Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3357687 A
Publication typeGrant
Publication dateDec 12, 1967
Filing dateJun 28, 1965
Priority dateJun 28, 1965
Publication numberUS 3357687 A, US 3357687A, US-A-3357687, US3357687 A, US3357687A
InventorsAlbert G H Vanderpoel
Original AssigneeAlbert G H Vanderpoel
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Calibrated adjustable regulator
US 3357687 A
Abstract  available in
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Dec- 12, 1967 A. G. H. VANDERPOEL 3,357,637

7 I CALIBRATED ADJUSTABLE REGULATCR Filed June 28, 1965 2 Sheets-Sheet 1 fWE/vrae. Awser $.E Vr/vosepoa Dec. 12, 1967 A. s. H. VANDERPOEL V 3, 8

CALIBRATED ADJUSTABLE REGULATOR Filed June 28, 1965 2 Sheets-Sheet 2 121 10. 6. lag. A

fA/ve/vrae.

A4552?" G.H Mvozema m m- MW United States Patent Ofiice 3,357,687 Patented Dec. 12, 196? 3 357 687 CALIBRATED ADlUS'lABLE REGULATOR Albert G. H. Vanderpoel, 14509 Van Ness Ave., Gardenia, Calif. 90249 Filed June 28, 1965, Ser. No. 467,220 9 Claims. (Cl. 261-51) ABSTRACT OF THE DISCLOSURE The disclosed regulator incorporates rotary and nonrotary members within a cap on the regulator body. The spring tension urging the diaphragm in a direction to open the regulator valve is adjustable by rotation of the rotary member. Multiple cam tracks and projections engaging the tracks are carried by the members within the cap in such manner as to achieve a high degree of compactness.

This invention relates generally to fluid pressure regulating devices in which fluid delivered by a pump and under pulsating flow conditions is subjected to pressure regulation. More particularly, the invention concerns an improved calibrated adjustable regulator which may be used in a fuel supply system that includes either a carburetor, or a fuel injector system throttle valve where low fuel pressure is desired at light throttle openings and higher pressures at increased throttle openings.

It is a major object of the invention to provide a calibrated adjustable regulator of such unusually advantageous construction and mode of operation that unusual benefits and results are obtained, as will appear. Basically, the reg ulator subject to improvement in accordance with the invention includes a chamber having inlet and outlet ports for circulating fluid such as fuel therethrough, a check valve within the chamber for controlling such circulation, a diaphragm in the chamber and having one side exposed to receive pressure of fluid flowing past the check valve, and spring means at the opposite side of the diaphragm for urging it in a direction to increase the circulation. The improvement to the regulator comprises spring tension adjusting apparatus comprising a non-rotary member to transmit reaction loading exerted by the spring means, and a rotary member including a manually rotatable element exposed at the exterior of the chamber, the members having cam and follower surfaces interengaged to effect adjustable bodily displacement of the non-rotary member relative to the rotary member for varying the spring tension in response to adjustable rotation of the rotary member. As will appear, the basic construction is such that a highly compact and rugged control of spring tension is provided, while at the same time the control affords accurate calibration of the pressure regulation.

Additional important objects and advantages of the invention contributing toward the unusual improvements include the provision of detent means on the chamber and rotary member to releasably lock the latter in selected rotary positions, the detent means being releasably held in locking position by spring exerted reaction loading transmitted from the non-rotary member to the rotary member; the coaxial location of the rotary and non-rotary members, with the former having multiple cam surfaces extending about the axis and presented toward the nonrota-ry member, the latter having multiple follower surfaces spaced about the axis and engaging the respective cam surfaces; the provision of three cam surfaces as defined, each extending more than 180 degrees about the axis, there being three corresponding follower surfaces on multiple projections; the provision of means to controllably pre-set the spring tension by deflecting the spring relative to the non-rotary member; and the provision of means operatively connected wtih the rotary member to increase an engine fuel throttle opening in conjunction with rotation of the rotary member in a direction to increase the spring tension.

These and other objects and advantages of the invention, as well as the details of an illustrative embodiment, Will be more fully understood from the following detailed description of the drawings, in which:

FIG. 1 is a plan view of one regulator incorporating the invention, and the regulator set for low regulated fluid pressure delivery;

FIG. 2 is an enlarged vertical section taken through the FIG. 1 regulator;

FIG. 3 is a horizontal section taken on line 3-3 of FIG. 2;

FIG. 4 is a horizontal section taken on line 4-4 of FIG. 2;

FIG. 5 is a horizontal section taken on line 5-5 of FIG. 2;

FIG. 6 is a view like FIG. 1, but with the regulator set for relatively high regulated fluid pressure delivery;

FIG. 7 is an enlarged vertical section taken through the FIG. 6 regulator;

FIG. 8 is a horizontal section taken on line 8-8 of FIG. 7;

FIG. 9 is an elevation showing use of the invention to vary fuel pressure delivery to an engine as the throttle position is varied;

FIG. 10 is a section taken on line and FIG. ll is a section taken on line 111-1 of FIG. 10.

