Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3353536 A
Publication typeGrant
Publication dateNov 21, 1967
Filing dateApr 13, 1965
Priority dateApr 13, 1965
Also published asDE1491651A1
Publication numberUS 3353536 A, US 3353536A, US-A-3353536, US3353536 A, US3353536A
InventorsForrest M Bird, Henry L Pohndorf
Original AssigneeForrest M Bird, Henry L Pohndorf
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Nebulizer
US 3353536 A
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

Nov. 21, 1967 F. M. BIRD ET AL NEBULI ZER 2 Sheets-Sheet 1 Filed April 13, 1965 Fig.3

INVENTORS d? a@ Wm .r n r "mm m .P, A M. ...L@ 8 RH United States Patent 3,353,536 NEBULIZER Forrest M. Bird, Airport, Box 970, Palm Springs, Calif. 92262, and Henry L. Pohndorf, 1227 Brewster Drive, El Cerrito, Calif. 94530 Filed Apr. 13, 1965, Ser. No. 447,852 8 Claims. (Cl. 128-194) ABSTRACT OF THE DISQLOSURE Nebilizer having a container and a cover removably mounted on the container and in which the cover is formed with an inlet passage and outlet passage and with a skirt which is disposed in front of the inlet passage and the outlet passage, the cover havinga nozzle mounted thereon for taking fluid from the container and nebulizing the same at a point which is above the lower extremity of the skirt.

This invention relates to a nebulizer and more particularly to a nebulizer which can be utilized for long-term therapy.

Nebulizers heretofore available have either been relatively small in size requiring frequent re-filling, or have been very expensive for the larger sizes.- There is, therefore, a need for a new and improved low price nebulizer which can be utilized for long-term therapy.

In general, it is an object of the present invention to provide a nebulizer which can be utilized for long-term therapy for all applications where oxygen or air is admin istered to a patient.

Another object of the invention is to provide a nebulizer of the above character which is relatively inexpensive.

Another object of the invention is to provide a nebulizer of the above character which can be used on many different types of respirators.

Another object of the invention is to provide a nebulizer of the above character which can be readily filled and refilled.

Another object of the invention is to provide a nebulizer of the above character which can be readily maintained.

Another object of the invention is to provide a nebulizer of the above character which can be readily cleaned.

Another object of the invention is to provide a nebulizer of the above character in which the critical parts are always in alignment.

Additional objects and features of the invention will appear from the following description in which the preferred embodiment is set forth in detail in conjunction with the accompanying drawings.

Referring to the drawings:

FIGURE 1 is a side elevational view of a neubulizer incorporating the present invention.

FIGURE 2 is a top plan view of the nebulizer shown in FIGURE 1.

FIGURE 3 is a front elevational view of the nebulizer shown in FIGURE 1.

FIGURE 4 is a side elevational view partially in crosssection of a portion of the nebulizer shown in FIGURE 1.

FIGURE 5 is a side elevational view similar to that shown in FIGURE 1 showing another way of using the nebulizer and showing the cap in cross-section.

FIGURE 6 is a cross-sectional view of the nebulizer shown in FIGURE 5.

FIGURE 7 is an enlarged fragmentary view of a portion of the nebulizer shown in FIGURE 6.

In general, the nebulizer is utilized for supplying small liquid particles in a mainstream of gases supplied to a patient. The nebulizer consists of a container defining a chamber which is adapted to contain a liquid. A cover is removably mounted on the container and is formed with inlet and outlet passages having relatively large crosssectional areas for carrying the mainstream of gases for the patient. A nozzle is mounted on the cover and has a passage therein for supplying additional gases into the chamber and mixing with the mainstream gases. A nipple is formed on the nozzle and has a passage opening into the passage in the nozzle. A tube is connected to the nipple and is adapted to extend into the liquid in the container so that as gases pass through the nozzle, the liquid is drawn upwardly and entrained in the gases passing through the nozzle. Means is mounted in the cover and provides a surface disposed in front of the nozzle to break up the liquid particles entrained in the gases passing from the nozzle. A skirt is mounted in the cover and surrounds the nozzle and has its lower extremity extending beyond the point at which the liquid particles impinge upon the surface whereby the larger particles engage the skirt and fall back into the liquid in the reservoir and the smaller particles are picked up by the mainstream of gases passing from the inletpassage and into the outlet passage.

