Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3383321 A
Publication typeGrant
Publication dateMay 14, 1968
Filing dateMar 9, 1965
Priority dateMar 9, 1965
Also published asCA795287A, US3503889
Publication numberUS 3383321 A, US 3383321A, US-A-3383321, US3383321 A, US3383321A
InventorsDavis Robert P, Mueller Frank J
Original AssigneeProcter & Gamble
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Detergent tablets
US 3383321 A
Images(7)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 0 3,383,321 DETERGENT TABLETS Robert P. Davis, Cincinnati, and Frank J. Mueller, Delhi Township, Hamilton County, Ohio, assignors to The Procter & Gamble Company, Cincinnati, Ohio, a corporation of Ohio No Drawing. Filed Mar. 9, 1965, Ser. No. 438,376

5 Claims. (Cl. 252135) ABSTRACT OF THE DISCLGSURE Detergent tablets which contain uniformly distributed granules of sodium tripolyphosphate (STP), which granules are either (1) encapsulated with 2l5 mole percent of STP hexahydrate or (2) intimately intermixed with 0.l-0.5% calicum oxide. The tablets dissolve rapidly in cool (100 F.) water, even after having been allowed to stand in unagitated water.

This invention relates to detergent compositions in tablet form. More particularly, it relates to detergent tablets which possess good strength and abrasion resistance and are capable of dissolving rapidly even under adverse washing conditions, i.e., in cool water and after standing in unagitated water prior to their use in an agitated system.

Pre-measured amounts of detergent compositions which are compressed into tablet form are well known and have received substantial commercial acceptance. They generally comprise a cleaning agent such as a synthetic detergent or soap and a detergency builder which is generally sodium tripolyphosphate, along with suds builders, soil suspending agents and other ingredients commonly added to cleaning compositions. They are easy to use, avoid the problem of spillage during use, and prevent the use of too much or too little detergent on the part of the consumer. While the use of high pressure tableting easily can make the tablet strong enough to resist breakage, and while the tablets can be made sufiiciently abrasion resistant by treating the surface of the tablet with water or certain coating materials, these processing operations tend to increase the time which is required to dissolve the tablet in water, particularly when cool water must be used. The use of water with temperatures of less than 130 F. is quite common in many parts of the world.

The problem of tablet dissolution rates is particularly acute when the tablet is allowed to stand in unagitated water for a short time prior to beginning the agitation, as when the tablet is placed in a washer while the water and laundry are being added. Under these circumstances the time of dissolution after agitation has begun is often greatly increased. Since this results in a loss of a substantial portion of the cleaning power, this delay in dissolving presents a serious problem to that large number of consumers who normally add the tablets to unagitated water.

Therefore, it is an object of this invention to provide an improved detergent tablet.

It is another object of this invention to provide a strong and abrasion resistant detergent tablet which has a rapid speed of dissolution.

It is a still further object of this invention to provide a detergent tablet which dissolves rapidly in cool water and/ or after being allowed to stand in unagitated water prior to its use in an agitated system.

Other objects and advantageous features of this inventi-on will be obvious from the following detailed description and claims.

The objects of this invention can be achieved by employing with the granules of sodium tripolyphosphate 3,383,321 Patented May 14, 1968 (hereafter called STP) which are to be used in a tableted detergent composition either of the following:

(1) Sufficient water to hydrate to the hexahydrate state substantially all of the STP particles which form the surface of the STP granules, which surface hydration is generally accomplished with the addition of suiiicient water to hydrate to the hexahydrate state from about 2% to about 15% on a molar basis of the total granular STP present; or

(2) From about 0.1% to about 0.5% of calcium oxide based on the weight of the STP granules.

The efiect of such an addition is to decrease the time which is required for the tablet to dissolve in water of any temperature. Thus, higher tableting pressures can be used and stronger tablets can be made which have the same time of dissolution as previous tablets; or, an acceptable dissolving rate can be achieved in water of lower temperatures than has been previously possible using a tablet of ordinary strength. Further, and most important, the speed of dissolution of a tablet which has been allowed to stand in unagitated water for a short time prior to the beginning of agitation does not vary substantially from the speed of dissolution of a tablet which is added directly to agitated water. This avoids a serious problem which has plagued the prior art, since it is not unusual for prior art tablets which have been pro-soaked to take from 5 to 10 times as long to dissolve as one which is added directly to agitated water.