Referring first to FIGS. l5, a fluid pressure regulator is generally indicated at 10 as including a chamber comprised of a body 11 and a cap 12, the body having inlet and outlet ports 13 and 14 for circulating fluid through the chamber. A duct 15 typically connects a pump 16 with the inlet port 13, and a duct 17 typically connects the outlet port 14 with a fluid utilization device 18, as for example, an engine carburetor bowl.

A check valve 20 is contained within the chamber for controlling the circulation, and a diaphragm 21 is also located in the chamber to have one side thereof exposed to receive pressure of fluid flowing past the check valve. In the example shown the check valve and diaphragm are interconnected at 22, and the valve has a tapered seat 23 facing an O-ring seal 24 retained in a body bore 25 by an annular retainer 26. A relatively light spring 27 urges the valve 20 toward the O-ring 24.

A relatively heavier spring 28 is contained within the chamber at the opposite side of the diaphragm for urging the diaphragm in a direction to increase the circulation past the check valve 22. Force may be advantageously applied from the spring to the diaphragm via the plate 30 received within the interior of a circular rubber flange 31 integral with the rubber or flexible plastic diaphragm. The latter has its periphery 32 retained between the body and the cap.

Coming now to that portion of the description with which the invention is more particularly concerned, spring tension adjusting apparatus is provided to comprise a non-rotary member such as the follower member 33 to transmit reaction loading exerted by the spring means 28. The member 33 is typically flanged at 34 within the cap to have multiple circularly spaced shoulders at peripheral grooves 35 to interfit with circularly spaced shoulders at vertically elongated tongues 36, the latter being integral with the cap. The construction is such that the shoulders resist relative rotation between the rotary member 33 and the cap, as well as to guide bodily displacement of the member 33 relative to the cap and to a rotary member 37, such displacement being axial 1010 of FIG. 9;

along axis 38. Member 33 is also cupped at 39 to be received by the bore 40 of the rotary member 37, whereby the latter may be said to rotate on the non-rotary member 33.

The rotary member 37 may be considered to include a manually rotatable element 41 exposed at the exterior of the chamber for manually rotating the member 37 on the member 33. Considering that loading is transmitted from the spring 28 to the non-rotary follower member 33, such reaction loading is then transmitted to the rotary member 37 via cam and follower surfaces to be described. The latter are interengaged to effect adjustable bodily displacement of the non-rotary member 33 relative to the rotary member and axially, for Varying the spring tension in response to adjustable rotation of the rotary member. In this regard, and in the form of the invention shown, the rotary member 37 has multiple cam surfaces or tracks 43, 44 and 45 extending about the axis 38 and presented toward the non-rotary member. As is seen in FIG. 3, the surfaces each extend more than 180 degrees about that axis, and typically close to 360 degrees, each track having high and low end portions as designated by the letters H and L.

The non-rotary member has multiple follower surfaces 46, 47 and 48 respectively in engagement with the tracks 43-45, thereby to provide a three-point suspension for the rotary member. These follower surfaces are respectively provided on the multiple projections 49, 50 and 51 integral with the follower member and spaced about the axis 38. Finally, the rotary cam rate of the surfaces or tracks 43-45 is such as to effect the bodily displacement of the member 33 from the position shown in FIG. 2 to the position shown in FIG. 7 as the dial or element 41 is rotated from the position seen in FIG. 1 to the posi tion seen in FIG. 6. Accordingly, a highly compact adjustment mechanism is afforded, with accurate control of the spring tension exerted on the diaphragm, the latter in turn controlling the delivery fluid pressure in accordance with regulator action. As to the latter, as the pressure of fluid entering the chamber via duct increases, the diaphragm 21 will deflect upwardly to decrease the opening afforded by the check valve 20, and thereby regulate the pressure at the outlet duct 17.