As shown in the drawing, the nebulizer consists of a container 11 with a castellated cover 12 removably mounted thereon. The container 11 can be formed in any suitable shape as, for example, cylindrically, as shown in the drawings, and can be formed of any suitable material such as a transparent plastic. The container can be of any suitable size but preferably should be relatively large in order to provide a relatively large chamber 13 for long-term therapy as hereinafter described. Thus, the container can be of a size such as to contain 500 cc. of liquid. If desired, as shown particularly in FIGURE 1, the container 11 can be provided with vertical calibrations 14 so that the amount of liquid in the chamber can be readily determined by visually examining the level of the liquid in the chamber or reservoir.

The container 11 is open at the top and is provided with threads 15 on its upper extremity. The cove-r 12 can also be formed of a suitable material such as an opaque plastic and can be of any suitable shape. For example, as shown in the drawings, it can have a dome-shaped portion 12a and a cylindrical portion 12b. The cylindrical portion 12b is provided with threads which are adapted to cooperate with the threads 15 to form a threaded connection between the cover 12 and the container 11.

The cover 12 is provided with extensions 16 and 17 which have axially aligned inlet and outlet passages 18 and 19 formed therein having relatively large cross-secional areas for carrying the mainstream gases for the patient. As shown in the drawing, the outlet passage 19 is slightly larger than the inlet passage 18. However, it should be pointed out that the functions of the two passages can be reversed.

The cover 12 is provided with an annular recess 21 which carries an O-ring 22 which is adapted to engage the top edge of the reservoir 11 to form a tight seal between the cover .12 and the reservoir 11 as shown particularly in FIGURE 4.

The upper portion of the cover is provided with a frustoconical depending skirt 24 which extends downwardly into the cover 12 for a substantial distance and which has its lowermost extremity substantially below the lower portions of the inlet and outlet passages 18 and 19 for a purpose hereinafter described. The skirt 24 is provided with a slight inward taper in a downward direction and forms a large opening 26 in the top of the cover 12. The cover 12 is also provided with a vertically extending threaded boss 27 which has a mantle 28 threadedly mounted thereon. The mantle 28 is provided with large and small plug-like male portions 28a and 28b.

The male portion 28a is of a size so that it can be inserted in the outlet passage 19 to plug the same, whereas the portion 28b is of such a size that it can be inserted in the inlet passage 18 to plug that passage when desired.

The large opening 26 provided in the cover 12 is normally closed by a large plug or crown 31. The plug is provided with a frustoconical portion 31a and a planar bottom wall portion 31b which adjoins the frustoconical portion 31a. The plug is also provided with an outwardly extending lip 31c. An arcuate recess 32 is formed in the lip portion 310 to accommodate the mantle or cap 28. As can be seen from FIGURE 4, the plug 31 forms a relatively tight fit in the skirt 24 and normally seals the opening 26.

A nozzle 34 is mounted in the plug 31 and is formed as an integral part thereof and extends through the bottom wall portion 31b. The nozzle 34 is provided with a vertically extending passage 36 which has a tapered portion 36a and a capillary-like portion 36b which are in communication with a port or orifice 37 disposed below the bottom wall portion 31b to provide a downwardly directed jet of air. The nozzle is provided with a nipple 38 which has a passage 39 which communicates with the passage 36. The nozzle 34 and the nipple 38 are cast as integral parts so that they cannot become misaligned. This assures maximum efficiency of the nozzle at all times. A flexible tube 41 of a suitable material such as plastic is mounted on the nipple 38 and is adapted to extend downwardly into the chamber 13 and into the liquid carried in the container 11. As hereinafter described, the nozzle 34 is adapted to carry gases and through conventional aspirator action, is able to draw liquid from the chamber 13 and to cause liquid particles to be entrained in the gases as they pass through the nozzle 37.