While the inventor does not wish to be bound by any particular theory, it is his belief that the reason for slower dissolving times in pre-soaked prior art tablets is as follows. It is the nature of unhydrated STP, when in the presence of a very limited amount of water, to form an unstable supersaturated solution. Beginning shortly thereafter, this supersaturated solution precipitates STP hexahydrate crystals until the normal solubility level of the STP in the water present is reached, When a detergent tablet which contains a relatively high amount of STP is placed in an agitated solution, the surface components of the tablets are rapidly removed by the action of the water. This is both a solubilizing and an eroding action, the latter action removing the particles of the tablet as the binding forces are weakened by the penetration of the water. The particles being thus dispersed, the speed of dissolving is increased. Also, the particle removal process allows the penetration of the water into the tablet to be sufliciently rapid to prevent the above-described supersaturated solutions of STP in water from existing at any point within the tablet for any undue period of time which, in turn, prevents the formation of the precipitated STP hexahydrate crystals as described above. On the other hand, when the tablet is placed in an unagitated system, the eroding action of the water upon the tablet does not take place. However, the water does gradually penetrate into the tablet, thus creating a slowly moving wet-dry interface which surrounds the core of the tablet. The low concentration of water at this relatively stationary interface allows the above-described supersaturation phenomenon to take place and a layer of STP hexahydrate crystals are precipitated out of the supersaturated solution. Under these circumstances, the hexahydrate crystals forms bridges between adjacent STP granules, thus creating a shell of interconnected STP granules and STP hexahydrate crys tals around a core of the tablet.

In addition to hindering further penetration of water into the tablet. this shell offers substantial resistance to the eroding action of agitated water. Therefore, even if subsequently placed in an agitated system, the movement of the wet-dry interface into the tablet is quite slow and allows a continued formation of a supersaturated STP solution and a continued precipitation of the above-described bridge forming hexahydrate crystals, thus perpetuating the protective shell. It is not uncommon for a tablet with a normal dissolving time of about 60 seconds in an agitated system to have a dissolving time of 500 to 600 seconds when pre-soaked for a short time prior to its addition to the agitated system.

It has been found that a sufficient delay of the hydration of a substantial amount of the STP in a detergent tablet will alleviate the problems caused by crystalliza tion of the hexahydrate crystals and will increase the rate of dissolution of the tablet. Most importantly, this delay will prevent formation of the difficulty eroded shell of STP granules and STP hexahydrate crystals around a core of the tablet in unagitated systems.

The preferred method of accomplishing this result is to treat anhydrous granular STP which is to be used to form detergent tablets with sufficient highly-particulate Water to hydrate to the hexahydrate state substantially all of the STP which forms the surface of such granules. When this is done, substantially all of the anhydrous STP granules are encapsulated with STP hexahydrate. When these granules are used to form detergent tablets there is relatively little free, exposed and unhydrated STP available to form a shell of interconnected STP granules and STP 'hexahydrate crystals. As a result the eroding action of agitated water upon the tablet after pre-soaking is about the same as if the tablet had been placed directly into an agitated system.

The water added to the anhydrous granular STP must be in highly particulate form and in an amount sufficient to accomplish substantial hydration of the particles forming the surface of each STP granule. Sufficient surface hydration is generally accomplished when at least 2 to 3 mole percent of the granular STP has been hydrated; however, in the preferred practice of this invention from about 6% to about 12% of the STP on a molar basis should be hydrated to the hexahydrate form. The amount hydrated should not exceed 15 mole percent. Employing a moisture content below 15 mole percent makes it easier to formulate an acceptable detergent composition and also makes the finished tablet lighter in weight which is both appealing to the consumer and less expensive for the manufacturer due to decreased shipping costs.

More importantly, however, are the severe processing problems which are experienced at higher moisture levels. With an excess of 15 mole percent granular STP present in the hexahydrate form, the mixture which is to be tableted shows a marked decrease in density. This means that a larger tablet must be made in order to incorporate the desired amount of the detergent materials. Secondly, it is generally the practice in the art today to treat the surface of the pressed detergent tablets with water or other water-containing materials prior to packaging to give the tablet an abrasion resistant coating. This leaves the tablet with a sticky surface until moisture is removed from the coating material. When lower amounts of hydratable salts are present in the tablet, this sticky surface will endure for a considerable period of time, thus requiring in undesirable delay between coating and packaging. Since the unhydrated STP constitutes the bulk of the hydratable salts present in the tablet of this invention, it should not be hydrated to a greater extent than necessary. Lastly, hydration of STP is a highly exothermic reaction; therefore, the temperature of the material being processed is increased progressively with the degree of hydration. For example, when sufiicient water is added to hydrate of the granular anhydrous STP, the temperature of the STP can be expected to rise in an amount of about 70 to about 75 F. As a result, the material handling considerations are seriously affected and, due to the relatively slow heat loss of solid materials, some sort of cooling would preferably be provided prior to tableting if such a degree of hydration were used. In light of the above reasons the amount of granular STP hydrated should not exceed 15%.

