US3392865A - Filament-wound container - Google Patents

Filament-wound container Download PDF

Info

Publication number
US3392865A
US3392865A US505765A US50576565A US3392865A US 3392865 A US3392865 A US 3392865A US 505765 A US505765 A US 505765A US 50576565 A US50576565 A US 50576565A US 3392865 A US3392865 A US 3392865A
Authority
US
United States
Prior art keywords
foam
insulation
container
vacuum
liner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US505765A
Inventor
Hugh L Dryden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Aeronautics and Space Administration NASA
Original Assignee
Nasa Usa
Hugh L. Dryden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nasa Usa, Hugh L. Dryden filed Critical Nasa Usa
Priority to US505765A priority Critical patent/US3392865A/en
Priority to US669336A priority patent/US3535179A/en
Application granted granted Critical
Publication of US3392865A publication Critical patent/US3392865A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/001Thermal insulation specially adapted for cryogenic vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • B29C53/60Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels
    • B29C53/602Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels for tubular articles having closed or nearly closed ends, e.g. vessels, tanks, containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0308Radiation shield
    • F17C2203/032Multi-sheet layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0329Foam
    • F17C2203/0333Polyurethane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0391Thermal insulations by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0604Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/0665Synthetics in form of fibers or filaments radially wound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/0668Synthetics in form of fibers or filaments axially wound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2154Winding
    • F17C2209/2163Winding with a mandrel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/012Reducing weight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/035Dealing with losses of fluid
    • F17C2260/038Detecting leaked fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0186Applications for fluid transport or storage in the air or in space
    • F17C2270/0197Rockets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Description

