Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3377660 A
Publication typeGrant
Publication dateApr 16, 1968
Filing dateJul 8, 1965
Priority dateApr 20, 1961
Publication numberUS 3377660 A, US 3377660A, US-A-3377660, US3377660 A, US3377660A
InventorsMarshall Douglas W, Pett Edgar A
Original AssigneeNorton Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Apparatus for making crystal abrasive
US 3377660 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

pril 16, 1968 D. w. MARSHALL ET AL 3,377,660

APPARATUS FOR MAKING CRYSTAL ABRASIVE Original Filed April 20, 1961 Inventors. DOUGLAS 14/. MARSHALL EDGAR A. PETT :5 M/

' :fH-korneg/ United States Patent 4 Claims. (CI. 18-46) ABSTRACT OF THE DISCLOSURE An apparatus utilizing a trough for flowing molten abrasive material from a furnace onto a cool rotating casting cylinder, rapidly solidifying it into a thin semisolid curved sheet, densifying the semisolid material with a pressure roll, and then partially fracturing the strip of semi-solid material by reversing its curvature by pulling it away from the cylinder with a driven rapidly cooled conveyor means whereupon the partially fractured strip is deposited onto collecting means in the form of large fragments which upon being rapidly cooled and solidified break up into smaller fragments well adapted to be reduced in size to form conventional abrasive particles.

Related cases This application is a division from application S.N. 104,317 filed Apr. 20, 1961, now abandoned.

Background 0 the invention Currently, aluminous abrasive is made from a suitable mixture of bauxite ore fused in to ton batches and allowed to cool for a period of a week or more in the form of large pigs. These pigs are then broken up with sledge hammers and the resulting fragments sorted to separate the high-grade product from the impurities and reclaims. This method is expensive, arduous and time consuming and, because ofthe length of the time required to effect cooling, the crystal size is generally coarse to intermediate. Alumina cooled slowly in large batch-type water-cooled furnaces has, for example, a crystal size of from between 50 and 80% monocrystalline in 24 grit while a similar aluminous abrasive poured into a 300 pound ingot mold will vary from 25 to 70% monocrystalline in a 24 grit.

Summary An object of this invention is to provide an apparatus for making very fine crystalline alumina abrasive having a crystal size in the order of less than 1% monocrystalline in 24 grit and containing as little as 4 to 14% monocrystalline in 80 grit and, by reason of this fineness, to provide a grain which withstands impact and wear a great deal better than the coarse grain material now produced and which, therefore, is superior to coarse grain crystal for snagging operations. 1

The apparatus, as herein disclosed, for carrying out the foregoing method, comprises a quenching cylinder mounted for rotation about its longitudinal axis, a trough arranged above the upper part of the quenching cylinder for flowing molten material onto the upper surface of the quenching cylinder as it rotates, means for cooling the surface of the quenching cylinder partially to solidify the material as it is spread on the surface, and means for effecting rotation of the quenching cylinder gravitationally to dolf the partially solidified strip at its lower side. A conveyor is disposed subjacent the quenching cylinder having a horizontal surface, and there is means for effect ing movement of the surface away from the downwardly moving side of the quenching cylinder to assist in pulling 3,377,660 Patented Apr. 16, 1968 the strip away from the surface of the cylinder to effect further fragmentization and cooling. A squeeze cylinder of smaller diameter than the quenching cylinder is arranged parallel to the quenching cylinder with its surface closely adjacent the surface of the quenching cylinder, and there is means for varying the pressure between the surfaces of the cylinders. There is also means for spraying a coolant interiorly of the quenching cylinder and on the surfaces of the conveyor.

The invention will now :be described in greater detail with reference to the accompanying drawing which is a diagrammatic illustration of the apparatus shown in side elevation.

