Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3373752 A
Publication typeGrant
Publication dateMar 19, 1968
Filing dateNov 12, 1963
Priority dateNov 13, 1962
Publication numberUS 3373752 A, US 3373752A, US-A-3373752, US3373752 A, US3373752A
InventorsInoue Kiyoshi
Original AssigneeInoue Kiyoshi
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method for the ultrasonic cleaning of surfaces
US 3373752 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

BEST AVAILABLE COPY March 19, 1968 KIYOSHI lNOUE 3,373,752




Fig. 6 BY gfy ss AGENT EST AVAILABLE COPY 3,373,752 Patented Mar. 19, 1968 ABSTRACT OF THE DESCLQSURE Method for cleaning a surface by directing a highpressure stream of liquid/gas mixture from a nozzle thereagainst, ultrasonic vibrations being imparted to the mixture in the nozzle by an electromechanical transducer cooperating with a resonant body downstream thereof and having a natural frequency of vibration of the order of that generated by the transducer, while serrated areas on the internal tapered wall of the nozzle and on the resonant body augment the turbulence in the nozzle.

My present invention relates to the removal of undesirable surface accumulations from metallic and nonmetallic bodies by directing a stream of cleaning fluid thereagainst and, more particularly, to an improved method of carrying out this removal.

It has been the practice heretofore, to descale metallic bodies, masonry and other surfaces and to effect a soil removal therefrom by subjecting the contaminated surfaces of the bodies to a high-pressure and/or high-velocity stream of a fluid (generally a liquid) in which the contaminants are soluble or otherwise entrainable with or Without the aid of chemical solubilizing agents or solid particles entrained by the fluid stream to effect a loosening by impact of the contaminant. The considerable advantages of this method of cleaning or clearing a surface has led to many efforts to develop an apparatus for carrying out this technique with greater efliciency, such apparatus being primarily improved spray guns, means for feeding an adjuvant to the fluid stream, mechanism for concentrating the stream or insuring the maintenance of a predetermined impact angle on the surface etc. In all cases, however, the principle of operation remained the same and no marked increase in the cleaning efliciency was noted. A most significant drawback of the aforedescribed system has been the relatively large volume of fluid employed as a consequence of the relatively long treatment periods necessary. This disadvantage becomes increasingly important when relatively expensive solvents (eg. kerosene or trichloroethylene) are employed.

It is, consequently, the principal object of the present invention to provide an improved method of treating surfaces to remove contaminants therefrom, utilizing a stream of fluid directed against the surface.

These objects, and others which will become apparent hereinafter, are attained, in accordance with the present invention, by a method of removing undesirable matter from the surface of a body which comprises directing a stream of fluid at this surface in such manner that the kinetic energy of the fluid particles is at least partly transferred to the contaminants, and supplying to these particles a mechanical vibration substantially in the direction of the impact with the surface to increase the transferable energy of impact and thus the efiiciency of contaminant removal. I have found, in this connection, that a fluid directed at relatively high pressure against a contaminated surface elfects removal of the undesirable material as a consequence of a process which can be described, in simple terms, as repeated collision of par- Cir ticles of the fluid with the contaminant material at the surface to loosen the adherent material and entrain it along with the fluid stream. I have further observed that the efliciency of soil removal by this repeated-impact mode can be strongly augmented when the impacting particles undergo vibration at supersonic frequencies substantially in the direction at which the particles collide with the surface, these vibrations, being superimposed upon the impact velocity of the fluid stream.

According to an essential feature of the present invention, therefore, an ultrasonic vibration is supplied to the fluid stream in such manner that, at least at the nozzle of the cleaning apparatus, a vibrational mode is imparted to the discharged fluid particles. I have found that a marked improvement in the cleaning efficiency of a fluid stream can be achieved by providing an electromechanical transducer in the discharge conduit or the nozzle at the terminus thereof, this transducer being energized by a relatively highfrequency current to produce mechanical vibrations in the fluid stream. Alternatively, or as a supplement to these mechanical oscillations, the fluid stream can be relatively conductive (i.e. composed of an electrolyte) with the oscillations supplied by electromagnetic pulsing of the fluid stream. The transducer may be of a body of, for example, piezoelectric material which experiences a change of volume upon application of an electric field, so that a direct conversion of high-frequency electric current to mechanical oscillations is provided, it is also possible to achieve the conversion of electrical energy to mechanical energy in directly (e.g. via magnetic effects). Magnetic oscillations need not be derived from complete mechanical displacement of an armature but can result from the application of a magnetic field to a magnetostrictive body in which the oscillations are generated just as direct conversion of high-frequency electrical energy to mechanical oscillations can be produced by electrostriction.