By way of example, one nozzle 34 and nipple 38 had the following dimensions. The passage 36 had a diameter of .025 inch; the passage 39 had a diameter of .045 inch; and the port or orifice 37 had a diameter of .047 inch. The tapered portion 36a of the passage 36 had an included angle of 8". The portion 36b had a length of A of an inch and the orifice or port 37 had a length of .067 inch. Thus, in this example, the ratio of the size of the portion 36b of the passage 36 and the orifice 37 is .025 1.047, and the ratio of the area was 1:3.54.

Means is provided on the plug 31 which forms a surface disposed in front of the nozzle for breaking up the liquid particles entrained in the gases passing from the port 37 This means consists of a ball 42 which is formed as an integral part of a substantially U-shaped pendant 43. The pendant 43 is provided with upper tapered portions 43a which are adapted to fit relatively tightly in holes 44 provided in bosses 46 formed integral with the planar bottom wall portion 31b. The pendant 43 is so positioned so that the spherical surface provided by the ball 44 is disposed slightly below the port 37 for the nozzle 34. It also will be noted that the port 37 and the ball 42 are positioned so that the gases carrying the liquid particles impinge upon the ball at a point which is above the lower extremity of the skirt 24 or, in other words, the skirt 24 extends beyond the point at which the liquid particles impinge upon the ball 42.

The plug 31 is also provided with a pair of risers 48 which have passages 49 extending therethrough. Caps 51 of a suitable material, such as rubber, are mounted over the risers and close the upper ends of the passages 49.

Suitable additional fittings are provided for use with the nebulizer. For example, as shown in FIGURES 1, 2, 3 and 4, a fitting assembly 56 is provided which consists of a T-shaped fitting 57. The fitting 57 has one leg 5711 which is tapered and adapted to seat within the passage 36 provided in the nozzle 34. The fitting is also provided with nipples 57b and 57c which are stepped as shown and which are connected to tubes 58 and 59. Tube 58 is adapted to be connected to a source of gas under pressure so that the gas is supplied to the nozzle 34. The tube 59 is adapted to be connected to other accessories as, for

example, an exhalation valve of a breathing assembly provided as a part of a respirator.

In FIGURES 5 and 6, another fitting assembly 61 is provided which consists of an extension member 62 which is provided with a cap 63which is adapted to be threaded onto the threaded boss 27 and a tapered element 64 which is adapted to seat within a tapered recess 66 provided in the boss 27. The extension member 62 can be formed of any suitable material such as plastic. It is provided with a vertically extending passage 67. It also is provided with an integral fitting 68 which has a passage 69 therein opening into the passage 67. A tube 71 is mounted on the fitting 68. An adapter 72 is mounted on the other end of the tube 71 and is provided with a tapered portion 72a adapted to fit within the passage 36 provided in the nozzle 34. The adapter is provided with a passage 73 which opens into the tube 71. A metal fitting 76 is mounted on the upper end of the extension member 72 and has a swivel 77 of a conventional type mounted thereon which is adapted to be connected to an outlet assembly 78 of a conventional type that is connected to a source of gas 79 under pressure.

Operation and use of the nebulizer may now be briefly described as follows. Let it be assumed that the inlet extension 16 is connected to means for supplying mainstream gases to a patient, as, for example, a respirator 81 such as disclosed in Patent No. 3,068,856, and that the outlet extension 17 is connected to a suitable patient adapter such as a breathing assembly and that the fitting assembly 56 has its tube 58 connected to a suitable supply of gas under pressure such as supplied from the respirator. Let it also be assumed that the container 11 has been filled to a suitable level with a liquid with which it is desired to supply to the patient as, for example, water.

