1 In order to produce a composite abradable seal tightly bonded to the inside surface of an annular shroud memher, I first grit blasted that inside surface with clean, angular, No. 25 mesh steel grit using air filtered to remove oil, dirt, etc. I then flame sprayed onto that surface a 0003-0004 inch thick bonding portion from Wire material having the nominal composition in percent by weight of about 60 nickel, 24 iron and 16 chromium. I used an oxyacetylene flame spraying gun held at a distance of about five inches from the workpiece. Gas pressures in pounds per square inch were about 35 for oxygen, about for acetylene and about 60 for air. Only one pass was required to deposit a dense adherent layer.

Over the bonding portion, and without additional surface preparation, I flame sprayed my heterogeneous material as an outer portion from a powder principally about 325 mesh size including about 2 parts of powdered aluminum and 1 part of powdered graphite. The aluminum powder employed in that aluminum-graphite mixture was a minimum of 98.6 percent aluminum, free from oil, grease, dust, moisture and other foreign substances. About 90 percent of the aluminum was smaller than 200 mesh size and about 10 percent was smaller than 325 mesh size. About 90 percent of the graphite powder used was smaller than 325 mesh size, the remainder being smaller than 200 mesh size.

The two parts of aluminum powder and one part graphite powder first were intimately blended and then were flame deposited from a standard commercially available powder-type flame spraying gun held about 8 inches from the workpiece. The portion was deposited to a thickness of about 0.15 inch at the rate of about 0002-0003 inch per pass. The powder flame spraying gun included an oxyacetylene torch with air for cooling and for propelling the molten material. The gas pressures of this example in pounds per square inches were acetylene 8, oxygen 26 and air 45, with the flow of air used as propellant being at the rate of about 57-58 cubic feet per hour.

I noted that in spraying this material, the temperature of the member in the area as it was coated was raised to about 350400 F. Therefore, heat was applied to the member to maintain the portions of the member not being sprayed approximately within that temperature range. The member was rotated at a rate of about 6 revolutions per minute, the gun being in a stationary position.

Resulting from this deposition was a composite abradable seal material in excess of about 0.15 inch thick and having a density of about 0.07 pound per cubic inch. The entrapped graphite was analyzed to be about 4.5 percent by weight of the total outer heterogeneous portion.

Although in this example we maintained the member being sprayed at a temperature of about 350-400" F., satisfactory abradable materials can be deposited with the member at temperatures ranging from room temperature up to about 800 F.

Example 2 Employing the same equipment and conditions as described in Example 1, a composite abradable seal material was produced by first flame depositing a bonding coat of essentially molybdenum and then depositing on the molybdenurn a porous aluminum portion using aluminum in powder form as material being sprayed. Over the porous aluminum intermediate portion I then deposited my aluminum-graphite heterogeneous outer portion employing 6 a blended powder mixture of about 3 parts aluminum to 1 part graphite to produce a matrix having about 1.3 percent by weight graphite.

Example 3 I repeated Example 1 except that powdered alkali aluminum silicate in the form of mica was substituted for the graphite powder to obtain essentially the same results.

In the above examples the various amounts of dispersed materials were entrapped using the conditions as described, nevertheless the configuration of the member, the amount of overspray, the type of gun used, etc. will produce variation in the amount of entrapped material. The actual ratios of material to be entrapped to that of the matrix can be determined by experiment on a member.

Although I have described my method as one for the deposition of a series of portions using a single flame spraying gun, arrangements such as are shown in FIGS. 6 and 7 may be used to produce my composite abradable material continuously from the bond portion to the outer portion.

In the arrangement of FIG. 6, the dispersed material is deposited on a workpiece 22 such as a holding member, mold, mandrel etc., from a flame depositing unit 30, the matrix material from a second flame depositing unit 32 and the bonding portion material from a third such unit 34. The various materials may be fed as through or along paths 36, 36a and 36b to such flame depositing units in the form of a powder, wire, rod, tubing, etc., by any suitable commercially available feed mechanisms, 38, 38a and 38b (not shown in detail). The rate of feed is controlled and scheduled by a control 40 by such control means as cams, timing switches, electronic devices or other commercially available adjustable timed switching devices. Thus control 40 may adjust the feed to any of the units in order to develop on holding member or workpiece 31 a continuously deposited, controlled accumulation or deposit of material of any desired composition and density.

As was mentioned before, flame deposition not only results in good mechanical bonding due to the surface roughness created but also achieves suflicient metallurgical bonding so that the material is welded together without any heat treatment.

in another arrangement, FIG. 7 material to be deposited is sprayed from a single unit 35 which in turn is fed by paths 36, 36a and 3611 from feed mechanisms 38, 38a and 38b which may carry respectively the dispersed material, the matrix material and the bonding material. Control 40 schedules and coordinates the flow of material through the feed mechanisms.

Although I have described my method and the various forms of my material in connection with specific examples, it will be obvious to those skilled in the art the modifications and variations of which my invention is capable.