I have found that the transfer of vibrational energy to the liquid can be augmented by serrating the discharge conduit at least in the region of the nozzle and, preferably, constricting the latter at the mouth. Apparently these serrations, which may be annular or broken in the circumferential direction, increase turbulence at the nozzle and ensure an increased transfer of vibrational energy to the particles through a process of collision and rebound. In this connection it may be noted that excellent results are obtained When the nozzle is, in effect, tuned to the ultrasonic frequency. To this end I have found it convenient to provide the nozzle with a taper whose length is an integral number of half-wave lengths (L=nh/2) or to provide a body in the constricted portion of the nozzle which oscillates substantially at the frequency of the supplied vibrations or an aiding harmonic thereof. Since the vibration is of a sonic type (i.e. alternate rarefaction and condensation), such harmonics may have half-lengths equal to an integral number of half-wave lengths of the supplied frequency. The resonating body may be a transducer in the sense previously described or merely an element suspended so that it vibrates at a frequency harmonically related to the original or supply frequency.

According to a further feature of this invention, the pressure fluid is a liquid to which a gas has been added in a continuous stream, the gas apparently further increasing the turbulence necessary to promote transfer of vibrational energy to the particles of liquid or being present as a substance adapted to take up such energy temporarily while entrained in the liquid and subsequently transfer it to particles of the liquid; the use of the inert gas increases efiiciency by at least 20% in most cases.

The above and other objects, features and advantages of the present invention will become more readily appar- BEST AVAILABLE COPY ent from the following description, reference being made to the accompanying drawing in which:

FIG. 1 is an axial cross-sectional view through the nozzle of a descaling device, in accordance with the present invention, using a magnetostrictive transducer;

FIG. 2 is an axial cross-sectional view of a nozzle employing an electrostrictive transducer;

FIG. 3 is a view similar to those of FIGS. 1 and 2, illustrating the use of electromagnetic oscillating means according to the invention;

FIGS. 4 and 5 are axial cross-sectional views illustrating further modifications of the invention; and

FIG. 6 shows, in cross-section, a portion of a dishwashing device embodying the invention.

In FIG. 1, I show a descaling device having a nozzle 10 into which a descaling liquid is passed axially (arrow 11) and is admixed with a gas stream fed transversely into the nozzle by tube 12. The interior of the nozzle tapers toward its mouth 13, which is shown to be inclined to the surface 14 to be descaled, whereby the liquid stream 15 emitted from the mouth 13 of the nozzle forcibly removes the scale 16. Within the nozzle 10 there is provided an electromechanical transducer 17 of the magnetostrictive type. This transducer comprises a body 18 of a material adapted to convert electromagnetic energy into mechanical vibrations, flexibly mounted by rods 19 on an inner wall of the nozzle in such manner as to be capable of oscillating at the vibrating frequency. Body 18 is surrounded by a coil 2t) energized by a highfrequency alternating current source 21 at ultrasonic frequency.

Suitable transducer materials include barium titanium oxide (BaTiO ferrite (Fe O aluminum ferrides and nichrome alloys; the latter are capable of developing l5 watt/cm. while the ferrites have power outputs of about 6 watt/cm. and the barium titanium oxide of 3 watt/ cm. for corresponding masses. The BaTiO is capable of developing frequencies of 10 to 500 kc./sec. without dificulty while ferrite is suitable for frequencies between 10 and 100 lie/sec.

Example I With the device of the type illustrated in FIG. 1 using barium titanium oxide and a frequency of 47 kc./ sec. and an acoustical power output of 6 watt/cm. a stream of water emitted at a pressure of 5 kg/cm. and a velocity of 100 liter/min. was able to descale a motor casting of iron for the body of a 10 HP motor. 3% by volume of alcohol (Skydrol) was added as a rust-inhibiting agent. The nozzle was composed of bronze and had a converging portion of 120 mm. in length tapering from a diameter of 30 mm. to a diameter of 10 mm. The distance between the mouth of the nozzle and the workpiece was 200 mm. and the temperature of the liquid 8 C. Under these conditions the casting face was cleaned of scale after a contact duration of seconds with the liquid. Using the identical parameters, a steel body was degreased by substituting kerosene for the water. It was found that other conventional organic degreasing solvents were also effective. These solvents included I-Ienkel P3, Cleanall S and trichloroethylene.