The method of addition of the water to the STP granules for this surface hydration is not critical, so long as the Water is added in highly particulate form and intimate mixing of water and STP granules is accomplished. It is preferred to use an atomizer which sprays the water in highly particulate form onto a moving or agitated bed of anhydrous granular STP, or to pass the STP through a humidifying zone of sufficient size, preferably with agitation, to accomplish the required degree of hydration.

Calcium oxide is an effective agent for retardation of the undesirable wet-dry interface around the core of the tablet described above. When from about 0.1% to about 0.5% of powdered and highly particulate calcium oxide, based on the weight of the anhydrous granular STP, is incorporated into a mixture which is to be tableted, sizable increases in dissolving speed are obtained, particularly in the pre-soaked tablet discussed above. The mechanism whereby undesirable hydration of the granular STP in the tablet is retarded, due to the presence of the calcium oxide, is not known. However, it is known that the calcium oxide must be reasonably well interspersed among the STP granules. The calcium oxide particle size is preferably from about 4,11. to about 40 The calcium oxide can be mixed with the granular STP and detergent granules prior to tableting but, in the preferred operation, calcium oxide is vmixed with the granular STP prior to its admixture with the detergent granules. In this preferred method a majority of the calcium oxide particles remain admixed with the STP granules, the remainder being imbedded in the softer detergent granules.

It is necessary for successful operation of the present invention that the finished tablet have sufficient interparticle channeling to allow the water to penetrate into the tablet. This penetration serves to loosen the materials near the surface of the tablet, thus enabling the action of the water in an agitated system to more easily disperse and dissolve them. This penetration is also necessary to prevent a troublesome wet-dry interface within the tablet as described above. Therefore, the granules of synthetic detergent and STP which comprise the detergent tablet should be of sufiicient size to provide an interparticulate void volume of about 35% to about 60% of the total tablet volume. Such granules should not be so large, however, as to make it difiicult to obtain uniformity in the composition of the tablets, nor dilficult to process them. Therefore, the detergent and STP granules for use in this invention should be of such a size that substantially all will pass a standard 6 mesh screen (Tyler) and that at least about will stay on a standard mesh screen (Tyler).

With regard to the STP granules, there is another reason why the above size range must be maintained. As was explained above, it is necessary that each granule, after the water treatment, be substantially coated with hexahydrate crystals. However, to avoid processing, weight and formulation problems also discussed above, the amount of added water should be kept to a minimum. If granules of a smaller size than specified in the preceding paragraph were to be used, the resultant increase in the total surface area of the STP granules would be so large as to prevent the simultaneous achievement of both objectives. To substantially coat each granule of STP with hexahydrate would require the hydration of considerably more than 15 mole percent of the STP present.

Similarly, any optional ingredients for use in this tablet, to be hereafter described, should preferably be of a size comparable to the STP and detergent granules. If substantially different, they should not be used in such an amount as would prevent uniformity of product, or would either interfere with tablet processing or with the formation of the interparticulate channels of the tablet.

The detergent materials which can be used in the detergent granules in the tablets of the present invention are those of the anionic, nonionic, ampholytic or zwitterionic classes. The detergent materials can be per se in the form of detergent granules, as described above, or blended with other tablet components such as builders, as described below, to form detergent granules. At least 5% by weight of the tablet should be such a detergent material in order to provide a tablet of suitable size which has a sufficient concentration of detergent material for washing purposes. More than 30% by weight of detergent in the tablet will lead to an excessively sticky tablet and this in turn will lead to a deficiency of interparticulate voids, thereby preventing the water from diffusing through the tablet to dissolve said tablet.

Examples of detergent materials which can be used in the tablets of this invention include:

(a) Anionic synthetic detergents: This class of synthetic detergents can be broadly described as the watersoluble salts, particularly the alkali metal salts, of organic sulfuric reaction products having in the molecular structure an alkyl radical containing from about 8 to about 22 carbon atoms and a radical selected from the group consistin of sulfonic acid and sulfuric acid ester radicals. Important examples of the synthetic detergents which form a part of the preferred compositions of the present invention are the sodium or potassium alkyl sulfates, especially those obtained by sulfating the higher alcohols produced by reducing the glycerides of tallow or coconut oil; sodium or potassium alkyl benzene sulfonates, in which the alkyl group in a straight or branched chain contains from about 9 to about carbon atoms, and the types described in United States Patents Numbers 2,220,- 099 and 2,477,383; sodium alkyl glyceryl ether sulfonates, especially those ethers of the higher alcohols derived from tallow and coconut oil; sodium coconut oil fatty acid monoglyceride sulfates and sulfonates; sodium or potassium salts of sulfuric acid esters of the reaction product of one mole of a higher fatty alcohol (e.g., tallow or coconut oil alcohols) and about three moles of ethylene oxide; sodium or potassium salts of alkyl phenol ethylene oxide ether sulfates with an average of about four units of ethylene oxide per molecule and in which the alkyl radicals contain about 9 carbon atoms; the reaction product of fatty acids esterified with isethionic acid and neutralized with sodium hydroxide where, for example, the fatty acids are derived from coconut oil; sodium or potassium salts of fatty acid amide of a methyl taurine in which the fatty acids, for example, are derived from coconut oil; and others known in the art, a number being specifically set forth in United States Patents Numbers 2,486,921, 2,486,922 and 2,396,278.