y 1968 HUGH DRYDEN, DEPUTY ADMINISTRATOR O THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION FILAMENT-WOUND CONTAINER Filed Oct. 29, 1965 INVENTOR CLEM B. SHRIVER United States Patent 3,392,865 FILAMENT-WOUND CONTAINER Hugh L. Dryden, Deputy Administrator of the National Aeronautics and Space Administration, with respect to an invention of Clem B. Shriver, Clinton, Ohio Filed Oct. 29, 1965, Ser. No. 505,765 15 Claims. (Cl. 2209) ABSTRACT OF THE DISCLOSURE Insulation for a cryogenic storage tank in the form of foam that is encapsulated in a vacuum-tight casing. A bleeder ply is positioned between the foam and the vacuum jacket to provide a path for conducting gases from the casing.
Origin of the invention The invention described herein was made in the performance of work under a NASA contract and is subject to the provisions of Section 305 of the National Aeronautics and Space Act of 1958, Public Law 85-568 (72 Stat. 435; 42 U.S.C. 2457).
This invention is concerned with the fabrication of a lightweight reinforced plastic container having improved insulation. More particularly, the invention relates to a method of making an insulated filament-wound tank for storing cryogenic fluids.
The potential performance of liquid fueled rockets can be improved by reducing the 'weight of the propellant storage tanks. In the case of liquid hydrogen fueled rockets, the fuel storage tanks are much larger than containers for storing other liquids because of the low density of this propellant. Thus, the need for a lightweight tank structure for storing liquid hydrogen becomes evident, and filament-wound structures are desirable because of their weight reduction features.
A lightweight liquid propellant storage tank constructed in accordance with the present invention has a load carrying reinforced plastic shell constructed by filamentwinding. The structure further utilizes a thin impermeable liner inside the shell that is capable of containing liquid or gaseous hydrogen. An internal lightweight thermal protection system employing low density plastic foam encapsulated in a vacuum-tight casing is interposed between the shell and the liner.
Closed cell polyurethane foam is used in the thermal protection system, and when this type of foam is adhered to an impermeable vacuum jacket material interstitial gas trapped at the foam to jacket interface normally cannot be removed. In such a situation, detection of leaks in the vacuum jacket is difficult, and the inability to remove gases cryopumped into the foam can cause catastropic failures during warm-up.
The problem of detecting gas leakage through the vacuum jacket into the foam and the removal of gases has been solved by the present invention. In a thermal protection system constructed in accordance with the present invention a layer of dry cloth is incorporated at the foam to vacuum jacket interface which forms a bleeder ply to provide a gas conductance path to a pressure tap.
It is, therefore, an object of the present invention to provide an improved lightweight container for storing cryogenic fiuids having a reliable insulation system.
Another object of the invention is to provide a rocket propellant storage tank having a lightweight thermal protection system which employs a low density plastic foam that is encapsulated in a vacuum-tight casing in such a manner as to enable leaks to be detected while monitoring the pressure within the insulation.
ice
Still another object of the invention is to provide a thermal protection system for a lightweight plastic reinforced tank which utilizes a dry cloth bleeder ply located at the interface between a layer of closed cell plastic foam and a vacuum jacket to provide a gas conductance path thereby facilitating the rapid detection and vacuum pumping of small leaks in the vacuum jacket.
These and other objects and advantages of the invention will be apparent from the specification which follows and from the drawings wherein like numerals are used throughout to identify like parts.
In the drawings.
FIG. 1 shows a lightweight plastic container with parts broken away constructed in accordance with the present invention;
FIG. 2 is an enlarged section view taken along the line 2-2 in FIG. 1; and
FIG. 3 is an enlarged section view taken along the line 33 in FIG. 2.
Referring now to FIG. 1, there is shown a container 10 which has a cylindrical configuration with domed ends and embodies the features of the present invention. By way of illustrating the weight-saving feature of a tank constructed in accordance with the present invention, a container 10' having a diameter of 18 inches and an overall length of 36 inches with a design maximum test pressure of p.s.i. had a weight of 12.25 pounds. The container 10 includes an upper dome section 12, a central cylindrical section 14 and a lower dome section 16. A metal fill tube 18 extends through the upper dome section 12 to the interior of the container 10.
Referring to FIG. 2, the container 10 comprises three main components in juxtaposition. The first of these components is a filament-wound fiberglass shell 20 which forms the outer surface of the container 10. An insulation system 22 is positioned adjacent the shell 20, and an impermeable cryogenic liner 24 is located inside the shell.