Example II Following the steps outlined above, using water, approximately 2 to 4 liter/min. of inert gas (i.e. nitrogen) was admixed with the liquid stream within the nozzle. A period of only 15 seconds was required for treatment of the face in contrast with a treatment time of 20 seconds in the absence of the nitrogen adjuvant.

Example III ously described and the water pressure was 5 kg./cm. with a flow velocity of 100 liter/min. The nozzle/workpiece distance was 200 mm. During the time indicated, no descaling was observed. When the transducer was again energized at a frequency of 47 kc./sec., descaling was accomplished in 20 seconds. When the same test was carried out in the absence of an ultrasonic vibration but with addition of gas to the liquid, there was no noticeable improvement.

In FIG. 2 there is illustrated a modified nozzle 22, according to the invention, wherein the tapered portion has a length L which is an integral number of half wavelengths of the sonic frequency developed by the electrosonic transducer 23. The latter can comprise a body 24 of barium titanium oxide between conductive layers 25, 26. It may be noted at this point that it is an essential feature of this invention that the resulting vibrations be in the direction of the liquid flow. An alternating current source 27 is connected across the transducer 23 to provide the electric energizing pulses of a frequency at which the transducer is designed to operate. A tube 28 supplies an adjuvant gas to the nozzle, whose tapered interior 30 is provided with annular serrations 31 which augment the transfer of vibrational energy to the liquid.

Example IV The process of Example I was followed with the apparatus of the type shown in FIG. 2. The transducer 23 had an output power of 3 watts/cm. at 47 kc./sec. and resulted in a descaling of the casting surface in a period of l8-20 seconds. When the output power was increased to 6 watt/cm. the descaling was accomplished in 10l5 seconds. In this case, the length of the tapered portion L of the nozzle was approximately mm., i.e. an integral number of half wavelengths (8O Angstrom units). The serrations had a depth of about 10 microns and an apex angle of 60.

In FIG. 3 I show another nozzle 32 in which the transducer includes a magnetic armature 33, the latter being oscillated (arrow 34) in the direction of mouth 35 by a magnetizing coil 36 and an alternating-current source 37 connected therewith. Armature 33 has a narrow extension 38 projecting into a serrated passage 39 of small cross-section adjacent the mouth 35 of the nozzle. The main interior portion of the latter is also serrated as shown at 40. Gases admixed with the liquid stream at 41. The use of the extension 38 or another element partly filling the discharge cavity apparently increases the transfer of vibrational energy to the liquid as a consequence of the elimination of laminar flow by holding the Reywolds number above that at which turbulence commences.

Using the device of FIG. 3, a basketful of screw-machine parts was descaled by passing the nozzle over the parts at a distance of about 15 cm. and supplying kerosene through the nozzle at a rate of about 25 liters per minutes and a pressure of 7 kg./cm. at room temperature. The armature 33 is vibrated at a frequency of 20 kc./ second with a maximum stroke of about 10 microns. The main portion of the nozzle had an internal diameter of 40 mm. whereas the passage 39 had a diameter of 10 mm. The parts were cleaned by a single pass of the nozzle over them. When no ultrasonic frequency was applied, there was a noticeable retention of grease upon the metal (brass). An ultrasonic frequency ranging from 10 kc./ second to about 10 megacycles was found most effective. It may be noted that this method of degreasing differs sharply from earlier degreasing techniques using ultrasonics wherein the vibrations are supplied to a body of liquid in contact with the material to be degreased or to the parts themselves.