Description of the preferred embodiment The apparatus, as herein illustrated, comprises a standard tapping furnace 10 from which the fused product of which the abrasive is to be made is discharged through a spout 12 into a horizontally disposed graphite trough 14, the latter being supported at its opposite ends, subjacent the spout 12, by transversely spaced, inverted V- shaped frames 16-46, each of which has vertically disposed and inclined legs Ida-46a and 16b-16b. The forward side of the trough 14 is open and a quenching cylinder 20, having a diameter in the order of 28", is mounted below the trough for rotation about its longitudinal axis on a shaft 22, the latter being journaled at its ends on the inclined legs Nib-16!) of the frames -16-16. A squeeze cylinder 24, which has a diameter in the order of 20", is mounted in a horizontal position forwardly of the cylinder 20 on a shaft 26 parallel to the shaft 22. The opposite ends of the shaft 26 rest on transversely spaced, horizontally disposed tracks 28-48, the rear ends of which are fastened to the inclined legs lob-4612 and the forward ends of which are supported by the upper ends of vertically disposed legs 3[l-3ii. The lower ends of the legs 30-30 are fixed to the inclined legs 16b-16b. The cylinder 24 is thus free to move bodily toward the cylinder 20 and its surface is held in contact with the surface of the cylinder 20 by weights WW suspended from the rear ends of the flexible cables 32-32, connected at their forward ends to the ends of the shaft 26 and extending rearwardly therefrom over the pulleys 3434, the latter being mounted on brackets 36-36 fixed to the legs 16b-16b.

Below the cylinders 20 and 24 there is a conveyor in the form of a continuous belt 37 entrained at its end about horizontally disposed drums 38--38, one of which is supported at its ends by the legs 16a-16a and the other of which is supported at its ends by legs 4040. The upper surface of the belt 37 is situated about 14" below the line of contact between the cylinders 20 and 24.

The legs 40--40 also support a motor M and drive shaft 42 on which there are multiple sheave sprockets 44-44 about which are entrained roller chains 46-46 and 48-48. The opposite ends of the roller chain are entrained about pulleys 50-50 and 52--52 mounted, respectively, on the ends of the shaft 22 supporting the cylinder 20 and the shaft supporting the drum 38. The cylinder 20 is driven at about 10 to 15 revolutions per minute and the upper run of the conveyor is driven at a speed of about feet per minute.

A spray head 54 in the form of a pipe is disposed within the cylinder 20 parallel to its axis of rotation in a position to direct jets of water against the inner side of the cylinder near the top. By this means, the temperature of the cylinder may be kept well below that of the melting point of the steel which is 1350" C. A spray head 56 is mounted parallel to and adjacent the rear one of the drums 38 at the level of the upper run of the conveyor, so as to project jets of water along the upper surface of the belt toward the area upon which the material falls from the quenching cylinder 20, and additional spray heads 60 are disposed beneath the underside of the upper run of the conveyor for directing jets of water against its underside.

In accordance with the method herein described, the product is 95% alumina produced from bauxite ore by reduction with coke or coal in the furnace and discharged therefrom at a temperature of about 2000 C. into the graphite trough 14 from which it flows forwardly onto the upper surface of the rotating quenching cylinder 20, spreading out thereon in the form of a strip of about 12" wide and A to /8 thick. Since the quenching cylinder 20 is kept at a temperature well below the melting point of the steel (1350 C.) by the water cooling, the strip commences to solidify as it contacts the cylinder and hence to take the shape of the outwardly convex surface of the cylinder. The strip, however, is still plastic when it reaches the squeeze cylinder 24 so that, when it passes between the surface of the quenching cylinder 20 and the squeeze cylinder 24, it is compressed thus reducing the macroporosity. As the strip leaves the line of contact between the cylinders 20 and 24 it commences to break away from the surface of the cylinder 20 by reason of its own weight and fall to the upper surface of the conveyor 37, however, since the strip is still somewhat plastic, it retains enough continuity so that the part resting on the conveyor, at any time, and moving forwardly therewith, assists in pulling the part still on the cylinder from the surface of the cylinder. The dead-weight of the suspended strip, that is, the part hanging down from the cylinder, plus the forward pull which reversibly bends the strip as it leaves the cylinder initiates breaking it into fragments about 12 square. As these fragments move forwardly on the conveyor further cooling breaks then into still smaller pieces.

When examined in cross-section the product discloses a dark dense fine crystal structure of 1 to 30 microns containing some macropores in contrast to furnace Alundum which is brown to pink in color, waxy in appearance, and has a crystal size of 500 microns 1100 in length. State-d according to another method of indicating crystal size, the product has a count of less than 1% in 24 grit and 4 to 14% in 80 grit. The term monocrystal refers to the percentage of whole crystals in any grit size. Crystals produced according to the method are much stronger than coarsely crystal materials and have a superior resistance to wear.

