US3350890A - Process for transferring liquefied gases - Google Patents

Process for transferring liquefied gases Download PDF

Info

Publication number
US3350890A
US3350890A US51892066A US3350890A US 3350890 A US3350890 A US 3350890A US 51892066 A US51892066 A US 51892066A US 3350890 A US3350890 A US 3350890A
Authority
US
United States
Prior art keywords
valve
container
pump
line
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Louis T Cope
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olin Corp
Original Assignee
Olin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olin Corp filed Critical Olin Corp
Priority to US51892066 priority Critical patent/US3350890A/en
Application granted granted Critical
Publication of US3350890A publication Critical patent/US3350890A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/013Carbone dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/04Methods for emptying or filling

Definitions

  • This invention relates to a method for the transfer of liquefied gases from a first container to a second coritainer.
  • the method is applicable to all of the commonly liquefied gases including, for example, carbon dioxide, ammonia, chlorine, methane, ethylene oxide and various Freons.
  • the invention is described below more particularly with respect to carbon dioxide.
  • Carbon dioxide is commonly stored in bulk storage plants throughout the country under a pressure usually in the range of from 280 to 305 p.s.i.g. and at a temperature of about 0 F.
  • the containers are insulated and refrigerated to maintain liquid and gas under these conditions.
  • Various pumps are known to the art for the purpose of transferring liquid carbon dioxide from such storage containers to smaller containers having capacities usually ranging from 5 to 150 pounds.
  • the prior art has generally required pumps for this purpose to be capable 3 of pumping against a pressure differential of several hundred p.s.i. Such pressures were required because the liquid being pumped into the receiving container is heated rapidly on contact with the Warm container. Pressure in the container rises and, by the time the container is filled, the pressure in the container often corresponds to ambient temperature, for example, about 800 p.s.i.g. or more.
  • Low priced cylinder filling pumps for example, the SCS LT pump, has a rated capacity of about '6 pounds of CO per minute and requires a 2 H.P. motor plus a gear reduction device in order to develop enough power to pump against high pressures.
  • Such prior systems require a heavy source of current for the electrically operated pump and may cost from $1500 to $2000.
  • llf standard CO cylinders had a vapor return line, the cylinders could be filled by gravity. A pump to raise the pressure about 100 psi. above storage pressure would fill the cylinders much faster.
  • One object of this invention is to provide a method for filling liquefied gas cylinders in common use by means avoiding the necessity of expensive, high pressure pumps requiring correspondingly expensive valves, fittings and pipes. Another object is to provide a method which is inexpensive, rapid and effective for filling containers with liquefied gas under pressure.
  • the method of this invention requires only readily available equipment and the cost of the equipment at present market prices is about $200.
  • the method of this invention transfers liquefied gas from a storage container to a receiving container by (1) pumping said liquefied gas at a pressure exceeding the pressure in said storage container into said receiving container for a period of from 1 to 30 seconds, (2) discharging vaporized gas from said receiving container into said storage container for a period of from 1 to 30 seconds and repeating said 1) pumping and said (2) discharging until said receiving container is filled With liquefied gas.
  • a circulation is first established by priming the pump with liquefied gas from the storage container by pumping through an open line to atmospheric pressure. As soon as liquid is being pumped, it is valved through a line returning to the storage container. With the receiving container valved to the discharge side of the pump, the valve in the circulation line to the storage container is closed and liquid flows into the receiving container. After a period of from 1 to 30 seconds, for example, about 5 seconds, an alternating valve in the line from the discharge side of the pump is opened to return vaporized gas to the storage container for a similar period. These periods of filling with liquid and removal of vaporizcd gas are alternated until the receiving container is sufiiciently filled.
  • the alternating valve is closed, the valve in the circulation line is opened and the valve in the line to the receiving container is closed.
  • the container is removed and replaced by another receiving container to be filled and the process is repeated.
