Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3360193 A
Publication typeGrant
Publication dateDec 26, 1967
Filing dateDec 29, 1965
Priority dateDec 29, 1965
Publication numberUS 3360193 A, US 3360193A, US-A-3360193, US3360193 A, US3360193A
InventorsGunther Zoehfeld, Harris Dwight E
Original AssigneeRotron Mfg Company Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Regenerative compressors with integral mufflers
US 3360193 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Dec. 26, 1967 D. E. HARRIS ETAL 3,360,193

REGENERATIVE COMPRESSORS WITH INTEGRAL MUFFLERS Filed Dec. 29, 1965 4| 2-| IO 42 40a 43: L a 38 26 45a 40a 26a m a a L i F/G. -f-|6 1E l L J 26a M '45 1 INVENTORS DWIGHT E. HARRIS a 30 BY GUNTHER ZOEHFELD 32 A W1 36 their ATTORNEYS United States Patent 3,360,193 REGENERATIVE COMPRESSORS WITH INTEGRAL MUFFLERS Dwight E. Harris, Woodstock, and Gunther Zoehfeld,

West Hurley, N.Y., assignors to Rotron Manufacturing Company, Inc., Woodstock, N.Y., a corporation of New York Filed Dec. 29, 1965, Ser. No. 517,412 7 Claims. (Cl. 230-232) ABSTRACT OF THE DISCLOSURE A regenerative compressor of the type including a motor and a housing. providing a toroidal compressor chamber cooperating with an impeller driven by the motor, and an annular chamber surrounding the motorthrough which fluid is introduced and extracted through inlet and outlet ports between the compressor chamber and annular chamber. The annular chamber is divided into separate inlet and outlet portions communicating with the respective ports, and has opposed faces adjacent which sound absorbent material is disposed, partially filling the annular chamber. Perforated retaining plates secure the sound absorbent material in place within the annular chamber and effectively provide a series of sound absorbent cavities between the plate and opposing face of each chamber.

This invention relates to noise suppressors for regenerasor nd mor s ec'ficall t an im roved s five commas a e p l y o p mlet port 30 and extracted at an increased pressure from regenerative compressor and sound muffler assembly which attenuates compressor noise without addingto the overall dimensions of the compressor.

Many regenerative compressors, particularly of the type described herein, inherently generate noise due to the pressure pulsations created by the expansion and/or compression of the fluid trapped between impeller blades as it passes the bafile separating the inlet and outlet ports of the compress-or chamber. In this respect, the compressor acts much like a siren. In many compressor applications, the noise level of a compressor may be critical. For this reason, it is essential that the compressor operate with minimum noise.

Of the regenerative compressor using noise suppressing device-s, many employ mufllers or other sound absorbing apparatus which are either poor sound attenuators or, although effective, increase the overall dimensions of the compressor. The latter, however, are undesirable, since they add weight to the compressor and render it unsatisfactory for use in equipment in which the space or volume occupied by the compressor must be minimized.

It is therefore an object of the invention to provide an improved regenerative compressor assembly which efficiently and effectively reduces the noise generated in the compressor.

A further object of the invention is to provide a noise attenuation design for regenerative compressors which does not increase the overall dimensions of the compressor.

The invention attains these and other objects by suppressing compressor noise by means integral with the compressor. Specifically, this is accomplished by providing a compressor housing formed with a generally annular chamber surrounding the compressor mo or and locating within this chamber sound absorptive material or structure. In a preferred embodiment, this chamber is divided into inlet and outlet portions which communicate with the respective inlet and outlet ports of the compressor chamber.

For a better understanding of the invent-ion, reference may be made to the following detailed description, taken in conjunction with the accompanying drawings, in which:

FIGURE 1 is a cross-section of a compressor in accordance with the invention, taken generally along the line 1-1 of FIGURE 2; and

FIGURE 2 is a cross-section of the compressor, taken along the line 22 in FIGURE 1.