In operation, the gases passing through the tube 58 enter the passage 36 and the nozzle 34 and discharge at relatively high velocity through the port 37. During the travel of the gases through the passage 36, liquid from the container 11 is siphoned through the tube 41 and is entrained in liquid particles in the gases passing through the passage 36 by conventional aspiratory action and the liquid particles are discharged with the jet of gases emerging from the port 37 and impinge upon the spherical surface provided by the ball 42 which breaks the entrained particles of liquid into many smaller particles as, for example, particles having a size of .5 to 4 microns. These particles, with the jet of air, are dispersed downwardly within the skirt 24. Certain of the larger normally undesirable particles collect on the skirt, whereas the smaller particles enter the mainstream of gases passing through the nebulizer from the inlet passage 18 and around the skirt 24 out the outlet passage to the patient. Since the mainstream does not take a direct route across the point at which the gas jet emerging from the port 37 strikes the ball 42 because of the protection afforded by the skirt 24, the mainstream of gases passing around the skirt 24 will only pick up or capture those smaller particles which readily travel with the gases, whereas the larger particles will be collected by the skirt 24 and will drain down into the container 11. The smaller particles captured by the main air stream passing through the nebulizer are delivered to the patient so that the patient is supplied with properly moistened gases.

The integral one-piece construction of the nozzle 34 and nipple 38, which alternatively can be called a one-piece air jet capillary and discharge port assembly, is relatively important. This is because the amount of liquid delivered to the pendant ball 42 through the metering orifice 37 is determined by its size relationship with respect to the size of the passage 36a and the length of the passage 39 that must be bridged by the jet of gases which passes from the passage 36 through the orifice 37. Thus, the area of the passage 36b, the length of the free gas jet travel across the passage 39 to the inlet of the larger orifice 37 and the relationship of the large orifice 37 to the passage 36b controls the amount of liquid placed in the jet stream and which is slammed against the ball 42 and thus, in a great measure, determining the availability of the volume of liquid to be suspended in the mechanical airway to the patient. The element efficiency of the jet capillary construction depends greatly on the registration or concentricity of the jet orifice 36b and the discharge orifice 37 which emits the mixed gas and liquid. The present construction precludes misalignment of the parts. The size of the ball 42 determines the particulate size.

When the nebulizer is connected as shown in FIGURES 14, an in-line connection is provided for the mainstream gases and all of the mainstream gases as, for. example, all of the inspired gases during pressure breathing, can be caused to flow directly through the nebulizer to make possible maximum transport of the liquid particles to the patient. Additional liquids for giving the necessary therapy to the patient, such as anaesthetic agents, drugs and bronchodialators, can be introduced by way of hypodermic needles through the caps 51 and through the passage 49 provided in the risers 48. The chamber or reservoir 13 can be refilled during the expiratory phase merely by removing the cover 12 and filling the reservoir without disconnecting the various fittings. Alternatively, if desired, the container 11 can be unscrewed from the cover 12, filled with liquid and then screwed back into the cover.

The operation is substantially identical with the use of the fitting assembly 61 provided in FIGURES and 6. However, in this arrangement, the mantle 28 closes the inlet passage 18 and the only gas which passes through the nebulizer and out the outlet passage 19 is the gas supplied through the nozzle 34. Such an arrangement is used where the patient is being supplied with oxygen through a nasal catheter, etc. Since the oxygen passes through the nebulizer, it is properly moistened for the patients use.

The crown 31 can act as a relief valve which will automatically pop out of the cover 12 when excessive high pressure gases accumulate in the mechanical airway to the patient.

From the foregoing, it can be seen that the nebulizer may be used in combination with any metered oxygen supply to provide a suspension of water particles to resolve any humidity deficit in the gases being supplied to the patient. Thus, the nebulizer may also be called a humidifier. The container 11 is of sufficient size so that continuous therapy can be provided for the patient. The inlet and outlets are in line and can be reversed. The nebulizer humidifier can be applied without alternation on free flow oxygen inhalation therapy or pulmonary therapy.