  • the system is shut down by closing all the valves, shutting down the pump and opening one of the valves from the pump to the atmosphere or suitable discharge vent.
  • the alternating valve controlling the flow of liquid into the receiving container and the flow of vaporized gas therefrom is electrically operated. It is suitably a gate valve or other type of valve operable by a solenoid. A timer controls the current to the solenoid and opens and closes the valve at preset intervals.
  • the flow of liquid into the receiving container and the flow of vaporized gas from the receiving container are both rapidly pulsating. After the pressure of gas in the receiving container is relieved, liquefied gas flows thereinto at lower differential pressure.
  • the pump is suitably a low cost, standard gear pump or other suitable type generally used for circulating systems and designed to pump against pressures of up to about psi.
  • the figure herewith illustrates the method of the invention in which pump 11 is arranged to remove liquid from storage container 12 via line 13 controlled by valve 34 to transfer the liquid into line 14. Gas is returned to storage container 12 via line 15 controlled by valve 35.
  • Line 14 carries branches 16, 17 and 18 with valves 1?, 20 and 21 respectively.
  • Valve 19 is a safety valve, valve 20 controls the How in circulation line 17 and valve 21 controls the flow in line 18 to container 22.
  • Line 14 terminates in alternating valve 23 which controls flow into gas return line 15. Alternating current is supplied via lines 24 through master switch 25 and lines 26 to pump 11. Current also fiows via lines 27 through control switch 28 and lines 29 to timer clock 30 in timer 31.
  • the clock opens and closes the circuit in lines 32 to solenoid 33 which opens and closes valve 23 at preset intervals.
  • valves 34 and 35 are opened, master switch 25 is closed and pump 11 is operated with container 22 detached, valve 21 open and valve 2%) closed until the pump is primed with liquefied gas from storage container 12.
  • Valve 20 is opened and valve 21 is closed, establishing circulation in line 17.
  • Container 22 is attached and valves 20 and 21 are reversed.
  • Control switch 23 is closed starting the clock 30 in timer 31. It is set to energize solenoid 23 to open and close valve 23 at 5 second intervals.
  • valve 23 is closed, liquid flows into container 22.
  • valve 23-is open gas from line 14, pump 11 and container 22 flows via line 15 back to storage container 12.
  • control switch 28 is opened, valve 29 is opened and valve 21 is closed.
  • Container 22 is replaced by an empty container to be filled and the process is repeated to fill as many containers as desired.
  • control switch 28 and master switch 25 are opened, valves 34 and 35 in lines 13 and 15 are closed and valve 21 is opened.
  • Example 1 gaseous and liquid carbon dioxide was stored in a storage container at 300 p.s.i.g. and F.
  • the pump was a small gear pump operated by a fractional horsepower motor and was capable of developing about 100 p.s.i.g. pressure above that of the liquid supplied to it.
  • the pump was primed with liquid carbon dioxide by discharging to atmospheric pressure until the pump was cooled and filled with liquid.
  • the discharge valve was closed and the valve to a circulation line was opened, circulating liquid back to the storage container.
  • the first of several small cylinders to be filled was connected to the filling line, the cylinder valve was opened and the valve in the filling line was opened.
  • the valve in the circulating line was closed and current was supplied to the timer and through it to the solenoid operating the alternating valve.
  • the timer was set to open and close the alternating valve on a 5 second cycle.
  • liquid carbon dioxide was introduced into the cylinder at pressures up to 400 p.s.i.g.
  • gaseous carbon dioxide vaporized mainly from the cylinder was returned at pressures decreasing to 300 p.s.i.g.
  • the pound cylinder was substantially filled with liquid carbon dioxide.
  • Current was cut off to the alternating valve which then remained closed, the valve in the filling line was closed and the valve in the circulating line was opened.
  • the filled cylinder was disconnected. Additional cylinders were similarly filled.
  • Method for transferring liquefied gas from a storage container to a receiving container by (1) pumping said liquefied gas at a pressure exceeding the pressure in said storage container into said receiving container for a period of from 1 to seconds, (2) discharging vaporized gas from said receiving container into said storage container for a period of from 1 to 30 seconds and repeating said (1) pumping and said (2) discharging until said receiving container is filled wtih liquefied gas.