The shell 20 is designed to effect a low shell strain at the design test pressure thereby reducing the accumulative thermal shrink and internal pressurization strains on the insulation system 22- and the liner 24. The aforementioned tank had a design test pressure of 100 p.s.i. The shell 20 is of a balanced design and comprises a full 360 longitudinal wrap of two layers of glass roving 26 and four layers of circumferentially wrapped glass roving 28.
The insulation system 22 is located on the inside of the filament-wound structural shell 20 for optimum efficiency. In this manner, the insulation is protected from damage during handling of the container 10 while providing a back-up liner assembly. However, it is contemplated that in certain installations it may be desirable to place the insulation outside the shell.
The insulation system 22 is constructed of closed cell foam 30 encased in a vacuum-tight cover including an outer jacket 32 and an inner jacket 34. The thickness of the foam is selected to insure ease in fabrication while the foam density is selected on the basis of load carrying capacity. By way of illustration, foam insulation having a thickness of 0.5 inch and a density of four pounds per cubic foot was used in the aforementioned tank.
The foam 30 provides a structural media for transmitting pressure loads to the external filament-wound structural shell 20 when the pressure inside the insulation 22 is reduced by cryopumping. The cryopumping phenomena which takes place within the foam 30 during storage of cryogenic liquids is beneficial to the performance of the insulation system 22. The reliability of the insulation system 22 depends on the vacuum jackets 32 and 34 remaining leak tight throughout the useful life of the container 10.
The impermeable liner 24 is located inside the insulation system 22 but is not attached to the inner jacket 34. The liner 24 comprises a laminated structure shown in FIG. 3 which had a thickness of 0.005 inch in the previously mentioned tank. This laminate includes a layer 36 of plastic film such as Mylar having a layer 38 of a thin metal foil such as aluminum laminated to both surfaces. This aluminum-Mylar-aluminum foil laminate is designated as AMA and was utilized for the liner 24 to facilitate bonding of various sections of the liner during fabrication.
The vacuum jackets 32 and 34 which form the vacuumtight cover around the foam 30 are identical with the impermeable liner 24 of AMA shown in FIG. 3. While an aluminum-Mylar-aluminum laminate, AMA, was used for the cryogenic liner and vacuum-tight casing which encap sulates the foam insulation in the previously described tank, it is contemplated other laminates comprising at least one layer of a plastic film and at least one layer of a thin metal foil may be used. For example, a Mylar-Aluminum- Mylar laminate, MAM, may be used where it is desirable to have the plastic film on the outer surface. In a preferred embodiment where the vacuum scaling is the prime consideration a Mylar-aluminum-aluminum-Mylar laminate, MAAM, should be used. Other factors to be taken into consideration in selecting the laminate are its ability to be formed and bonded. It may be desirable in certain applications to use thin metal foils other than aluminum.
An important feature of the present invention is the incorporation of a bleeder ply at the foam to vacuum jacket interface to provide a gas conductance path. As shown in FIG. 2, a layer of dry glass cloth 40 is provided between the foam 30 and the outer vacuum jacket 32. A similar dry glass cloth layer 42 is interposed between the foam 30 and the inner vacuum jacket 34.
Each layer of glass cloth 40 and 42 forms a bleeder ply which facilitates leak checking of the vacuum jacket and permits monitoring of the pressure within the insulation system 22 during performance testing of the container 10. This bleeder ply permits rapid detection and vacuum pumping of small leaks if they occur in the vacuum jackets 32 and 34 during tests.
The container is fabricated by constructing a winding mandrel 50 of polystyrene foam that is machined to match the inside contour of the container. The winding mandrel 50 shown in FIG. 1 is assembled on a hollow steel shaft 52 that is designed to transmit torque to the mandrel through a pair of blades that fold into the shaft. A steel bushing is provided to position the fill tube 18 on the shaft 52, and the mandrel 50 is designed to be removed from the container by dissolving and washing out with safety solvents.
The first portion of the container 10 to be fabricated is the cryogenic liner 24 which comprises three separate components; a dome 54 on each end and a cylindrical center section 56. Fabrication of the liner 24 begins with spin forming the dome shells 54. While spin forming was chosen for economic reasons in fabricating a single tank, it is contemplated that other techniques suitable for forming aluminum, such as vacuum forming, will be used where a larger number of containers are required.