(b) Nonionic synthetic detergents: This class of synthetic detergents can be broadly defined as compounds produced by the condensation of alkylcne oxide groups (hydrophilic in nature) with an organic hydrophobic compound, which can be aliphatic or alkyl aromatic in nature. The length of the hydrophilic or polyoxyalkylene radical which is condensed with any particular hydrophobic group can be readily adjusted to yield a water-soluble compound having the desired degree of balance between hydrophilic and hydrophobic elements.

For example, a well known class of nonionic synthetic detergents is made available on the market under the trade name of Pluronic. These compounds are formed by condensing ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol. The hydrophobic portion of the molecule which, of course, exhibits water insolubility has a molecular weight of from about 1500 to 1800. The addition of polyoxyethylene radicals to this hydrophobic portion tends to increase the Water solubility of the molecule as a whole and the liquid character of the products is retained up to the point where polyoxethylene content is about 50% of the total weight of the condensation product.

Other suitable nonionic synthetic detergents include:

(i) The polyethylene oxide condensates of alkyl phenols, e.g., the condensation products of alkyl phenols having an alkyl group containing from about 6 to 12 carbon atoms in either a straight chain or branched chain configuration, with ethylene oxide, the said ethylene oxide being present in amounts equal to 10 to 25 moles of ethylene oxide per mole of alkyl phenol. The alkyl substituent in such compounds may be derived from polymerized propylene, diisobutylene, octane, or nonane, for example.

(ii) Those derived from the condensation of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylene diamineproducts which can be varied in composition depending upon the balance between the hydrophobic and hydrophilic elements which is desired. For example, compounds containing from about 40% to about polyoxyethylene by weight and having a molecular weight of from about 5000 to about 11,000, resulting from the reaction of ethylene oxide groups with a hydrophobic base constituted of the reaction product of ethylene diamine and excess propylene oxide, said base having a molecular Weight of the order of 2500 to 3000, are satisfactory.

(iii) The condensation products of aliphatic alcohols having from 8 to 18 carbon atoms, in either straight chain or branched chain configuration, with ethylene oxide, e.g., a coconut alcohol ethylene oxide condensate having from 10 to 30 moles of ethylene oxide per mole of coconut alcohol, the coconut alcohol fraction having from 10 to 14 carbon atoms.

(0) Long chain tertiary amine oxides corresponding to the following general formula, R1R2R3N+O, wherein R is an alkyl radical of from about 8 to about 18 carbon atoms, and R and R are each methyl or ethyl radicals. The arrow in the formula is a conventional repre sentation of a semi-polar bond. Examples of amine oxides suitable for use in this invention include dimethyldodecyl amine oxide, dimethyloctylamine oxide, dimethyldecylamine oxide, dimethyltetradecylamine oxide, dimethylhexadecylamine oxide.

(d) Long chain tertiary phosphine oxides corresponding to the following general formula RRRP+O wherein R is an alkyl, alkenyl or monohydroxyalkyl radical ranging from 10 to 18 carbon atoms in chain length and R and R are each alkyl or monohydroxyalkyl groups containing from 1 to 3 carbon atoms. The arrow in the formula is a conventional representation of a semi-polar bond. Examples of suitable phosphine oxides are: dodecyldimethylphosphine oxide, tetradecyldimethylphosphine oxide, tetradecylmethylethylphosphine oxide, cetyldimethylphosphine oxide, stearyldimethylphosphine oxide, cetylethylpropylphosphine oxide, dodecyldiethylphosphine oxide, tetradecyldiethylphosphine oxide, dodecyldipropylphosphine oxide, dodecyldi (hydroxymethyl) phosphine oxide, dodecyldi (Z-hydroxyethyl) phosphine oxide, tetradecylmethyl-2-hydroxypropyl phosphine oxide, oleyldimethylphosphine oxide, and 2-hydroxydodecyldimethylphosphine oxide.