Description

Nov. 7, 1967 L. T. COPE 3,350,890
PROCESS FOR TRANSFERRING LIQUEFIED GASES Filed Jan. 5, 1966 LOU/5 r COPE INVENTOR.
F paw/979; 7,
AGENT United States Patent 3,350,890 PROCESS FOR TRANSFERRING LIQUEFIED GASES Louis T. Cope, Atlanta, Ga, assignor to Olin Mathieson Chemical Corporation Filed Jan. 5, 1966, Ser. No. 518,920 3 Claims. (CI. 62-45) ABSTRACT OF THE DISCLOSURE Liquefied gas is transferred from a storage container to a receiving container by pumping liquid for 1 to 30 seconds, discharging gas from the storage container for 1 to 30 seconds and alternating these operations until the receiving container is filled with liquefied gas.
This invention relates to a method for the transfer of liquefied gases from a first container to a second coritainer. The method is applicable to all of the commonly liquefied gases including, for example, carbon dioxide, ammonia, chlorine, methane, ethylene oxide and various Freons. The invention is described below more particularly with respect to carbon dioxide.
Carbon dioxide is commonly stored in bulk storage plants throughout the country under a pressure usually in the range of from 280 to 305 p.s.i.g. and at a temperature of about 0 F. The containers are insulated and refrigerated to maintain liquid and gas under these conditions. Various pumps are known to the art for the purpose of transferring liquid carbon dioxide from such storage containers to smaller containers having capacities usually ranging from 5 to 150 pounds. The prior art has generally required pumps for this purpose to be capable 3 of pumping against a pressure differential of several hundred p.s.i. Such pressures were required because the liquid being pumped into the receiving container is heated rapidly on contact with the Warm container. Pressure in the container rises and, by the time the container is filled, the pressure in the container often corresponds to ambient temperature, for example, about 800 p.s.i.g. or more.
Low priced cylinder filling pumps, for example, the SCS LT pump, has a rated capacity of about '6 pounds of CO per minute and requires a 2 H.P. motor plus a gear reduction device in order to develop enough power to pump against high pressures. Such prior systems require a heavy source of current for the electrically operated pump and may cost from $1500 to $2000.
llf standard CO cylinders had a vapor return line, the cylinders could be filled by gravity. A pump to raise the pressure about 100 psi. above storage pressure would fill the cylinders much faster.
One object of this invention is to provide a method for filling liquefied gas cylinders in common use by means avoiding the necessity of expensive, high pressure pumps requiring correspondingly expensive valves, fittings and pipes. Another object is to provide a method which is inexpensive, rapid and effective for filling containers with liquefied gas under pressure. The method of this invention requires only readily available equipment and the cost of the equipment at present market prices is about $200.
The method of this invention transfers liquefied gas from a storage container to a receiving container by (1) pumping said liquefied gas at a pressure exceeding the pressure in said storage container into said receiving container for a period of from 1 to 30 seconds, (2) discharging vaporized gas from said receiving container into said storage container for a period of from 1 to 30 seconds and repeating said 1) pumping and said (2) discharging until said receiving container is filled With liquefied gas.
"ice
Advantageously a circulation is first established by priming the pump with liquefied gas from the storage container by pumping through an open line to atmospheric pressure. As soon as liquid is being pumped, it is valved through a line returning to the storage container. With the receiving container valved to the discharge side of the pump, the valve in the circulation line to the storage container is closed and liquid flows into the receiving container. After a period of from 1 to 30 seconds, for example, about 5 seconds, an alternating valve in the line from the discharge side of the pump is opened to return vaporized gas to the storage container for a similar period. These periods of filling with liquid and removal of vaporizcd gas are alternated until the receiving container is sufiiciently filled. The alternating valve is closed, the valve in the circulation line is opened and the valve in the line to the receiving container is closed. The container is removed and replaced by another receiving container to be filled and the process is repeated. The system is shut down by closing all the valves, shutting down the pump and opening one of the valves from the pump to the atmosphere or suitable discharge vent.