Although the product therein described has a 95% alu mina content, it is to be understood that abrasive products of from 94% to 100% are within the scope of the invention, and that the fine crystal structure improves the properties of the product at all levels within the above-mentioned range.

The principal advantages of the apparatus and method described reside in that the product is finely crystalline; that the time required for making it is drastically reduced; for example, within 10 to 15 minutes after it is poured, it can be crushed for shipment or use in making grinding wheels; and that it can be made much chaaper because it can be more easily crushed and requires less handlin-g and labor.

In the apparatus and method carried out thereby, as described above, the strip of semisolid or plastic alumina is squeezed between the quenching cylinder and squeezing cylinder for the purpose of reducing macroporosity, that is, the pores visible to the unaided eye. It is quite possible, however, to omit the squeezing cylinder and still obtain much finer crystals than with conventional methods of furnace casting due to the fact that quenching can be effected rapidly enough so that the crystals do not have time to grow. Moreover, although the molten material is deposited on the external surface of a cylinder for quenching, it could be deposited on the internal surface of a cylinder, doifed therefrom by rotation, and spilled axially from one end, for example, by inclining the cylinder.

It should be understood that the present disclosure is for the purpose of illustration only and that this invention includes all modifications and equivalents which fall within the scope of the appended claims.

I claim:

1. Apparatus for making fine crystal abrasive comprising:

(a) a cylinder mounted for rotation about its horizontal axis;

(b) a trough arranged above the upper part of the cylinder for flowing molten material onto the downwardly moving face of the cylinder to form a layer of substantially uniform thickness thereon as it rotates, means for cooling the surface of the cylinder for effecting rapid partial solidification of the material in a curved shape conforming to the shape of the surface of the cylinder and for controlling crystal growth; 'a conveyor disposed subjacent the cylinder having a surface traveling in a direction away from the downwardly moving face of the cylinder for collecting, engaging and pulling the layer of material in a continuous strip away from the cylinder whereby the curvature of the partially solidified layer of material is reversed with respect to the curvature formed on the cylinder whereby to partially fracture but not fragmentize the layer of material; and

(c) means for cooling the surface of the conveyor to complete solidification of the strip of material thereon and to furthermore completely partially fracture the layer of material whereby to break the material into fragments while being so conveyed, said fragments being suitable for immediate crushing and screening to produce abrasive particles.

2. Apparatus for making fine crystal abrasive acc-ording to claim 1 comprising:

(a) means adjacent the rotating cylinder for pressing against the layer of material on the cylinder for densifying the partially solidified abrasive material.

3. The apparatus of claim 2 wherein said pressing means takes the form of a pressure roller mounted to rotate about an axis parallel to the axis of the cylinder.

4. The apparatus of claim 1 wherein means are provided to rotate said cylinder to have a surface speed within a range of about 470 to 880 inches per minute, and means are provided to drive said conveyor at about 960 inches per minute.