(e) Long chain dialkyl snlfoxides containing one short chain (usually methyl) and one long hydrophobic chain which can contain from about 10 to about 20 carbon atoms. Examples include:

octadecyl methyl sulfoxide dodecyl methyl sulfoxide tetradecyl methyl sulfoxide (f) Ampholytic synthetic detergents can be broadly described as derivatives of alkyl secondary and tertiary amines in which the alkyl radical can be straight chain or branched and wherein one of the alkyl substituents contains from about 8 to about 18 carbon atoms and one contains an anionic water solubilizing group, e.g., carboxy, sulfonate, sulfate, phosphate, or phosphonate. Examples of compounds falling within this definition are sodium 3- dodecylaminopropionate, sodium 3-dodecylaminopropane sulfonate, dodecyl-beta-alanine, N-alkyltaurines such as the one prepared by reacting dodecylamine with sodium isethionate according to the teaching of United States Patent Number 2,658,072, N-higher alkyl aspartic acids such as those produced according to the teaching of United States Patent Number 2,43 8,091, and the products sold under the trade name Miranol and described in United States Patent Number 2,528,378.

(g) Zwitterionic synthetic detergents can be broadly described as derivatives of alkyl quaternary ammonium, phosphonium, and sulfonium compounds, in which the alkyl radical may be straight chain or branched, and wherein one of the alkyl substituents contains from about 8 to 18 carbon atoms and one contains an anionic water solubilizing group, e.g., carboxy, sulfonate, sulfate, phosphate, or phosphonate. Examples of compounds falling within this definition are 3-(N,N-dimethyl-N-hexadecyL ammonio) propane-l-sulfonate and 3-(N,N-dimethyl-N- hexadecylammonio)-2-hydroxy propane-l-sulfonate which are especially preferred for their excellent cool water detergency characteristics.

The alkyl groups contained in said detergent surfactants can be straight or branched and saturated or unsaturated as desired. The above list of detergent surfactants is exemplary and not limiting. Mixtures of the above detergent surfactants can be used.

The STP is used to provide detergency builder properties in the tablet. At least about 25 STP by weight of the tablet should be present to provide good builder action, but more than about 85% by weight of the tablet tends to make the tablet unduly brittle. The ratio of STP to synthetic detergent should be from about 2:1 to about 9:1. A portion of the STP can be added in admixture with the synthetic detergent material and any optional ingredients employed in the form of spray-dried detergent granles. However, an acceptable rate of dissolution will not be achieved if the bulk of the STP is added in this form. Therefore, at least about 20% by weight of the tablet must be STP which is added in admixed, particulate granular form, hydrated as described above, to the composition which is to be tableted; i.e., the tablet should contain from about 20% to about 85 by weight of STP in particulate granular form, hydrated or mixed with calcium oxide as described above, and from to about 65% by weight of STP in addition to the STP in particulate, granular form which has been hydrated or mixed with calcium oxide, such that the total amount of STP is from about 25% to about 85 by weight of the tablet. All of the STP used in the tablet can be in such granular form if desired. Granular STP is preferably from about 35% to about 60% by weight of the detergent tablet, with any balance of STP in the tablet formula preferably being admixed with the detergent material in the form of spray-dried detergent granules.

In addition to the above, various optional ingredients can be used. Such materials as soap, additional builder or sequestrant builder salts are commonly added.

Soap, if used, should be present in an amount not over about by weight of the tablet, and preferably not over about 5%. Soaps acceptable for use in this invention are the ordinary alkali metal soaps such as the sodium and potassium salts of the higher fatty acids of naturally occurring plant or animal esters (e.g., palm oil, coconut oil, babassu oil, soybean oil, castor oil, tallow, whale and fish oils, grease and lard, and mixtures thereof) or of synthetically produced fatty acids (e.g., rosin and those resin acids in tall oil) and/ or of naphthenic acids. Sodium and potassium soaps can be made by direct saponification of the fats and oils or by the neutralization of the free fatty acids which are prepared in a separate manufacturing process.

Builder salts, in addition to the STP, are usually desirable in the tablets of this invention. Examples of those most commonly used are the alkali metal carbonates, orthophosphates, pyrophosphates and silicates. Likewise sequestrant builder salts can also be effectively used in conjunction with the STP. Typical examples of sesquestrant builder salts are: (l) alkali metal amino-polycarboxylates such as sodium or potassium ethylene diamine tetra-acetates or nitrilotriacetates; (2) alkali metal salts of phytic acid; and (3) the water-soluble salts of ethane-l-hydroxy-l,l-diphosphonate, methylene or ethylene diphosphonate, particularly the triisodium and tripotassium salts.

These additional builders or sesquestrant builders, or mixtures thereof, can be present up to about 20% by weight of the tablet.

Substantially all of the water present in the tablet, other than that added to hydrate the STP granules, will be associated with the detergent granules. This amount should not exceed about 12% by weight of the detergent granules. Too much moisture will make the detergent granules too soft and, upon tableting, they will distort too readily and fill the interparticulate voids. However, the moisture should not be less than about 3% by weight of the detergent granules. With less than this amount, the detergent granules are too brittle. Upon tableting they will crumble and create an unduly large amount of small particles which tend to fill the interparticulate voids.