Each shell is formed from a laminate of the type shown in FIG. 3 having a thickness of 0.005 inch that is first sandwiched between two 0.050 inch thick aluminum sheets and then spun to the desired dome shape. After spinning, the heavier aluminum sheets are carefully removed leaving a spun AMA dome 54.
The assembly of the cryogenic liner 24 over the foam mandrel 50 begins with the installation of that portion of the insulation system 22 at the upper dome 12 of the container 10 on the mandrel 50. The dome 54 of the cryogenic liner 24 for the upper dome 12 is bonded to a flange on the fill tube 18 to become a part of the top insulation dome assembly in a manner which will be described later. The bottom AMA dome is then assembled on the mandrel 50, and a single sheet of pre-stretched 0.0024 inch thick AMA is wrapped over the mandrel to form the central cylindrical section 56. This AMA sheet is bonded with a lap joint seam 58 at the base of each dome 54 and with a single longitudinal lap joint seam 60. Doubler strips of 0.0017 inch AMA are bonded to the seams 58 and 60 to complete the cryogenic liner assembly. Leak tightness of the liner assembly is verified by mass spectrometer helium leak detector techniques.
After the cryogenic liner 24 has been assembled on the mandrel 50 the insulation system 22 is then assembled. The insulation system 22 is divided into three components to facilitate its fabrication. These components are similar to those of the cryogenic liner 24 and include a top dome section 62, a cylindrical center section 64 and a bottom insulation dome section 66. To provide dome end sections 62 and 66 having a minimum of seams in the vacuumtight covers, the jackets 32 and 34 of these dome sections are fabricated as one-piece shells in the same manner as the dome sections 54 of the cryogenic liner 24.
Fabrication of the upper insulation dome section 62 utilizes a foam-in-place technique wherein inner and outer spun vacuum jackets 32 and 34 of the previously described AMA material are placed in contact with mating halves of a foaming mold. The fill tube 18 is secured to the outer vacuum jackets 32, and a dry bleeder ply of glass cloth 40 is bonded to the inner surface of this vacuum jacket. The glass cloth to vacuum jacket bond is made with a thin film of pigmented polyamide epoxy resin painted on the surface of the aluminum foil 38 and allowed to reach a tacky state before applying the glass cloth layer 40. This procedure provides an excellent bond with a minimum resin migration into the bleeder cloth.
The foam-in-place process employs liquid resins which ordinarily would impregnate the dry cloth 40 that is placed against the outer vacuum jacket 32 before the foam resin is poured. Resin or foam impregnation would seriously hamper the effectiveness of the bleeder ply 40. To prevent this undesirable foaming resin impregnation and to provide good adhesion between the bleeder cloth 40 and the foam 30 a sprayed in place cocoon is utilized as a barrier media. The cocoon application relies on a polyester resin formulated to be air gun sprayed so that a tacky spider web 67 of resin is applied upon the glass cloth bleeder 40 to build up a thick cocoon-like skin that is impervious to the foaming resin. The tacky spider web of resin adheres to but does not permeate the glass cloth 40. This barrier film 67 of polyester resin is sprayed over the entire inner surface of the glass cloth 40 and is oven dried to form the skin.
A similar glass bleeder ply 42 is secured in a like manner to the inner vacuum jacket 34, and a resin barrier film 69 is applied to the glass cloth in the same manner. The inner vacuum jacket 34 is bonded to fill tube 18, and the proper spacing between the vacuum jackets 32 and 34 is coritrolled by a plug positioned in the foaming mold. This spacing was maintained at 0.5 inch for aforementioned tank, and foam resin is poured into the space between the vacuum jackets 32 and 34.
The foam begins to rise as soon as it is poured into the mold, and this foam is allowed to reach an initial cure in 30 minutes at room temperature followed by an oven post cure at for 8 hours. The excess foam is trimmed away, and the foaming mold is opened. Final trimming is achieved by sanding the foam and the AMA jackets to a predetermined trim line. The dome is then removed from the mold, and a formed AMA channel with attendant doubler strips is bonded to the base of the dome section 62. The channel povides a gas conductance path between the inner and outer bleeder plies which enables the dome to be tested for leaks before final assembly on the mandrel 50.
The bottom insulation dome section 66 is fabricated in the manner similar to the top insulation dome section 62. However, no fill tube is used with the bottom dome section 66.
The center cylindrical section 64 of the insulation system 22 is constructed from a polyurethane foam cylinder having an outside diameter machined to a 0.50 inch wall thickness from a 3-inch wall thick cylinder created by the foam-in-place technique. The heavy wall thicknesses are utilized to achieve the uniform foam density throughout the cylinder 64. This heavy walled cylinder is foamed between a Teflon coated mandrel and a cylindrical sheet metal'shroud centered about the Teflon coated mandrel with approximately 3-inch radial clearance being provided.