References Cited UNITED STATES PATENTS 1,445,004 2/ 1923 Cowles 18-155 2,071,035 2/1937 Jenett 18-155 2,576,317 11/1951 Toulmin 18-155 3,001,232 9/1961 Martinals 18-155 3,076,999 2/ 1963 Washburn 18-1 1,586,187 5/1926 Ferngren -184 1,818,153 8/1931 Nobbe 65-99 2,624,164 l/l953 Donofrio 18-26 2,659,948 11/1953 Properzi 18-26 3,119,146 1/1964 Crandall et al 18-1 3,187,379 6/1965 Rahm 18-1 3,193,888 7/ 1965 Rochester 18-26 WILLIAM J. STEPHENSON, Primary Examiner.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1445004 *Jan 26, 1922Feb 13, 1923Electric Smelting & Aluminum CMethod of and apparatus for solidifying materials
US1586187 *Jan 2, 1925May 25, 1926Libbey Owens Sheet Glass CoMethod and apparatus for producing sheet glass
US1818153 *Jan 21, 1928Aug 11, 1931Libbey Owens Ford Glass CoProcess and apparatus for forming sheet glass
US2071035 *Jun 12, 1934Feb 16, 1937Celanese CorpMethod and device for coating textile material
US2576317 *Jan 14, 1947Nov 27, 1951New Wrinkle IncApparatus for producing selfsupporting wrinkle film
US2624164 *Nov 16, 1950Jan 6, 1953American Cyanamid CoMethod of and apparatus for encapsulating liquid and semiliquid substances and the like
US2659948 *Dec 6, 1950Nov 24, 1953Ilario ProperziMachine for the continuous casting of metal rods
US3001232 *May 26, 1959Sep 26, 1961Jungfer AkkumulatorenApparatus for the continuous manufacture of microporous plastic webs
US3076999 *Apr 25, 1960Feb 12, 1963Du PontExtrusion and bead cutting machine
US3119146 *Jan 31, 1958Jan 28, 1964Phillips Petroleum CoPolymer drying process and apparatus
US3187379 *Jul 2, 1962Jun 8, 1965Midland Ross CorpForming a gelatinous solution into ribbon-like bodies
US3193888 *Aug 29, 1961Jul 13, 1965Aluminium Lab LtdContinuous casting apparatus including endless steel belt with red iron oxide coating
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3726621 *Jun 15, 1971Apr 10, 1973Carborundum CoApparatus for producing oxide refractory material having fine crystal structure
US3928515 *Jun 15, 1971Dec 23, 1975Carborundum CoSemicontinuous process for producing oxide refractory material having fine crystal structure
US3942966 *Apr 19, 1973Mar 9, 1976Karl Kristian Kobs KroyerMethods of preparing ceramic material
US4061699 *Jul 29, 1974Dec 6, 1977The Carborundum CompanyContinuous process for producing oxide refractory material
US4415510 *Dec 12, 1972Nov 15, 1983Kennecott CorporationCasting melt into solidification chamber containing steel spheres
US4848041 *Nov 23, 1987Jul 18, 1989Minnesota Mining And Manufacturing CompanyAbrasive grains in the shape of platelets
US5366523 *Jul 23, 1992Nov 22, 1994Minnesota Mining And Manufacturing CompanyAbrasive article containing shaped abrasive particles
US5496386 *Jun 6, 1995Mar 5, 1996Minnesota Mining And Manufacturing CompanyCoated abrasive article having diluent particles and shaped abrasive particles
US5584896 *Jun 21, 1995Dec 17, 1996Minnesota Mining And Manufacturing CompanyCoated abrasive article having diluent particles and shaped abrasive particles
US5984988 *Apr 17, 1998Nov 16, 1999Minnesota Minning & Manufacturing CompanyIntroducing dispersion of alpha-alumina precursor particles in volatile liquid into mold, removing volatile component, removing abrasive particle precursor, calcining, sintering
US6451077Jul 19, 2000Sep 17, 20023M Innovative Properties CompanyFused abrasive particles, abrasive articles, and methods of making and using the same
US6454822Jul 19, 2000Sep 24, 20023M Innovative Properties CompanyFused aluminum oxycarbide/nitride-Al2O3·Y2O3 eutectic abrasive particles, abrasive articles, and methods of making and using the same
US6458731Jul 19, 2000Oct 1, 20023M Innovative Properties CompanyThe present invention provides a fused, crystalline eutectic material comprising eutectic of at least (i) crystalline, complex al2o3 y2o3, and (ii) at least one of aluminoxy-d or m-aluminoxy-d, wherein d is at least one of carbide or nitride
US6582488Jul 19, 2000Jun 24, 20033M Innovative Properties CompanyFused Al2O3-rare earth oxide-ZrO2 eutectic materials
US6583080Jul 19, 2000Jun 24, 20033M Innovative Properties CompanyAbrasives and fibers