In addition to the above-described ingredients, the detergent tablets of this invention can also contain any of the minor additives commonly used with detergent compositions. These include: bleaching agents, such as water-soluble perborates or persulfates; suds builders, such as fatty acid amides or ethanolamides wherein the fatty acid radical contains from about 8 to about 20 car bon atoms; suds depressers, such as fatty acids or their soaps; soil suspending agents, such as carboxymethyl cellulose; inorganic salts, such as sodium or potassium sulfates or chlorides; and optical brighteners, dyes, and perfumes. The inorganic salts can be present in an amount of up to about 20% by weight of the tablet. The remaining minor ingredients can be present up to a total of about 10% by weight of the tablet.

The tablets of this invent-ion can be prepared by the usual processes of the detergent tableting art. The optional ingredients, if any, can be added independently with the other components prior to tableting or, preferably, incorporated with the synthetic detergent in the form of spray-dried detergent granules. The components are blended in any conventional manner which achieves a reasonably uniform mixture. As a result of the mixing of the ingredients, the anhydrous sodium tripolyphosphate granules, either encapsulated with sodium tripolyphosphate hexahydrate or intimately intermixed with calcium oxide, are substantially uniformly distributed throughout the tablet. The mixture is then pressed into the desired shape by means of a tableting press, preferably one which uses rotating dies and a pressure of from about to about 350 to 450 p.s.i.g. The tablets can then be treated, if desired, with water or other substance designed to increase the strength and abrasion resistance of the tablet surface.

The following examples are given to illustrate the use of the present invention in preparing strong and abrasion resistant detergent tablets which dissolve readily in agitated water, even if allowed to stand for a period of time in unagitated water. However, these examples are not to be interpreted as limitations upon the invention.

Example I A series of detergent tablets were prepared which varied only in the degree of percent of hydration of the granular STP which was contained in the tablets. To prepare these tablets, spray-dried detergent granules of the following composition were made, expressed in parts by weight:

Parts (1) Sodium dodecylbenzene sulfonate 10.5 (2) Pluronic L64 (ethylene oxide condensed on a propylene glycolzpropylene oxide base, mo-

lecular weight 2900) 2 (3) STP 15.5

(4) Sodium sulfate 13.5

(5) Sodium silicate 7.5

(6) Hardened fish oil fatty acid 1.5

(7) Water 4.0 8) Minors (sodium carboxymethyl cellulose,

brighteners and perfume) 0.5

Total 55.0

Samples of these detergent granules and of substantially anhydrous STP granules were screened to determine particle size distribution. It was found that substantially all of the granules passed a standard 6-mesh screen (Tyler) and in excess of 95% stayed on a standard 100-mesh screen (Tyler). The STP granules were then separated into several segments. Each segment, while being agitated, was treated with an atomized water spray to hydrate a portion of the STP to the hexahydrate state. Because of the agitation and the highly particulate nature of the added water, substantially all of the hydration occurred on the surface of the STP granules.

55 parts by weight of the spray-dried detergent granules were then mixed with 45 parts by weight of STP which had been prehydrated to a desired level. Sample tablets were prepared for several different prehydration levels. All tablets were pressed with rotating dies at 200 p.s.i.g. and allowed to age for in excess of 16 hours at 7080 F. Then they were used in the following tests.

(A) Speed of dissolution (S.O.D.).--A standard automatic washer (Kenmore, model #6204702) was filled with sixteen gallons of water and six pounds of a wash load was added. Each of a set of four sample tablets with the same degree of granular STP prehydration was placed in a separate net bag. These bags were suspended in the washer and the agitation begun immediately. The net bags were withdrawn and observed after 60 seconds and at 60 second intervals thereafter, until no residue was seen in any of the four bags. The time at which the residue in each of the four bags had completely disappeared was recorded, and the average of the four was taken as the speed of dissolution for that sample.

(B) Pre-soak speed of dissolution-This test was very similar to Test (A). However, the wash load and the net bags containing the four tablet samples were placed in the washer prior to the addition of the water. The washer was then filled and agitation was begun immediately upon completion of the water addition. The same procedures as in (A) were then followed. The dissolving time was measured from the time that agitation was begun. Again, the average of the four samples was taken as the true value for that sample. The filling time of the washer was two minutes.

(C) Tablet strength-This test was performed on a standard Mullen Tester, model LC, manufactured by B. F. Perkins & Son, Inc. of Holyoke, Mass. The tablet was clamped to a flat tray and a vertical rubber-tipped mandrel placed into contact with the center of the tablet. Pressure was gradually increased until the tablet ruptured. The true value was taken as the average of two such tests conducted at 75 F.