What I claim is:

1. In a method for making a heterogeneous material, bonded to a surface the steps of:

flame depositing on a surface a ductile metal of essentially aluminum from a powder, of which is of a size smaller than about 200 mesh, while simultaneously,

depositing particles of graphite from a powder, 90%

of which is smaller than 325 mesh, complementary to and discrete from the aluminum,

the graphite particles being dispersed in and entrapped by the aluminum in an amount of about 25-10 weight percent of the heterogeneous material.

2. The method of claim 1 in which:

the aluminum powder is at least about 98% aluminum;

the aluminum powder and graphite powder are deposited from a powder mixture of about 2 parts of powdered aluminum and 1 part of powdered graphite; and

7 the amount of graphite particles dispersed in and entrapped"-by 'the' aluminum is about 2.5-5.5 weight percent.

References Cited UNITED STATES PATENTS 8 Kraenzlein et a1 117 160 Deuble 117-105 X Aves et a1. 117- 1052 X Herron et a1. 117-1051 X. Reed 117-1052 WILLIAM D. MARTIN, Primary Examiner. P. A'ITAGUILE, Assistant Examiner.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1128059 *Aug 7, 1911Feb 9, 1915Metals Coating Company Of AmericaMethod of plating or coating with metallic coatings.
US1294001 *May 25, 1917Feb 11, 1919Ward Nail CompanyDry galvanizing.
US1331816 *Dec 20, 1919Feb 24, 1920Mcknight Jr CharlesMethod of casting metal
US1873945 *May 28, 1931Aug 23, 1932Ig Farbenindustrie AgMaterials coated with lacquers, lacquers, and a process of producing coatings
US2788290 *Sep 17, 1954Apr 9, 1957Climax Molybdenum CoMethod of forming a protective coating on a molybdenum-base article
US3031331 *Oct 23, 1959Apr 24, 1962Jr William L AvesMetal-ceramic laminated skin surface
US3055769 *Dec 8, 1958Sep 25, 1962Bendix CorpHigh temperature antifriction seal, material, and method of manufacture
US3117845 *Apr 27, 1960Jan 14, 1964Bendix CorpFriction coated metal base
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3537713 *Feb 21, 1968Nov 3, 1970Garrett CorpWear-resistant labyrinth seal
US3701536 *May 19, 1970Oct 31, 1972Garrett CorpLabyrinth seal
US4161555 *Apr 6, 1978Jul 17, 1979Eastside Machine & Welding, Inc.Flame spraying process for materials requiring fusion
US4224356 *May 30, 1978Sep 23, 1980The Secretary For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern IrelandDeposition of metals on a base
US4354550 *May 7, 1981Oct 19, 1982The Trane CompanyHeat transfer surface for efficient boiling of liquid R-11 and its equivalents
US4537794 *Jun 29, 1984Aug 27, 1985Wedtech Corp.Method of coating ceramics
US4588607 *Nov 28, 1984May 13, 1986United Technologies CorporationMethod of applying continuously graded metallic-ceramic layer on metallic substrates
US4596719 *Nov 2, 1984Jun 24, 1986Wedtech Corp.Multilayer coating method and apparatus
US4680199 *Mar 21, 1986Jul 14, 1987United Technologies CorporationMethod for depositing a layer of abrasive material on a substrate
US4813965 *Feb 29, 1988Mar 21, 1989Nuclear Metals, Inc.Brazed porous coating and improved method of joining metal with silver material
US5110631 *Sep 20, 1990May 5, 1992Osprey Metals LimitedProduction of metal spray deposits
US5141769 *Dec 17, 1990Aug 25, 1992Mtu Motoren-Und Turbinen-Union GmbhMethod for applying wear-resistant dispersion coatings
US5153021 *Jan 17, 1991Oct 6, 1992Rolls-Royce PlcAbradable seal coating and method of making the same
US5983495 *Dec 29, 1997Nov 16, 1999Ford Global Technologies, Inc.Method of making spray-formed inserts
US6305459 *Aug 9, 1999Oct 23, 2001Ford Global Technologies, Inc.Method of making spray-formed articles using a polymeric mandrel
US6345440Jul 21, 2000Feb 12, 2002Ford Global Technologies, Inc.Methods for manufacturing multi-layer engine valve guides by thermal spray
US7622160Jul 28, 2006Nov 24, 2009General Electric CompanyMethod for concurrent thermal spray and cooling hole cleaning
US7699581 *Jul 28, 2004Apr 20, 2010Mtu Aero Engines GmbhRun-in coating for gas turbines and method for producing same
US20090110560 *Jul 28, 2004Apr 30, 2009Erwin BayerRun-in coating for gas turbines and method for producing same
U.S. Classification427/192, 427/450, 427/205
International ClassificationC23C4/06
Cooperative ClassificationC23C4/06
European ClassificationC23C4/06