In the nozzle 42 of FIG. 4 the transducer is again an armature 43 vibrated by a magnetic coil 44 at an ultrasonic frequency and cooperating with the serrated and tapered interior 45 of the nozzle, the latter having the configuration of the nozzle of FIG. 2. It should be obas a zez served that the use of a vibrating pointed element 43 whose configuration is substantially complementary to the configuration of the nozzle at its outlet permits a 5- increase in the cleaning efficiency and reduces the cleaning time by a similar proportion. In the nozzle 46 of FIG. 5, the electromagnetic transducer 47 is suspended for oscillatory motion within the nozzle on flexible rods 48 and is provided with a serrated periphery composed of an array of annular grooves. Additionally, a resonant body 50 is suspended in a compartment 51 of the nozzle adjacent to the mouth 52 thereof and is serrated to vibrate in step with the supplied frequency. The suspension means may be a vi-bratile reed 53. The distance a between the constricted passage 54 of the nozzle and the resonating body 50 as well as the distance between the body and the constricted mouth 52 is so selected as to be an integral number of half wavelengths so that the passage 51 constitutes, in effect, a resonating cavity. If desired, body 50 may itself be a transducer vibrated via an alternatingcurrent source 55 in step with transducer 47, care being taken to ensure that the distance between the transducers is equal to an integral number of wavelengths of the supachieved by this construction.

In FIG. 6 there is shown a dishwashing machine 60 in which the articles to be washed are retained in the usual baskets 61, 62 or upon suitable trays in the path of the liquid jets from a plurality of nozzles 63, 64. As shown in this figure, the supply conduit 65 for nozzle 63 is provided with a plurality of spaced transducers 66 adapted to provide ultrasonic frequencies for increasing the Washing efficiency. The nozzles 64 of the lower array have the transducers built into them in the manner illustr'tted in FIG. 2. The baskets 61 and 62 can be withdrawn from the machine, upon termination of the cleaning operation, on rails 67, 68. A device of this type, incorporating electrosonic transducers to augment the cleaning action, was found to give 25-50% better results in removing greasy substances from table articles. The improvement in cleaning efiiciency permitted a reduction in the washing time by at least 25% and enabled a reduction in the total volume of water employed.

Example VI A plurality of nozzles of the type illustrated in FIG. 2 were arranged radially about a common center through which a stainless steel wire was passed at a rate of 0.5 m./min. The wire had a diameter of 5 mm. and was composed of 18/8 stainless steel. Two nozzles were employed, using chromium oxide (CI'OZ) as the transducer material with a power output of 5 watt cm. with a frequency of 100 kc./second, a flow rate of 50 liter/min. and a liquid pressure of 5 kg./cm. The steel wire was found to have a bright appearance after passing through the spray.

A series of tests were made using a device of the type illustrated in FIG. 5 without the aid of any electromechanical transducer element. In this test, the transducer 47 was dispensed with and the resonant body 50 provided upon the reed 53 without any external source of activation. With the configuration illustrated in FIG. 5 it was found that there was a tendency for body 50 to vibrate at a frequency determined by the Youngs modulus of the system. It was thus possible to supply a vibrating mode to the particles without the use of any external source. Vibration control was effected by varying the modulus of the vibratile element.

The invention described and illustrated is believed to admit of many modifications within the ability of persons skilled in the art, all such modifications being considered within the spirit and scope of the appended claims.

I claim:

1. A method of cleaning a surface, comprising the steps of:

(a) directing a stream of liquid against said surface from the mouth of a nozzle at an elevated pressure;

(b) admixing with said liquid in said nozzle a gas admitted to the nozzle at a location upstream of said mouth;

(c) imparting ultrasonic vibrations to the mixture of gas and liquid passing through said nozzle by operating at ultrasonic frequency an electromechanical transducer between said location and said mouth; and

(d) augmenting the vibrations imparted to said nozzle by disposing a resonating body in said nozzle between said mouth and said transducer, said body having a natural frequency of vibration of the order of the frequency of the vibrations generated by said transducer.

References Cited UNITED STATES PATENTS 1,738,565 12/ 1929 Claypoole. 2,453,595 11/ 1948 Rosenthal. 2,481,620 9/1949 Rosenthal 239--102 2,647,846 8/1953 Bagno 1341 2,766,064 10/ 1956 Schweitzer 239102 X 2,789,008 4/ 1957 Cronin. 2,828,231 3/1958 Henry 13436 X 2,850,854 9/1958 Levy. 2,947,312 8/1960 Heinicke 1341 X 2,980,123 4/1961 Lemelson 134-1 X 3,081,946 3/1963 Solotf 2394 X FOREIGN PATENTS 978,290 11/1950 France.

MORRIS O. WOLK, Primary Examiner.