We claim:

1. In a nebulizer for supplying small liquid particles in a mainstream of gases supplied to a patient, a container forming a chamber adapted to contain a liquid, a cover mounted on said container, the cover being formed with an inlet opening and an outlet opening for carrying main stream gases to the patient, a nozzle mounted on said cover and having a passage therein for supplying gases into the chamber, an additional passage formed in said nozzle and communicating with said first named passage, means connecting said additional passage to the fluid in the reservoir, means mounted in the cover providing a surface disposed in front of the nozzle for breaking up liquid particles entrained in the gases passing from the nozzle, and a skirt disposed in the cover and surrounding the nozzle and having its lower extremity extending below said inlet and outlet openings and below the point at which the liquid particles impinge upon said surface, said skirt being disposed in front of said inlet opening and said outlet opening and in said mainstream gases so that the mainstream gases have a tendency to flow around the skirt.

2. A nebulizer as in claim 1 wherein said cover has a large opening formed therein, a plug removably mounted in said cover and closing said opening and wherein said nozzle and said means providing a surface are mounted on said plug.

3. A nebulizer as in claim 1 wherein the inlet and outlet passages are in alignment and wherein the nozzle is disposed so that the gases jetting therefrom are substantially at right angles to the aligned inlet and outlet passages.

4. In a nebulizer for supplying small liquid particles in a mainstream of gases supplied to a patient, a container forming a chamber adapted to contain a liquid, a cover removably mounted on said reservoir and being formed with axially aligned inlet and outlet passages having relatively large cross-sectional areas for carrying the mainstream of gases for the patient, a cylindrical skirt formed in the cover and defining a relatively large opening extending downwardly at right angles to and below the axially aligned inlet and outlet passages, the skirt being disposed in front of the inlet and outlet passages in the main airstream so that the mainstream gases have a tendency to flow around the skirt, a plug removably mounted in said large opening in the cover and serving to close the same, a nozzle mounted in said plug and having a downwardly disposed port so that gases jetting therefrom pass in a direction which is substantially at right angles to the direction of flow of the mainstream gases through the nebulizer, said nozzle being formed with an additional passage, means connecting said additional passage to the liquid in the container so that as gases pass through the nozzle, liquid is siphoned from the container and entrained in the gases, and means mounted on the cover supporting a substantially spherical surface disposed in front of the nozzle for breaking up the liquid particles entrained in the gases passing from the port into smaller particles.

5. A nebulizer as in claim 4 together with a boss mounted on said cover and a mantle removably mounted on said boss, said mantle having portions thereof adapted to be inserted in either said inlet passage or said outlet passage to close either said inlet passage or said outlet passage.

6. A nebulizer as in claim 4 wherein said means supporting said substantially spherical surface consists of a substantially U-shaped member removably mounted in said plug.

7. A nebulizer as in claim 4 together with at least one riser mounted on said plug, a passage in said riser, and a resilient cap mounted on said riser and closing said passage.

8. A nebulizer as in claim 4 wherein said substantially spherical surface is positioned so that it is above the lower extremity of the skirt.

References Cited UNITED STATES PATENTS 2,709,577 5/1955 Pohndorf et a1 128185 2,840,417 6/1958 Dorsak et a1. 128-194 3,018,971 1/196-2 Cheney 239-338 3,172,406 3/1965 Bird et al. 128-194 3,206,175 9/1965 Boteler 128188 3,269,665 8/1966 Cheney 239338 FOREIGN PATENTS 452,438 11/1948 Canada.