Advantageously, the alternating valve controlling the flow of liquid into the receiving container and the flow of vaporized gas therefrom is electrically operated. It is suitably a gate valve or other type of valve operable by a solenoid. A timer controls the current to the solenoid and opens and closes the valve at preset intervals. The flow of liquid into the receiving container and the flow of vaporized gas from the receiving container are both rapidly pulsating. After the pressure of gas in the receiving container is relieved, liquefied gas flows thereinto at lower differential pressure. The pump is suitably a low cost, standard gear pump or other suitable type generally used for circulating systems and designed to pump against pressures of up to about psi.
The figure herewith illustrates the method of the invention in which pump 11 is arranged to remove liquid from storage container 12 via line 13 controlled by valve 34 to transfer the liquid into line 14. Gas is returned to storage container 12 via line 15 controlled by valve 35. Line 14 carries branches 16, 17 and 18 with valves 1?, 20 and 21 respectively. Valve 19 is a safety valve, valve 20 controls the How in circulation line 17 and valve 21 controls the flow in line 18 to container 22. Line 14 terminates in alternating valve 23 which controls flow into gas return line 15. Alternating current is supplied via lines 24 through master switch 25 and lines 26 to pump 11. Current also fiows via lines 27 through control switch 28 and lines 29 to timer clock 30 in timer 31. The clock opens and closes the circuit in lines 32 to solenoid 33 which opens and closes valve 23 at preset intervals.
In operation, valves 34 and 35 are opened, master switch 25 is closed and pump 11 is operated with container 22 detached, valve 21 open and valve 2%) closed until the pump is primed with liquefied gas from storage container 12. Valve 20 is opened and valve 21 is closed, establishing circulation in line 17. Container 22 is attached and valves 20 and 21 are reversed. Control switch 23 is closed starting the clock 30 in timer 31. It is set to energize solenoid 23 to open and close valve 23 at 5 second intervals. When valve 23 is closed, liquid flows into container 22. When valve 23-is open, gas from line 14, pump 11 and container 22 flows via line 15 back to storage container 12. When container 22 is filled, control switch 28 is opened, valve 29 is opened and valve 21 is closed. Container 22 is replaced by an empty container to be filled and the process is repeated to fill as many containers as desired. To discontinue operations, control switch 28 and master switch 25 are opened, valves 34 and 35 in lines 13 and 15 are closed and valve 21 is opened.
Example In a system essentially as shown in the attached figure, gaseous and liquid carbon dioxide was stored in a storage container at 300 p.s.i.g. and F. The pump was a small gear pump operated by a fractional horsepower motor and was capable of developing about 100 p.s.i.g. pressure above that of the liquid supplied to it. The pump Was primed with liquid carbon dioxide by discharging to atmospheric pressure until the pump was cooled and filled with liquid. The discharge valve was closed and the valve to a circulation line was opened, circulating liquid back to the storage container.
The first of several small cylinders to be filled was connected to the filling line, the cylinder valve was opened and the valve in the filling line was opened. The valve in the circulating line was closed and current was supplied to the timer and through it to the solenoid operating the alternating valve. The timer was set to open and close the alternating valve on a 5 second cycle. When the valve was closed, liquid carbon dioxide was introduced into the cylinder at pressures up to 400 p.s.i.g. When the valve was opened, gaseous carbon dioxide vaporized mainly from the cylinder was returned at pressures decreasing to 300 p.s.i.g. In about 1% minutes the pound cylinder was substantially filled with liquid carbon dioxide. Current was cut off to the alternating valve which then remained closed, the valve in the filling line was closed and the valve in the circulating line was opened. The filled cylinder was disconnected. Additional cylinders were similarly filled.
What is claimed is:
1. Method for transferring liquefied gas from a storage container to a receiving container by (1) pumping said liquefied gas at a pressure exceeding the pressure in said storage container into said receiving container for a period of from 1 to seconds, (2) discharging vaporized gas from said receiving container into said storage container for a period of from 1 to 30 seconds and repeating said (1) pumping and said (2) discharging until said receiving container is filled wtih liquefied gas.
2. Method of claim 1 in which said pumping pressure exceeds the pressure in said storage container by less than p.s.i.g.
3. Method of claim 1 in which said liquefied gas is carbon dioxide.
References Cited UNITED STATES PATENTS 2,362,984 1l/ 1944 Boshkoff 6253 2,387,894 10/1945 Fannin 62-55 3,234,746 2/1966 Cope 62-53 LLOYD L. KING, Primary Examiner.