J. ZATARGA, Assistant Examiner.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1738565 *Jul 18, 1927Dec 10, 1929Texas CoMethod and apparatus for utilizing high-frequency sound waves
US2453595 *Aug 27, 1943Nov 9, 1948Scophony Corp Of AmericaApparatus for dispensing liquid fuel
US2481620 *Feb 8, 1945Sep 13, 1949Skiatron CorpDevice for dispensing liquid fuel into combustion air of furnaces
US2647846 *Feb 28, 1948Aug 4, 1953Bagno SamuelMethod and apparatus for washing articles by supersonic vibration in a flowing liquid
US2766064 *Aug 22, 1955Oct 9, 1956Howard V SchweitzerPaint gun
US2789008 *Jun 13, 1955Apr 16, 1957Menlo Res CorpUltrasonic magnetostrictive nozzle
US2828231 *Mar 31, 1954Mar 25, 1958Gen ElectricMethod and apparatus for ultrasonic cleansing
US2850854 *Aug 20, 1956Sep 9, 1958Sidney LevyMethod for removing material
US2947312 *Feb 26, 1958Aug 2, 1960Heinicke Instr CompanyWashing and sterilizing machine for glassware
US2980123 *Nov 14, 1955Apr 18, 1961Jerome H LemelsonUltrasonic apparatus
US3081946 *Jul 9, 1962Mar 19, 1963Astrosonics IncSonic spray nozzle
FR978290A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3499792 *Aug 11, 1965Mar 10, 1970Soniflow Equipment CoCleaning method and apparatus
US3503804 *Apr 25, 1967Mar 31, 1970Schneider HellmutMethod and apparatus for the production of sonic or ultrasonic waves on a surface
US3528704 *Jul 17, 1968Sep 15, 1970HydronauticsProcess for drilling by a cavitating fluid jet
US3542592 *May 2, 1968Nov 24, 1970Bell Tech Systems IncMethod and apparatus for cleaning members with fluids
US3700169 *Oct 20, 1970Oct 24, 1972Environment One CorpProcess and appratus for the production of hydroelectric pulsed liquids jets
US3806029 *Jan 24, 1973Apr 23, 1974Energy Sciences IncShock enhancement of pressure wave energy
US3983740 *Feb 7, 1975Oct 5, 1976Societe Grenobloise D'etudes Et D'applications Hydrauliques (Sogreah)Method and apparatus for forming a stream of identical drops at very high speed
US4092176 *Dec 7, 1976May 30, 1978Nippon Electric Co., Ltd.Apparatus for washing semiconductor wafers
US4153201 *Nov 8, 1976May 8, 1979Sono-Tek CorporationTransducer assembly, ultrasonic atomizer and fuel burner
US4193635 *Apr 7, 1978Mar 18, 1980Hochrein Ambrose A JrControlled cavitation erosion process and system
US4326553 *Aug 28, 1980Apr 27, 1982Rca CorporationMegasonic jet cleaner apparatus
US4352459 *Dec 3, 1979Oct 5, 1982Sono-Tek CorporationUltrasonic liquid atomizer having an axially-extending liquid feed passage
US4368080 *Oct 27, 1980Jan 11, 1983Robert LangenMethod of removing rust from metallic objects
US4378755 *Nov 8, 1978Apr 5, 1983Magnusson Ulla MDe-icing and cleaning system for aircrafts
US4726522 *May 9, 1986Feb 23, 1988Toa Nenryo Kogyo Kabushiki KaishaVibrating element for ultrasonic atomization having curved multi-stepped edged portion
US4726523 *Dec 6, 1985Feb 23, 1988Toa Nenryo Kogyo Kabushiki KaishaUltrasonic injection nozzle
US4726524 *May 9, 1986Feb 23, 1988Toa Nenryo Kogyo Kabushiki KaishaUltrasonic atomizing vibratory element having a multi-stepped edged portion
US4726525 *May 9, 1986Feb 23, 1988Toa Nenryo Kogyo Kabushiki KaishaVibrating element for ultrasonic injection
US4734659 *Apr 2, 1987Mar 29, 1988Ultrasonic Engineering Co., Ltd.Ultrasonic oscillator
US4783003 *Mar 3, 1987Nov 8, 1988Toa Nenryo Kogyo Kabushiki KaishaUltrasonic injecting method and injection nozzle