US6589305Jul 19, 2000Jul 8, 20033M Innovative Properties CompanyFused aluminum oxycarbide/nitride-Al2O3 • rare earth oxide eutectic abrasive particles, abrasive articles, and methods of making and using the same
US6592640Jul 19, 2000Jul 15, 20033M Innovative Properties CompanyFused Al2O3-Y2O3 eutectic abrasive particles, abrasive articles, and methods of making and using the same
US6596041Jan 30, 2001Jul 22, 20033M Innovative Properties CompanyIncorporated into coated, bonded, and non-woven abrasives, as well as abrasive brushes
US6607570Jul 19, 2000Aug 19, 20033M Innovative Properties CompanyAbrasive particles having industry specified nominal grade and wide particle size distribution, containing fused crystalline abrasive particles comprising eutectic of crystalline alumina, crystalline rare earth oxide and/or complex of both
US6666750Jul 19, 2000Dec 23, 20033M Innovative Properties CompanyFused AL2O3-rare earth oxide-ZrO2 eutectic abrasive particles, abrasive articles, and methods of making and using the same
US6669749Jul 19, 2000Dec 30, 20033M Innovative Properties CompanyFused abrasive particles, abrasive articles, and methods of making and using the same
US6706083Nov 2, 2000Mar 16, 20043M Innovative Properties CompanyFused—Al2O3-MgO-Y2O3 eutectic abrasive particles, abrasive articles, and methods of making and using the same
US7101819Aug 2, 2002Sep 5, 20063M Innovative Properties CompanyAlumina-zirconia, and methods of making and using the same
US7141522Sep 18, 2003Nov 28, 20063M Innovative Properties CompanyUsed to make optical waveguides, glass beads, articles (e.g., plates), fibers, particles (e.g., abrasive particles), and thin coatings
US7141523Sep 18, 2003Nov 28, 20063M Innovative Properties CompanyUsed for optical waveguides (lenses), glass beads, articles (e.g., plates), fibers, particles (e.g., abrasive particles), and thin coatings
US7147544Aug 2, 2002Dec 12, 20063M Innovative Properties CompanyGlass-ceramics
US7168267Aug 2, 2002Jan 30, 20073M Innovative Properties CompanyForming abrasives comprising aluminum oxide by coalescing
US7175786Feb 5, 2003Feb 13, 20073M Innovative Properties Co.Flaming alumina, silica, and oxides of arsenic, boron, germanium, phosphorus, tellurium, and vanadium; cooling the melt; abrasives
US7179526Aug 2, 2002Feb 20, 20073M Innovative Properties CompanyForming a glass-ceramic from Al2O3 and another metal oxide (e.g., Y2O3, REO, ZrO2, TiO2, CaO, Cr2O3, MgO, NiO, CuO, and complex metal oxides thereof)
US7197896Sep 5, 2003Apr 3, 20073M Innovative Properties CompanyFlaming alumina, silica, and oxides of arsenic, boron, germanium, phosphorus, tellurium, and vanadium; cooling the melt; abrasives
US7253128Sep 25, 2006Aug 7, 20073M Innovative Properties CompanyCeramics comprising AI2O3, Y2O3, ZrO2 and/or HfO2, and Nb2O5 and/or Ta2O5 and methods of making the same
US7258707Feb 5, 2003Aug 21, 20073M Innovative Properties CompanyGlass beads, plates, fibers, abrasive particles and thin coatings; thermal insulation, filler, or reinforcement for composites
US7281970Dec 30, 2005Oct 16, 20073M Innovative Properties CompanyComposite articles and methods of making the same
US7297171Sep 18, 2003Nov 20, 20073M Innovative Properties CompanyMethods of making ceramics comprising Al2O3, REO, ZrO2 and/or HfO2 and Nb205 and/or Ta2O5
US7297646Sep 25, 2006Nov 20, 20073M Innovative Properties CompanyHeating the glass particles above the Tg so that the glass particles coalesce to form a shape; may be converted into optical waveguides, glass beads, articles (e.g., plates), fibers, particles (e.g., abrasive particles), and thin coatings.
US7384438Jul 19, 2000Jun 10, 20083M Innovative Properties CompanyCrystalline ZrO2 and at least two of: crystalline Al2O3, first crystalline complex Al2O3.Y2O3, second, different, crystalline complex Al2O3.Y2O3; particle size distribution ranging from fine to coarse; for coated, bonded, and non-woven abrasives, and abrasive brushes.
US7501000Aug 2, 2002Mar 10, 20093M Innovative Properties CompanyAbrasive particles, abrasive articles, and methods of making and using the same
US7501001Aug 2, 2002Mar 10, 20093M Innovative Properties CompanyAbrasive particles, and methods of making and using the same
US7507268Aug 2, 2002Mar 24, 20093M Innovative Properties CompanyFor glass/ceramic abrasives; thermal insulation; protective coatings