A further feature of the invention comprises the provision of detent means on the cap and rotary member to releasably lock the latter in selected rotary positions, the detent means being releasably held in locking position by spring exerted reaction loading transmitted from the non-rotary member to the rotary member. In the example illustrated in FIGS. 2 and 7, the detent means comprises a tongue 96 upstanding from the upper surface of the rotary member 37 to releasably engage any of a circular series of grooves sunk upwardly in the undersurface of the inwardly turned cap flange 52. During adjustment of calibration, the dial element 41 is pushed downwardly to disengage the tongue and groove parts 96 and 97 as seen in FIG. 7. After selected adjustment is achieved, the element 41 is released and the spring 28 urges the members 33 and 37 upwardly to engage the tongue and groove parts 96 and 97, provided they are opposite each other. In this regard, whenever the arrow 53 on dial element 41 points toward a number or indicia marking on the cap 12 as shown, the tongue and groove parts 96 and 97 are positioned to interengage, for holding the rotary member 37 against further turning in either direction, i.e. to maintain the selected setting.

A still further feature of the invention includes means to controllably pre-set the spring tension, for calibration purposes, by initial deflection of the spring 28 relative to the non-rotary member 33. In the form of the invention shown, a cup shaped spacer 56 is provided to receive a down turned portion 57 of the non-rotary member 33. The latter has a setscrew 58 threaded centrally therein to bear at 59 against the end portion of the spacer 56. Accordingly, the spacer 56 and the setscrew 58 transmit recation loading from the spring to the non-rotary member 33, the spacer having a flange 59 to seat the upper end of the spring. Before the pin 60 is inserted into the bore 61 of the dial element 41, a screwdriver may be inserted into that bore for turning the setscrew 58 thereby pre-setting the tension of the spring 28. Thereafter, the pin 60 is inserted into the bore 61 and swaged to fasten it therein. Adjustment turning of the setscrew 58 may be accompanied by connection of a greater than one p.s.i. source of fluid pressure with the inlet duct 15, together with the measurement of the pressure delivered at duct 17, with the dial element 41 set, for example, to one p.s.i. as seen in FIG. 1. The setscrew 58 is then turned until the delivered pressure at duct 17 equals one p.s.i.

Turning now to the form of the invention seen in FIGS. 9-11, the regulator 70 is seen to include a chamber 71, non-rotary member 72, rotary member 73 and spring 74, these elements being generally arranged in the same manner as described in connection with FIG. 2. In addition, there is provided means operatively connected with the rotary member 73 to increase an engine fuel throttle opening in conjunction with rotation of the rotary member in a direction to increase the spring tension. In the form of the invention illustrated, such means typically includes a butterfly valve 75, an air-fuel intake duct 76 containing the butterfly valve, and a connection between the valve and the rotary member. One such connection includes the arm 77, outside duct 76 but attached to valve 75, the link 78 attached to arm 77 and another arm 79, the latter being connected at 80 to the rotary member 73. Duct 76 is connected at 81 to the engine fuel-air intake manifold 82, and an engine throttle link 83 is connected to arm 77. Fuel at regulated pressure is delivered via duct 84 from the regulator 70 to the engine carburetor bowl housing 85, from which fuel is delivered to the venturi zone 86 in the usual manner. Accordingly, as the throttle link 83 moves to the right in FIG. 9 to open the throttle, the regulator rotary member 73 is turned to increase the tension of spring 74, thereby to provide higher pressure of fuel delivered to the carburetor bowl, substantially improving the performance of the engine.

FIGS. 10 and 11 show the provision of multiple cam surfaces or tracks 90, 91 and 92 which in this case are arranged in series rather than parallel as in FIG. 2, allowing for less than 180 degrees turning of the rotary member 73 between highest and lowest spring tension conditions. The three follower projections 93, 94 and 95 are carried by the follower member 72 to engage the three cam tracks to support the rotary member which defines the tracks, whereby a three-point suspension is provided as before.

I claim:

1. For combination with a fluid pressure regulator in-- eluding a chamber having inlet and outlet ports for circulating fluid therethrough, a check valve contained within the chamber for controlling said circulation, a diaphragm in the chamber and having one side exposed to receive pressure of fluid flowing past the check valve, and spring means at the opposite side of the diaphragm for urging the diaphragm in a direction to increase said circulation, an improved spring tension adjusting apparatus comprising:

a cap on the chamber,

a rotary member mounted on the cap at the spring side of the diaphragm and defining an axis of rotation which extends toward the diaphragm, said member being manually rotatable at the cap exterior,

a non-rotary member bodily movable within and relative to the cap and axially of said rotary member, but restrained against rotation about said axis,

at least three separate cam tracks on one of the members and spiraling about and lengthwise of said axis,

said tracks openly facing in one direction along said axis and within the cap,

and at least three projections on the other of said members openly projecting in the opposite direction along said axis, said projections having terminals engaging the respective tracks at locations spaced about said axis and within the cap.

2. The combination of claim 1 in which said cap and said rotatable element have fluid pressure calibration indicia thereon.