US4784491 *Jun 3, 1986Nov 15, 1988General Electric CompanySystem to protect optics against dirty environments
US4799622 *Jul 30, 1987Jan 24, 1989Tao Nenryo Kogyo Kabushiki KaishaUltrasonic atomizing apparatus
US4806277 *May 15, 1987Feb 21, 1989Hitachi Ltd.Decontaminating solid surfaces
US4844343 *Jul 30, 1987Jul 4, 1989Toa Nenryo Kogyo Kabushiki KaishaUltrasonic vibrator horn
US5154347 *Mar 20, 1991Oct 13, 1992National Research Council CanadaUltrasonically generated cavitating or interrupted jet
US5368054 *Dec 17, 1993Nov 29, 1994International Business Machines CorporationUltrasonic jet semiconductor wafer cleaning apparatus
US5529753 *Jul 9, 1993Jun 25, 1996Dade International Inc.System for ultrasonic energy coupling by irrigation
US5818009 *Sep 21, 1995Oct 6, 1998Fanuc, LtdLaser beam machining system
US6039059 *Sep 30, 1996Mar 21, 2000Verteq, Inc.Wafer cleaning system
US6039309 *Dec 5, 1997Mar 21, 2000The United States Of America As Represented By The Secretary Of The NavyMethod and apparatus for producing gas bubbles in a liquid medium
US6140744 *Apr 8, 1998Oct 31, 2000Verteq, Inc.Wafer cleaning system
US6295999Aug 22, 2000Oct 2, 2001Verteq, Inc.Wafer cleaning method
US6463938Sep 13, 2001Oct 15, 2002Verteq, Inc.Wafer cleaning method
US6681782Sep 12, 2002Jan 27, 2004Verteq, Inc.Wafer cleaning
US6684891Sep 12, 2002Feb 3, 2004Verteq, Inc.Wafer cleaning
US6702204Feb 26, 2001Mar 9, 2004Bip Technology, Ltd.Cavitating jet
US6705396 *Oct 2, 2000Mar 16, 2004Bip Technology LtdMethod and apparatus for producing fluid cavitation
US7117876Dec 3, 2003Oct 10, 2006Akrion Technologies, Inc.Method of cleaning a side of a thin flat substrate by applying sonic energy to the opposite side of the substrate
US7211932Mar 22, 2006May 1, 2007Akrion Technologies, Inc.Apparatus for megasonic processing of an article
US7268469Mar 15, 2006Sep 11, 2007Akrion Technologies, Inc.Transducer assembly for megasonic processing of an article and apparatus utilizing the same
US7518288Aug 16, 2007Apr 14, 2009Akrion Technologies, Inc.System for megasonic processing of an article
US7549429 *Feb 25, 2004Jun 23, 2009Panasonic Electric Works Co., Ltd.Ultrasonic washing device
US7594614 *Nov 3, 2003Sep 29, 2009Vln Advanced Technologies, Inc.Ultrasonic waterjet apparatus
US7617993Nov 29, 2007Nov 17, 2009Toyota Motor CorporationDevices and methods for atomizing fluids
US7682137Apr 20, 2006Mar 23, 2010Sony CorporationJet generating device and electronic apparatus
US7896539 *Aug 16, 2005Mar 1, 2011Bacoustics, LlcUltrasound apparatus and methods for mixing liquids and coating stents
US8006915Aug 24, 2009Aug 30, 2011Vijay Mohan MUltrasonic waterjet apparatus
US8016208 *Feb 8, 2008Sep 13, 2011Bacoustics, LlcEchoing ultrasound atomization and mixing system
US8257505Oct 11, 2011Sep 4, 2012Akrion Systems, LlcMethod for megasonic processing of an article
US8360337Nov 21, 2011Jan 29, 2013Pratt & Whitney Military Aftermarket Services, Inc.Ultrasonic waterjet apparatus
US8387894 *Dec 29, 2010Mar 5, 2013Pratt & Whitney Military Aftermarket Services, Inc.Ultrasonic waterjet apparatus
US8550873Jul 16, 2009Oct 8, 2013Vln Advanced Technologies Inc.Method and apparatus for prepping surfaces with a high-frequency forced pulsed waterjet
US8771427Sep 4, 2012Jul 8, 2014Akrion Systems, LlcMethod of manufacturing integrated circuit devices