The results are tabulated below, the first column showing the degree of hydration of the STP in the various sets of tablets.

TABLE 1 Percent Water Pre-soak Strength Hydration 0! Temp. S.O.D. S.O.D. (lbJiu. to Added STP 1?.) (sec.) (sec.) rupture) Granules Sets of sample tablets with the same composition, other than degree of granular STP prehydration, were prepared as described in Example I. These sample tablets were used in the same tests as described in Example 1, except that they were also tested at F. to determine the effect of increased water temperature on the respective dissolving times. The results are tabulated below.

TABLE 2 Percent 100 F., 125 F., Hydration 100 F., Pre- 125 F., Pre- Strength of Added S.O.D. soak S.O.D. soak (lb. in? to STP (see) S.O.D. (see) S.O.D. rupture) Granules (sec.) (see) The above results indicate that the conclusions drawn from Example I are not dependent upon the temperature of the water.

Example HI Two sets of detergent tablets were prepared as described in Example I, except that the added granular STP used in the preparation of these samples was substantially anhyi drous in order to avoid any influence of prehydrated STP upon the various tablet properties. The sets of samples were identical in content except that 0.2% calcium oxide, based on the weight of the added STP, was added in highly particulate form (about 6,u to 8 1. average) to one of the two sets prior to mixing and tableting, These examples were then used in the same tests as described in Example I. The results are tabulated below.

TABLE 3 Percent CaO Water S.O.D. Pre-soak Strength Added Temp. (sec.) S.O.D. (lb./in to (F.) (sec.) rupture) When any of the following synthetic detergent materials are substituted in whole or in part for the sodium dodecyl benzene sulfonate in the above examples, substantially similar improvements in dissolving characteristics are obtained:

from 10 to 30 moles of ethylene oxide per mole of coconut alcohol;

alkyl sul- (8) condensates of C to C alkylphenols and polyethylene oxide, having from to moles ethylene oxide per mole of alkylphenol;

(9) Dimethyl coconut alkyl amine oxides;

(10) Diethyl coconut alkyl phosphine oxides;

(11) 3-hydroxytridecyl methyl sultoxides;

(12) 3-hydroxy-4-decoxybutyl methyl sulfoxides;

(13) Sodium 3-coconut alkyl amino propionates;

(14) 3 (N,N dimethyl N-tallow alkyl ammonio) 2- hydroxypropane-l-sulfonates; and

(15) Mixtures of any of the above.

What is claimed is:

1. A detergent tablet having solubility properties such that it is capable of dissolving during a normal laundering process without sacrificing cleaning power, said tablet retaining its desirable solubility properties when the tablet is allowed to stand in unagitated water prior to beginning the laundering process, said detergent tablet consisting essentially of (A) from about 5% to about by weight of a water soluble synthetic detergent selected from the group consisting of:

(l) anionic synthetic detergents having in their molecular structure an alkyl radical containing from about 8 to about 22 carbon atoms and a radical selected from the group consisting of suifonic acid and sulfuric acid ester radicals;

(2) nonionic synthetic detergents which are condensation products of alltylene oxide with hydrophobic organic compounds;

(3) long chain tertiary amine oxides of the formula R R R N O wherein R is an alkyl radical of from about 8 to about 18 carbon atoms, and R and R are each methyl or ethyl radicals;

(4) long chain tertiary phosphine oxides of the formula Rt 'R'R" -O, wherein R is an alkyl, alkenyl or monohydroxyalkyl radical ranging from 10 to 18 carbon atoms in chain length, and R and R" are each alkyl or monohydroxyalkyl groups containing from 1 to 3 carbon atoms;

(5) dialkyl sulfoxides of the formula RSOCH wherein R is an alkyl group containing from about 10 to about 20 carbon atoms;

(6) ampholytic synthetic detergents which are derivatives of alkyl secondary and tertiary amines in which the alkyl radical can be straight chain or branched and wherein one of the alkyl substituents contains from about 8 to about 18 carbon atoms and one contains an anionic water solubilizing group; and

(7) zwitterionic synthetic detergents which are derivatives of alkyl quaternary ammonium, phosphonium, and sulfonium compounds, in which one alkyl substituent contains from about 8 to about 18 carbon atoms and one contains an anionic water solubilizing group;

(B) from about 3% to about 12% water by weight of said synthetic detergent, [said water being present in addition to the water of hydration of item D below],

(C) from about 25% to about by weight of a sodium tripolyphosphate detergency builder in the form of anhydrous sodium tripolyphosphate [or a mixture of hydrated sodium tripolyphosphate, and anhydrous sodium tripolyphosphate],

(D) a hydration retarding agent uniformly distributed throughout the detergent tablet, which is responsible for the tablet having the desired solubility properties, said hydration retarding agent consisting of from about 0.1% to about 0.5% calcium oxide by weight of the anhydrous sodium tripolyphosphate detergency builder,

wherein the synthetic detergent and the sodium tripolyphosphate detergency builder used in preparing said tablet are of a particle size such that substantially all will pass a standard 6 mesh screen (Tyler) and at least about will remain on a standard mesh screen (Tyler).