Claims (1)

1. METHOD FOR TRANSFERRING LIQUEFIED GAS FROM A STORAGE CONTAINER TO A RECEIVING CONTAINER BY (1) PUMPING SAID LIQUEFIED GAS AT A PRESSURE EXCEEDING THE PRESSURE IN SAID STORAGE CONTAINER INTO SAID RECEIVING CONTAINER FOR A PERIOD OF FROM 1 TO 30 SECONDS, (2) DISCHARGING VAPORIZED GAS FROM SAID RECEIVING CONTAINER INTO SAID STORAGE CONTAINER FOR A PERIOD OF FROM 1 TO 30 SECONDS AND REPEATING SAID (1) PUMPING AND SAID (2) DISCHARGING UNTIL SAID RECEIVING CONTAINER IS FILLED WITH LIQUEFIELD GAS.
US51892066 1966-01-05 1966-01-05 Process for transferring liquefied gases Expired - Lifetime US3350890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US51892066 US3350890A (en) 1966-01-05 1966-01-05 Process for transferring liquefied gases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US51892066 US3350890A (en) 1966-01-05 1966-01-05 Process for transferring liquefied gases

Publications (1)

Publication Number Publication Date
US3350890A true US3350890A (en) 1967-11-07

Family

ID=24066036

Family Applications (1)

Application Number Title Priority Date Filing Date
US51892066 Expired - Lifetime US3350890A (en) 1966-01-05 1966-01-05 Process for transferring liquefied gases

Country Status (1)

Country Link
US (1) US3350890A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4386650A (en) * 1976-02-05 1983-06-07 Rockwell International Corporation Temperature control system
US4497178A (en) * 1982-03-26 1985-02-05 Teisan Kabushiki Kaisha Method of preventing atmosphere from entering heat-insulating container

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2362984A (en) * 1941-09-05 1944-11-21 Linde Air Prod Co Method and apparatus for dispensing and conserving gas material
US2387894A (en) * 1944-07-31 1945-10-30 Fannin Raymond Bryant Means for filling liquid gas bottles
US3234746A (en) * 1964-04-28 1966-02-15 Olin Mathieson Process and apparatus for the transfer of liquid carbon dioxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2362984A (en) * 1941-09-05 1944-11-21 Linde Air Prod Co Method and apparatus for dispensing and conserving gas material
US2387894A (en) * 1944-07-31 1945-10-30 Fannin Raymond Bryant Means for filling liquid gas bottles
US3234746A (en) * 1964-04-28 1966-02-15 Olin Mathieson Process and apparatus for the transfer of liquid carbon dioxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4386650A (en) * 1976-02-05 1983-06-07 Rockwell International Corporation Temperature control system
US4497178A (en) * 1982-03-26 1985-02-05 Teisan Kabushiki Kaisha Method of preventing atmosphere from entering heat-insulating container

Similar Documents

Publication Publication Date Title
US4977749A (en) Apparatus and method for purification of gases used in exciplex (excimer) lasers
US3282305A (en) Cylinder filling apparatus
EP1847591A1 (en) Device for finally fermenting and/or storing and/or transporting and/or dispensing beer
US3272238A (en) Method and apparatus for filling vessels
US2180090A (en) Method and apparatus for dispensing gas material
DE102016005217A1 (en) Hydrogen station with liquid hydrogen
US3350890A (en) Process for transferring liquefied gases
US2479070A (en) Apparatus for and method of dispensing liquefied gases
US2443724A (en) Apparatus for converting liquids into gases and for dispensing the gases
US2257897A (en) Method and apparatus for dispensing gas material
GB812998A (en) Improvements in storing and pumping systems for liquefied gas
US2075678A (en) Transferring combustible liquefied gases
US5419140A (en) Device for recycling a cryogenic liquid and its use in an apparatus for freezing products
NO139737B (en) WATER, EMULGATOR-FREE POLYMERIZE DISTRIBUTION, AND PROCEDURES FOR ITS PREPARATION
RU2637155C1 (en) Method of supplying high pressure hydrogen gas to consumer
CN108486549B (en) Material recovery device
GB1087726A (en) Improvements in refrigeration methods and apparatus
US2499404A (en) Liquefied gas storage and supply
US3212279A (en) Process for transferring carbon dioxide
US2362984A (en) Method and apparatus for dispensing and conserving gas material
US2859594A (en) Transfer of volatile liquids and recovery of vapors of same
US3079760A (en) Liquefied petroleum gas pressure and low temperature storage system
US2880594A (en) Method of and apparatus for storing and dispensing liquid carbon dioxide
US2536322A (en) Transfer and recovery system for volatile liquids
US2889689A (en) Method and apparatus for chilling perishable materials such as foodstuffs