US9757756Sep 5, 2013Sep 12, 2017Vln Advanced Technologies Inc.Method and apparatus for prepping bores and curved inner surfaces with a rotating high-frequencey forced pulsed waterjet
US20040206371 *Dec 3, 2003Oct 21, 2004Bran Mario E.Wafer cleaning
US20060175935 *Mar 22, 2006Aug 10, 2006Bran Mario ETransducer assembly for megasonic processing of an article
US20060180186 *Mar 15, 2006Aug 17, 2006Bran Mario ETransducer assembly for megasonic processing of an article
US20060191562 *Feb 25, 2004Aug 31, 2006Mahito NunomuraUltrasonic washing device
US20060239844 *Apr 20, 2006Oct 26, 2006Norikazu NakayamaJet generating device and electronic apparatus
US20060281398 *May 1, 2006Dec 14, 2006Kanji YokomizoJet generator and electronic device
US20070051307 *Aug 16, 2005Mar 8, 2007Babaev Eilaz PUltrasound apparatus and methods for mixing liquids and coating stents
US20070063066 *Nov 3, 2003Mar 22, 2007Nortel Networks LimitedUltrasonic waterjet apparatus
US20080006292 *Aug 16, 2007Jan 10, 2008Bran Mario ESystem for megasonic processing of an article
US20090025761 *Oct 6, 2005Jan 29, 2009Hitachi Plant Technologies, Ltd.Ultrasonic cleaning apparatus
US20090140067 *Nov 29, 2007Jun 4, 2009Vedanth SrinivasanDevices and Methods for Atomizing Fluids
US20090200394 *Feb 8, 2008Aug 13, 2009Eilaz BabaevEchoing ultrasound atomization and mixing system
US20090308948 *Aug 24, 2009Dec 17, 2009Vln Advanced Technologies, Inc.Ultrasonic Waterjet Apparatus
US20100015892 *Jul 16, 2009Jan 21, 2010Vln Advanced Technologies Inc.Method and apparatus for prepping surfaces with a high-frequency forced pulsed waterjet
US20100192974 *Apr 8, 2010Aug 5, 2010Hitachi Plant Technologies, Ltd.Method for ultrasonic cleaning of contamination attached to a surface of an object
US20100324481 *Aug 23, 2010Dec 23, 2010Bacoustics, LlcUltrasound pumping apparatus for use with the human body
US20110089251 *Dec 29, 2010Apr 21, 2011Vln Advanced Technologies, Inc.Ultrasonic Waterjet Apparatus
DE3840583A1 *Dec 2, 1988Jun 7, 1990Volker Ulrich BoehringerProcess for the non-contact, eruptive removal of sediment and other deposits
EP0182644A1 *Nov 18, 1985May 28, 1986General Dispensing Systems LimitedFluid flow control valve
EP0202100A1 *May 13, 1986Nov 20, 1986Toa Nenryo Kogyo Kabushiki KaishaVibrating element for ultrasonic atomization
EP0202844A1 *May 13, 1986Nov 26, 1986Toa Nenryo Kogyo Kabushiki KaishaVibrating element for ultrasonic atomization
EP1715519A3 *Apr 19, 2006Dec 19, 2007Sony CorporationJet generating device and electronic apparatus
EP1722412A2Apr 19, 2006Nov 15, 2006Sony CorporationJet generator and electronic device
EP1722412A3 *Apr 19, 2006Jan 23, 2008Sony CorporationJet generator and electronic device
WO1992013679A1 *Feb 5, 1992Aug 20, 1992National Research Council CanadaUltrasonically generated cavitating or interrupted jet
WO1997016263A1 *Oct 21, 1996May 9, 1997Henkel Kommanditgesellschaft Auf AktienUltrasonic cleaning process and cleaning agent suitable therefor
WO2005042177A1 *Nov 3, 2003May 12, 2005Vln Advanced Technologies Inc.Ultrasonic waterjet apparatus
U.S. Classification134/1, 366/117, 239/4, 219/121.84, 134/37, 134/17, 261/1
International ClassificationB08B3/12, B05B17/06
Cooperative ClassificationB08B3/12, B05B17/0623, B08B2203/0288
European ClassificationB08B3/12, B05B17/06B2