Prior to foaming, the Teflon coated mandrel is first wrapped with four plies of glass cloth having a release agent sprayed over each layer. The purpose of these plies is to provide a bleeder for removing foam gases that would otherwise be trapped on the inside surface of the foam cylinder. A fifth layer of finer cloth is then applied over the aforementioned four plies of glass cloth to retard foam resin migration into the bleeder.
After foaming and while still on the Teflon coated mandrel, the heavy wall foam cylinder is machined to the 0.50 inch wall thickness. The outside surface of the foam cylinder is then covered with a layer 40 of glass cloth to form a bleeder ply, and the outer vacuum jacket 32 of prestretched 0.0024 inch AMA is applied.
The foam cylinder is removed from the Teflon coated mandrel, and the four plies of glass cloth are peeled away from its inner surface. The layer of fine cloth reinforces the inner surface of the foam to prevent foam tearout when these four plies are peeled out.
The inside surface of the foam cylinder likewise has a layer of glass cloth 34 bonded to the foam 30, and the vacuum jacket 34 is applied to this glass cloth. The cylindrical section 64 is then trimmed to length, and a channel with a doubler strip is bonded to each end. The cylindrical section 64 is then leak tested with the inner and outer bleeder plies in gaseous communication through the end channels.
As stated earlier, the top dome section 62 of the insulation system 22 is mounted on the mandrel 50 at the same time as the top dome 54 of the cryogenic liner 24 because all of the AMA material of both the insulation 22 and the liner 24 is bonded to the fill tube 18 thereby forming a single unit. To complete the assembly of the insulation 22 over the mandrel 50 and the cryogenic liner 24, the center cylindrical section 64 of the insulation system 22 is slipped onto the mandrel 50 and positioned against the previously assembled upper dome section 62 to form a butt joint 68. The bottom insulation dome section 66 is then placed on the mandrel 50 and pushed in place against the cylindrical center section 64 to form a butt joint 70. Circumferential spliced strips of AMA laminate and AMA doubler strips are bonded to the butt joints 68 and 70 between the insulation components.
In order to interconnect the bleeder ply 40 of each insulation component 62, '64 and 66, a plurality of bleeder patches 72 and 74 are added at each butt joint 68 and 70. Each bleeder patch 72 and 74 comprises a glass cloth strip overlapping holes in the outer vacuum jacket 32, and an AMA cover fly is applied over the glass cloth. These holes were used to leak test the domes and cylindrical section. A large AMA doubler strip is then bonded over each patch 72 and 74. With the addition of the bleeder patches 72 and 74, the entire insulation bleeder ply system has an interconnected gas conductance path which is vented to a pressure tap 76 permanently installed in the bottom insulation dome 66.
Utilizing the pressure tap 76, the completed insulation assembly 22 is leak tested. A helium leak detector is connected to the pressure tap 76, and the entire insulation assembly 22 is evacuated through the bottom dome insulation assembly 66 by way of the bleeder patches 72 and 74. Helium gas is sprayed over the exterior surface of the insulation 22, and a leak detector monitors for indication of helium pick-up.
The mandrel 50 and the insulation assembly 22 is then mounted in a turret type filament Winding machine. The exterior surface of the entire insulation 22 is cleaned to insure adequate adhesion of the filament-wound glass roving 26. The surface is primed with a resin which is allowed to reach tacky 'state before the wrapping is started.
To apply longitudinal wrap, the mandrel 50 is tilted to the wrap angle and'then revolved past a fixed distributor head guiding wet resin impregnated glass roving 26. At the same time, the mandrel precesses about its axis to a precise indexing for a uniform distribution of the glass roving 26 over the surface of the insulation. The longitudinal wrap is one complete 360 covering which has two layers of glass roving 26.
The application of the circumferential wrap rovings 28 follows the longitudinal Wrapping. In this operation, the mandrel axis is horizontal, and the mandrel 50 is rotated at a rate synchronized to the lateral movement of the roving distributor head to provide precise indexing for uniform wrap of wet resin impregnated glass roving 28 onto the longitudinally wrapped roving 26. The complete circumferential wrap is four layers of glass roving's 28 applied on the cylindrical section 14 of the tank 10.
The resin which impregnates the rovings 26 and 28 is partially cured with the mandrel 50 rotating. The filament-wound structural shell 20 is then completely cured at a long-term low temperature post cure cycle that is not detrimental to the foam insulation 30. If desired, a roving preimpregnated with a dry resin can be used with a long cure.