Turning now to F-IGURES 1 and 2, a representative compressor includes a housing 10 having an annular compressor chamber 12 containing a stripper section 14 located between inlet port 30 and outlet port 32. Pressure is built up in the compressor by the rotation of the impeller 16 which is segmented by a plurality of spaced radial blades 19. The impeller 16 is driven by a motor 20 whose axis of rotation is coaxial with the impeller. The motor 20, shown schematically, comprises a stator 21 and a rotor 22 mounted on a shaft 23. The shaft 23, which is attached to the impeller 16, is mounted in bearings 24 and 25 in the stator housing 10. An end bell 26 i is suitably fastened to the main part of the housing, as by the cap screws 26a, and may be removed for assembly and replacement or repair of the motor 20 or motor bearings 24, 25. An end cover 27 at the other end of the housing 10 protects the impeller 16 from direct forces or blows which could cause an imbalance or misalignment of the impeller on the shaft 23 and confines the working fluid within the machine.

Referring to FIGURE 2, the fluid (e.g., air) is introduced into the toroidal stator chamber 12 through the the outlet port 32, as indicated by the arrows. These ports 30, 32 communicate with a generally annular chamber divided by the two baffle plates 35 and 36 into an inlet chamber 34a and an outlet chamber 34b (FIGURE 1). External connections to the compressor are made through inlet and outlet connectors ported to the respective chamber sections 34a and 34b, the inlet connector 38 being shown in FIGURE 1.

The inlet chamber 34a, in accordance with the invention, has two functions. First, it acts as an expansion chamber for fluid supplied to the compressor and therefore reduces the turbulence of the fluid entering the stator compression chamber 12 through the inlet port 30. Second it is a sonic attenuation cavity for sound pressure waves inherent in this type of regenerative compressor. Similarly, the outlet chamber 34b serves to dampen the sound wave pulsations generated by the passage of the impeller blades 19 past the stripper adjacent the outlet port 32. It is also a sound attenuating cavity for the outlet side of the compressor. 9

At each of the faces 40a of the inlet chamber 34a is a muffler 41 consisting of sound absorptive material 42 and a rigid plate 43 retaining the sound absorbent material and having perforations 43a to effectively create a multitude of sound absorptive cavities in the material 42. In the same manner, the outlet chamber 34b is provided with a pair of sound absorbent mufliers 45 at the faces 40b comprising a sound absorptive material 46 and perforated retainers 48. It should be noted that since the chambers 34a and 34b surround the motor 20, the mufflers also attenuate motor noise which is transmitted through the housing 10. Alternatively, the inlet and outlet chambers 34a, 3412 can be separated into several intercommunicating resonant cells dimensionally proportioned to attenuate compressor noise by reflection and cancellation of the predominant frequency sound waves.

Thus, in accordance with the invention, the compressor noise is quenched at its immediate source by means integral with the compressor. Moreover, since no devices external to the compressor itself are required, such suppression is effected without an increase in the overall dimension of the compressor, and the uncomplex construction and assembly of the mufllers and the compressor housing facilitates economic production.

The embodiments of the invention described herein are illustrative only, and many modifications and variations may be made therein within skill of the art. Accordingly, all such modifications and variations are intended to be included within the scope of the appended claims.

We claim:

1. In a regenerative fluid compressor of the type having a rotary impeller and an integral motor coaxial with the impeller, the combination of a housing member having a compressor chamber and a second chamber surrounding the motor, the housing providing inlet and outlet ports between the compressor and second chambers, and sound absorbent means in said second chamber to attenuate sound generated by variations in the pressure of the fluid passing therethrough.

2. In a regenerative compressor of the type having a motor integral therewith, the combination of a housing member having a toroidal chamber with inlet and outlet ports therein and a generally annular chamber surrounding the motor divided into semi-annular inlet and outlet portions communicating with said respective inlet and outlet ports, and sound absorbent means partially filling said inlet and outlet portions of said annular chamber.

3. In a regenerative compressor of the type having an integral motor and a rotary impeller driven by and coaxial with the motor, the combination of a housing member having a generally annular chamber surrounding the motor and including inlet and outlet ports for introducing and extracting fluid from the compressor through the chamber, said chamber having opposed faces, and a pair of spaced-apart segments of sound absorbent material adjacent said faces and partially filling said chamber to provide at least one cavity for attenuating sound generated in connection with the passage of fluid through both the inlet and outlet ports.

4. The combination in accordance with claim 3 further comprising opposed perforated retaining means abutting said sound absorbent segments in said chamber.

5. In a regenerative compressor of the type having a rotary impeller and an integral motor coaxial with the impeller, the combination of a housing member having a toroidal stator chamber and an annular chamber surrounding the motor and divided into inlet and outlet portions for communication with the stator chamber, said annular chamber having opposed annular faces, and a semicircular mutfler of sound absorbent material in each of said inlet and outlet portions and partially filling said chamber.