US7510585Aug 2, 2002Mar 31, 20093M Innovative Properties CompanyHeat treating the aluminum oxide-based glass particles above the glass transition temperature so the glass particles coalesce; cooling to crystallize and form a ceramic; bonded, coated and nonwoven abrasives; abrasive brushes
US7563293Aug 2, 2002Jul 21, 20093M Innovative Properties CompanyGlasses, crystalline ceramics, and glass-ceramics useful as abrasive particles; also glass beads, ktchenware, e.g., plates, fibers and thin coatings; thermal insulation, filler, or reinforcing material in composites (e.g., ceramic)
US7563294Aug 2, 2002Jul 21, 20093M Innovative Properties CompanyAbrasive particles and methods of making and using the same
US7598188Dec 30, 2005Oct 6, 20093M Innovative Properties CompanyAmorphous ceramic-glass material of alumina and oxide of yttrium, zirconium, titanium, calcium, chromium, magnesium, nickel, copper, and/or rare earth metals; reduced amounts of oxides of vanadium, arsenic, boron, bismuth, geranium, phosphorus, silicon, or tellurium; toughness, nonfracturing; cutters
US7625509Aug 2, 2002Dec 1, 20093M Innovative Properties CompanyCoalescing glass (containing rare earth oxides-alumina-zirconia-yttria-boron oxide, phosphorous oxide) particles on substrate articles such as kitchenware, dental brackets, and reinforcing fibers, cutting tool inserts, abrasives, and structural components of gas engines, (e.g., valves and bearings)
US7662735Jun 26, 2007Feb 16, 20103M Innovative Properties CompanyComprising glass, and composites comprising such fibers; glass comprises at least 35 percent by weight alumina, based on the total metal oxide content of the glass, a first and a second metal oxide other than alumina; for melt spinning to make amorphous and ceramic materials
US7737063Jun 26, 2007Jun 15, 20103M Innovative Properties CompanyAI2O3-rare earth oxide-ZrO2/HfO2 materials, and methods of making and using the same
US7811496Feb 5, 2003Oct 12, 20103M Innovative Properties CompanyAdding melt comprising alumina, and oxide of arsenic, phosphorus, boron, germanium, silicona, tellurium, vanadium, zirconium, hafnium, yttrium, and/or rare earth oxide under pressure into particle openings or cavities of a mold; abrasives
US8003217Jan 15, 2007Aug 23, 20113M Innovative Properties CompanyCoalescing glass (containing rare earth oxides-alumina-zirconia-yttria-boron oxide, phosphorous oxide) particles on substrate articles such as kitchenware, dental brackets, and reinforcing fibers, cutting tool inserts, abrasives, and structural components of gas engines, (e.g., valves and bearings)
US8056370Aug 2, 2002Nov 15, 20113M Innovative Properties CompanyMethod of making amorphous and ceramics via melt spinning
US8753558Dec 31, 2012Jun 17, 2014Saint-Gobain Ceramics & Plastics, Inc.Forming shaped abrasive particles
US8753742Jan 10, 2013Jun 17, 2014Saint-Gobain Ceramics & Plastics, Inc.Abrasive particles having complex shapes and methods of forming same
US8758461Dec 30, 2011Jun 24, 2014Saint-Gobain Ceramics & Plastics, Inc.Abrasive particles having particular shapes and methods of forming such particles
US8764863Dec 31, 2012Jul 1, 2014Saint-Gobain Ceramics & Plastics, Inc.Composite shaped abrasive particles and method of forming same
US8840694Jun 30, 2012Sep 23, 2014Saint-Gobain Ceramics & Plastics, Inc.Liquid phase sintered silicon carbide abrasive particles
US8840695Dec 31, 2012Sep 23, 2014Saint-Gobain Ceramics & Plastics, Inc.Shaped abrasive particle and method of forming same
US8840696Jan 10, 2013Sep 23, 2014Saint-Gobain Ceramics & Plastics, Inc.Abrasive particles having particular shapes and methods of forming such particles
USRE35570 *Aug 10, 1995Jul 29, 1997Minnesota Mining And Manufacturing CompanyTriangular particles, orientation on backing, total surface area remains constant during use
EP0318168A2Nov 7, 1988May 31, 1989Minnesota Mining And Manufacturing CompanyAbrasive grains in the shape of platelets
Classifications
U.S. Classification425/363, 425/446, 65/99.1, 65/143, 264/332, 425/387.1
International ClassificationB01J2/00, B01J2/24, C09K3/14
Cooperative ClassificationB01J2/24, C09K3/1427
European ClassificationC09K3/14B4, B01J2/24