After curing the filament-wound outer shell 20, the polystyrene foam mandrel 50 is completely removed. This is accomplished by withdrawing the blades into the shaft 52 and pouring a solvent, such as trichlorethane, into the shaft to soften the adjacent portion of the foam. The shaft 52 is carefully withdrawn from the mandrel 50 and the fill tube 18.
Additionally solvent is poured into the fill tube 18, and the tank 10 is slowly rotated to distribute the solvent in the mandrel 50. The solvent is then removed, and the operation is then repeated until all foam is dissolved. The inside of the container 10 is finally rinsed.
While a preferred form of the invention has been described, it will be appreciated that various modifications may be made without departing from the spirit of the invention or the scope of the subjoined claims. For example, the ends 54 of the cryogenic liner 24 and the vacuum jackets 32 and 34 in the ends 62 and 66 of the insulation system 22 have dome-shaped configurations which are formed as single components. Each of these components may be formed in several sections and joined together for other configurations.
What is claimed is:
1. A container for storing cryogenic fluids comprising a load carrying shell surrounding the cryogenic fluids,
closed cell plastic foam covering a surface of said shell for insulating the cryogenic fluids,
a vacuum-tight casing encapsulating said foam to prevent the cryopumping of gases thereinto, said casing comprising a first vacuum jacket secured to the surface of said foam which faces said shell,
a second vacuum jacket secured to the surface of said foam which faces away from said shell, and
a first bleeder ply positioned between said foam and said first vacuum jacket,
a second bleeder ply positioned between said foam and said second vacuum jacket to provide a gas conductance path thereby enabling gases to be removed from said casing, and
an impermeable liner disposed in overlying relation to the second vacuum jacket for containing the cryogenic fluids within said load carrying shell.
2. A container as claimed in claim 1 wherein the impermeable liner comprises a laminate of at least one layer of plastic film and at least one layer of a thin metal foil.
3. A container as claimed in claim 1 wherein the closed cell plastic foam is polyurethane.
4. A container as claimed in claim 1 wherein each of the first and second vacuum jackets comprises a laminate of at least one layer of plastic film and at least one layer of a thin metal foil.
5. A container as claimed in claim 1 including a coating on the bleeder ply to prevent impregnation thereof by the foam.
6. A container as claimed in claim 1 wherein the bleeder ply comprises a layer of dry cloth.
7. A container as claimed in claim 1 wherein the load carrying shell comprises filaments wound about the foam.
8. A container as claimed in claim 7 wherein the filaments are wound both longitudinally and circumferentially about the foam.
9. A container as claimed in claim 1 wherein the closed cell plastic foam is positioned between the shell and the liner.
10. A container as claimed in claim 1 wherein the load carrying shell is positioned between the liner and the plastic foam.
11. An insulation system for a cryogenic storage tank of the type having an impervious liner for containing cryogenic fluid and a load carrying shell surrounding said liner, the improvement comprising a closed cell plastic foam insulation interposed between said liner and said shell,
a vacuum-tight casing capsulating said plastic foam,
a bleeder ply interposed between each surface of the foam and the casing to provide a gas conductance path thereby enabling entrapped gases to be removed,
means for bonding said bleeder ply to the foam and the casing, and
means for evacuating said vacuum-tight casing.
12. An insulation system for a cryogenic storage tank as claimed in claim 11 wherein the bleeder ply comprises at least one layer of dry cloth.
13. An insulation system for a cryogenic storage tank as claimed in claim 11 wherein the bleeder ply comprises at least one layer of glass cloth.
14. An insulation system as claimed in claim 11 including means for retarding foam resin migration into the bleeder ply.
15. An insulation system as claimed in claim 11 wherein the means for bonding the bleeder ply is a resin.
References Cited UNITED STATES PATENTS 2,000,882 5/1935 Comstock 2209 2,728,702 12/1955 Simon et al. 2209 2,863,179 12/1958 Gaugler 220-9 3,047,191 7/1962 Young 2203 FOREIGN PATENTS 796,450 6/1958 Great Britain. 628,313 10/1961 Canada.
THERON E. CONDON, Primary Examiner.
JAMES R. GARRETT, Examiner.
US505765A 1965-10-29 1965-10-29 Filament-wound container Expired - Lifetime US3392865A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US505765A US3392865A (en) 1965-10-29 1965-10-29 Filament-wound container
US669336A US3535179A (en) 1965-10-29 1967-08-11 Method of making a filament-wound container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US505765A US3392865A (en) 1965-10-29 1965-10-29 Filament-wound container
US66933667A 1967-08-11 1967-08-11