6. In a regenerative compressor of the type having a motor integral therewith and a rotary impeller driven by and coaxial with the motor, the combination of a housing member having an annular chamber surrounding the motor and including inlet and outlet ports for the compressor, and means within said annular chamber forming a plurality of resonant sound cavities at least one of Which communicates with the inlet port and at least another of which communicates with the outlet port.

7. A regenerative compressor according to claim 6, in which the annular chamber includes opposed faces and the resonant sound cavities are formed adjacent the opposed faces.

ROBERT M. WALKER, Primary Examiner.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1320224 *Apr 5, 1919Oct 28, 1919 Sttction-pbodttcing appabattts
US2396319 *Oct 1, 1943Mar 12, 1946Zephyr Wayne CompanyPump
US2731194 *Feb 2, 1953Jan 17, 1956Kent Moss AVacuum cleaner blower
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3421688 *Mar 13, 1967Jan 14, 1969Edwards High Vacuum Int LtdLiquid sealed mechanical vacuum pumps
US3577891 *Aug 20, 1969May 11, 1971Hitachi LtdSwash plate compressor
US3955905 *Jul 2, 1974May 11, 1976Robert Bosch G.M.B.H.Sliding-vane pump
US4174196 *Jul 15, 1977Nov 13, 1979Hitachi, Ltd.Screw fluid machine
US5249919 *Dec 22, 1992Oct 5, 1993Carrier CorporationMethod of mounting silencer in centrifugal compressor collector
US5300178 *Sep 3, 1992Apr 5, 1994Soltech Inc.Insulation arrangement for machinery
US5336046 *Oct 7, 1992Aug 9, 1994Hatachi, Ltd.Noise reduced centrifugal blower
US5499900 *Aug 26, 1994Mar 19, 1996Joint Stock Company En & FiVortex flow blower
US5603601 *Dec 2, 1994Feb 18, 1997Gebr. Becker Gmbh & Co.Compressor with attachments mounted on stubs of a housing of the compressor
US5961309 *Apr 24, 1997Oct 5, 1999Trw Inc.Gear pump with noise attenuation
US6550574Dec 21, 2000Apr 22, 2003Dresser-Rand CompanyAcoustic liner and a fluid pressurizing device and method utilizing same
US6601672Aug 14, 2001Aug 5, 2003Dresser-Rand CompanyDouble layer acoustic liner and a fluid pressurizing device and method utilizing same
US6840746Jul 2, 2002Jan 11, 2005Bristol Compressors, Inc.Resistive suction muffler for refrigerant compressors
US6877511Jun 10, 2003Apr 12, 2005Bird Products CorporationPortable drag compressor powered mechanical ventilator
US6918740Jan 28, 2003Jul 19, 2005Dresser-Rand CompanyGas compression apparatus and method with noise attenuation
US7008174May 10, 2004Mar 7, 2006Automotive Components Holdings, Inc.Fuel pump having single sided impeller
US7222623Dec 29, 2004May 29, 2007Birds Products CorporationPortable drag compressor powered mechanical ventilator
US7267524May 10, 2004Sep 11, 2007Ford Motor CompanyFuel pump having single sided impeller
US7849854Sep 7, 2004Dec 14, 2010Bird Products CorporationPortable drag compressor powered mechanical ventilator
US20120301267 *May 3, 2007Nov 29, 2012Seleon GmbhConducting unit, and conducting methods
DE102012213598B3 *Aug 1, 2012Nov 14, 2013Eberspächer Climate Control Systems GmbH & Co. KGCombustion air fan for vehicle heater, has sound absorption chamber which is formed between front end of sound absorption material and lying end region of air flow pipe
EP0500488A1 *Jan 23, 1992Aug 26, 1992Carrier CorporationCollector silencer for a centrifugal compressor
WO2004005715A1 *Jul 1, 2003Jan 15, 2004Bristol CompressorsResistive suction muffler for refrigerant compressors
Classifications
U.S. Classification417/312, 416/180, 415/55.1, 417/423.1, 415/119
International ClassificationF04D23/00, F04D29/66
Cooperative ClassificationF04D29/664, F04D23/008
European ClassificationF04D29/66C4B, F04D23/00R