3. The combination of claim 2 including detent means on the cap and the rotary member to releasably lock the rotary member in selected rotary positions, the detent means being releasably held in locking position at the inside of the cap by spring exerted reaction loading transmitted from the non-rotary member to the rotary member.

4. The combination of claim 1 in which there are three of said tracks on the rotary member, the tracks each extending more than 180 degrees about said axis and at different radial spacings from said axis, and three of said projections on the non-rotary member.

5. The combination of claim 1 in which the non-rotary member and said cap have interengaged and relatively axially movable shoulders to resist relative rotation therebetween and to guide bodily displacement of the nonrotary member relative to the cap and to the rotary memher, said shoulders spaced radially outwardly of said tracks.

6. The combination of claim 1 in which said apparatus includes means carried by said non-rotary member to controllably pre-set the spring tension by deflection of the spring relative to said non-rotary member.

7. The combination of claim 6 in which said last named means includes a spacer nesting with the non-rotary member to transmit said reaction loading to the non-rotary member, and a set screw to set the position of the spacer with respect to the non-rotary member.

8. The combination of claim 1 including means operatively connected with the rotary member to increase an engine fuel throttle opening in conjunction with rotation of the rotary member in a direction to increase the spring tension.

9. The combination of claim 8 in which said last named means includes a butterfly valve, an air-fuel duct containing said butterfly valve, and a connection between the butterfly valve and said rotary member.

References Cited UNITED STATES PATENTS 1,480,909 1/1924 Johnson 137-505.41 2,633,146 3/1953 Witt 137505.44 X 1,769,132 7/1930 Gwisdalla 137--505.4-1 2,633,146 3/1953 Witt 137505.44 X 2,735,669 2/1956 Seiler 267-1 2,906,288 9/1959 Young 137-505.42 X 3,068,883 21/1962 Brumm 137-1165 FOREIGN PATENTS 493,252 10/1938 Great Britain.

WILLIAM F. ODEA, Primary Examiner.

HAROLD WEAKLEY, Assistant Examiner.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1480909 *Aug 28, 1922Jan 15, 1924Johnson Frank WPressure-regulating device
US1769132 *Oct 28, 1927Jul 1, 1930Peter GwisdallaAir gauge and control valve
US2633146 *Mar 21, 1947Mar 31, 1953Witt Joseph BFuel pulsation dampener and pressure regulator
US2735669 *Mar 18, 1952Feb 21, 1956 seiler
US2906288 *Jul 5, 1956Sep 29, 1959Specialties Dev CorpPressure regulating equipment
US3068883 *Apr 27, 1960Dec 18, 1962Grove Valve & Regulator CoRegulator
GB493252A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3443580 *Jan 20, 1967May 13, 1969Robertshaw Controls CoDiaphragm valve mounted in a control knob
US3482591 *Aug 31, 1966Dec 9, 1969Cornelius CoPressure regulator valve
US3651794 *Jun 15, 1970Mar 28, 1972Victor Equipment CoThrottle for gaseous fuels
US3753446 *Jan 11, 1971Aug 21, 1973Turner Brunot WFluid pressure regulator
US3763840 *Jun 22, 1972Oct 9, 1973Gen Motors CorpFuel line shut off valve for pressurized fuel systems
US3791405 *Nov 20, 1972Feb 12, 1974Robertshaw Controls CoPressure regulator construction and method of making the same
US3824974 *Nov 3, 1972Jul 23, 1974Gen Motors CorpFuel supply system with pressure regulator
US3889335 *Nov 29, 1973Jun 17, 1975Robertshaw Controls CoPressure regulator construction and method of making the same
US3936235 *Aug 7, 1974Feb 3, 1976Danfoss A/SFuel oil supply means
US4152121 *May 19, 1977May 1, 1979Nederlandse Organisatie Voor Toegepast Natuurwetenschappelijk Onderzoek Ten Behoeve Van Nijverheid, Handel En VerkeerInstallation for supplying gaseous fuels, such as LPG or natural gas, to a combustion engine
US4183334 *Mar 2, 1977Jan 15, 1980The Vapolean CorporationFuel saving control system for internal combustion engines
US4240464 *Oct 24, 1979Dec 23, 1980Milwaukee Cylinder CorporationCombined pressure control and shut-off valve
US4413649 *Mar 29, 1982Nov 8, 1983Rodd Charles RAir pressure regulator
US20070129678 *Dec 6, 2005Jun 7, 2007Medtronic, Inc.Regulator
Classifications
U.S. Classification261/51, 137/605, 267/156, 137/505.42
International ClassificationF02D9/00, G05D16/06
Cooperative ClassificationF02D2700/0235, G05D16/0663, F02D9/00
European ClassificationF02D9/00, G05D16/06H8E