2. The detergent tablet of claim 1 wherein the ratio of said sodium tripolyphosphate detergency builder to said synthetic detergent is from about 2:1 to about 9:1.

3. The detergent tablet of claim 1 wherein the synthetic detergent is sodium alkyl benzene sulfonate, having an alkyl chain with from about 9 to about 15 carbon atoms.

4. The detergent tablet of claim 1 in which the calcium oxide particle size, before being intermixed with the sodium tripolyphosphate, is from about 4 microns to about 40 microns.

5. The detergent tablet of claim 1, wherein the amount of calcium oxide is about 0.2% of the weight of said sodium tripolyphosphate.

References Cited UNITED STATES PATENTS 3,081,267 3/1963 Laskey 252138 X 3,247,122 4/1966 Schaafsma 252138 X FOREIGN PATENTS 64845 8/ 1964 Netherlands.

LEON D. ROSDOL, Primary Examiner.

S. D. SCHNEIDER, Assistant Examiner.

UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,383,321 May 14, 1968 Robert P. Davis et a1.

It is certified that error appears in the above identified patent and that said Letters Patent are hereby corrected as shown below:

Column 2, line 62, "forms" should read form Column 9, lines 51 and 52, "speed of dissolution", each occurrence, should read Speed of Dissolution Column 11, line 37,

"RRR R+O" should read RR RP+O Column 12, lines 8 and 9, cancel "[said water being present in addition to the water of hydration of item D be1ow]"; lines 12 to 14, cancel "[or a mixture of hydrated sodium tripolyphosphate, and anhydrous sodium tripolyphosphate]".

Signed and sealed this 27th day of January 1970.

(SEAL) Amam Edward M. Fletcher, Jr. WILLIAM E. SCHUYLER, JR.

Attesting Officer Commissioner of Patents

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3081267 *Dec 31, 1959Mar 12, 1963Procter & GambleDetergent tablet and process for making same
US3247122 *Jul 30, 1962Apr 19, 1966Colgate Palmolive CoDetergent tablet and process of preparing same
NL64845C * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4253842 *Jun 30, 1978Mar 3, 1981Colgate-Palmolive CompanyDetergents, builders, and adjuvants separately packaged
US4370250 *Dec 6, 1976Jan 25, 1983Colgate-Palmolive CompanyBeads of alkali metal phosphate, sodium silicate, and water
US4451386 *Sep 29, 1982May 29, 1984Colgate-Palmolive Company1a phosphates, 1a silicates; spray dried beads compressed into tablets
US4454054 *Jul 19, 1982Jun 12, 1984Hoechst AktiengesellschaftSpray drying sodium orthophosphate and a 2a or zinc compound
US5232620 *Feb 28, 1991Aug 3, 1993Fmc CorporationWetting the anhydrous granules obtained from heating the sodium orthophosphate with a quantity of water, drying to expel unbound water
US5552079 *Apr 27, 1995Sep 3, 1996Diversey CorporationTableted detergent, method of manufacture and use
US6472362 *Oct 9, 1998Oct 29, 2002Unilever Home & Personal Care Usa Division Of Conopco, Inc.Detergent compositions in tablet form
US6645931 *Jun 15, 2000Nov 11, 2003Kao CorporationSolid-shaped detergent
US7067469Sep 15, 2003Jun 27, 2006Kao Corporationa macro-air gap (hollowness) is used so that after the solid-shaped detergent is supplied in water, water enters into the inner portion of the solid-shaped detergent, whereby the dissolubility is increased
DE19937428A1 *Aug 7, 1999Feb 8, 2001Henkel KgaaReinigungs- und Waschmittelformkörper
EP0071021A2 *Jun 25, 1982Feb 9, 1983Hoechst AktiengesellschaftUse of sodium triphosphate for preparing washing compositions
Classifications
U.S. Classification510/298, 510/494, 510/469, 510/108, 510/439, 510/348, 510/356, 510/346, 510/351, 510/350
International ClassificationC11D3/06, C11D3/12, C11D17/00
Cooperative ClassificationC11D3/06, C11D3/062, C11D3/1213, C11D17/0073, C11D3/12
European ClassificationC11D17/00H8T, C11D3/12C, C11D3/12, C11D3/06B, C11D3/06