RICHARD A. GAUDET, Primary Examiner. K. L. HOWELL, Assistant Examiner.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2709577 *Jul 28, 1951May 31, 1955Nat Welding Equipment CoOxygen therapy humidifier
US2840417 *Feb 12, 1957Jun 24, 1958Gordon Armstrong Company IncNebulizing apparatus
US3018971 *May 15, 1959Jan 30, 1962Cheney Ralph GAtomizer
US3172406 *Apr 5, 1962Mar 9, 1965Bird Forrest MNebulizer
US3206175 *Apr 18, 1960Sep 14, 1965Puritan Compressed Gas CorpHumidifier
US3269665 *Nov 2, 1964Aug 30, 1966Cheney Ralph GNebulizer
CA452438A *Nov 9, 1948Harold Edwin CurryAtomizer
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3572660 *Aug 4, 1967Mar 30, 1971Becton Dickinson CoDevice for dispensing inhalable fluids
US3744771 *Jul 20, 1970Jul 10, 1973Ahldea CorpDisposable liquid entraining system
US3836079 *Aug 2, 1972Sep 17, 1974Becton Dickinson CoFluid dispensing device
US3846518 *Jun 19, 1972Nov 5, 1974American Hospital Supply CorpPort system for medical humidifier container
US3903216 *Jun 4, 1973Sep 2, 1975Respiratory CareInhalation therapy apparatus
US3940064 *Feb 10, 1975Feb 24, 1976Kentaro TakaokaAtomizing equipments for anesthetic liquid compounds
US4054622 *Nov 3, 1970Oct 18, 1977Lester Victor ECombination nebulizer and humidifier
US4101611 *Feb 7, 1977Jul 18, 1978Amark Industries, Inc.Water heater, aspirator
US4110419 *Aug 19, 1977Aug 29, 1978Respiratory Care, Inc.High-volume disposable and semi-disposable cartridge humidifier with self-contained cartridge sterilizing means, and related method
US4178334 *Jan 27, 1978Dec 11, 1979Respiratory Care, Inc.High volume humidifier/nebulizer
US4343304 *Jul 17, 1980Aug 10, 1982Hickmann Horst RVeterinary inhalation therapy apparatus
US4588129 *Sep 6, 1983May 13, 1986Hudson Oxygen Therapy Sales CompanyNebulizer
US4767576 *Nov 6, 1986Aug 30, 1988CimcoNebulizer with auxiliary gas input
US4951659 *Nov 4, 1988Aug 28, 1990Automatic Liquid Packaging, Inc.For use in inhalation therapy
US5063921 *Oct 16, 1989Nov 12, 1991Cimco, Inc.Nebulizer heater
US5259370 *Oct 10, 1991Nov 9, 1993Cimco, Inc.Nebulizer heater
US5301662 *Sep 25, 1991Apr 12, 1994Cimco, Inc.Nebulizer with high oxygen content and high total flow rate
US5396884 *Apr 26, 1993Mar 14, 1995Cimco, Inc.High flow rate humidifier with baffle plates
US5938083 *Jun 13, 1997Aug 17, 1999Engineered Medical Systems, Inc.Integral nebulizer stand and carrier gas conduit
US6314609 *Feb 7, 2000Nov 13, 2001Connie GeorgeMouth powered vacuum
US6328030 *Mar 12, 1999Dec 11, 2001Daniel E. KidwellNebulizer for ventilation system
US7036500 *Apr 21, 2004May 2, 2006Smiths Medical Asd, Inc.Nebulizer with auxiliary inlet port
US7322349 *Jun 18, 2003Jan 29, 2008Aerogen, Inc.Apparatus and methods for the delivery of medicaments to the respiratory system
WO1990013326A1 *May 3, 1990Nov 15, 1990Wilhelm Guenter Aug SchumacherDevice for producing aerosols for inhalation therapy in humans in an inhalation spray respirator
Classifications
U.S. Classification128/200.18, 261/DIG.650, 422/266, 128/200.21, 239/338
International ClassificationA61M16/00, A61M11/06
Cooperative ClassificationA61M16/00, A61M11/06, Y10S261/65
European ClassificationA61M16/00, A61M11/06
Legal Events
DateCodeEventDescription
Nov 13, 1985ASAssignment
Owner name: CITICORP INDUSTRIAL CREDIT, INC., 635 W. SEVENTH S
Free format text: SECURITY INTEREST;ASSIGNOR:BIRD PRODUCT CORPORATION;REEL/FRAME:004537/0098
Effective date: 19851018