Publications (1)

Publication Number Publication Date
US3392865A true US3392865A (en) 1968-07-16

Family

ID=27055239

Family Applications (2)

Application Number Title Priority Date Filing Date
US505765A Expired - Lifetime US3392865A (en) 1965-10-29 1965-10-29 Filament-wound container
US669336A Expired - Lifetime US3535179A (en) 1965-10-29 1967-08-11 Method of making a filament-wound container

Family Applications After (1)

Application Number Title Priority Date Filing Date
US669336A Expired - Lifetime US3535179A (en) 1965-10-29 1967-08-11 Method of making a filament-wound container

Country Status (1)

Country Link
US (2) US3392865A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3508677A (en) * 1968-08-20 1970-04-28 Whittaker Corp Vessel for storing high-pressure gases
US4579617A (en) * 1983-06-27 1986-04-01 Dynatrans Technology, Ltd. Method of manufacturing tanks, containers, pipes, etc.
US4660738A (en) * 1985-03-25 1987-04-28 Ives Frank E Leak-resistant fiberglass tank and method of making the same
US4773952A (en) * 1987-08-03 1988-09-27 Biomagnetic Technologies, Inc. Nonmetallic cylindrical cryogenic container
US4933040A (en) * 1987-08-03 1990-06-12 Biomagnetic Technologies, Inc. Hollow article formed of composite material
US5308423A (en) * 1990-07-16 1994-05-03 Theresa M. Kauffman Method of making multi-walled pipes and storage tanks for toxic and corrosive fluids
US5346570A (en) * 1992-07-30 1994-09-13 Biomagnetic Technologies, Inc. Cryogenic dewar and method of fabrication
US5368670A (en) * 1990-07-16 1994-11-29 Theresa M. Kauffman Method of making multi-walled pipes and storage tanks for toxic and corrosive fluids
US20060169704A1 (en) * 2003-02-18 2006-08-03 Klaus Brunnhofer Double-walled container for cryogenic liquids
US20070012551A1 (en) * 2005-07-13 2007-01-18 Thorsten Rohwer Hydrogen pressure tank
US20100187237A1 (en) * 2008-09-23 2010-07-29 Alec Nelson Brooks Cryogenic Liquid Tank
CN111219598A (en) * 2020-01-07 2020-06-02 浙江大学 Vacuum degree detection method and device for vacuum heat-insulation storage tank
DE102021110452A1 (en) 2021-04-23 2022-10-27 Airbus Operations Gmbh Fluid cryogenic pressure vessels and aircraft

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1585470A (en) * 1976-10-26 1981-03-04 Ici Ltd Foam-backed product
WO1986007574A1 (en) * 1985-06-17 1986-12-31 Sharp Bruce R Storage tanks having formed jacket for secondary containment
US5151145A (en) * 1985-12-20 1992-09-29 Cederberg Alvin R Liner/mandrel for filament wound vessels
IT1196772B (en) * 1986-10-24 1988-11-25 Siai Marchetti Spa METHOD FOR THE PRODUCTION OF COMPOSITE SYNTHETIC MATERIAL DUCTS FOR AIRCRAFT AIR INTAKES
FR2641305B1 (en) * 1988-12-29 1993-07-02 Technigaz Ste Nle THERMALLY INSULATING WATERPROOF STRUCTURE OF DRY ENCLOSURE INTERNAL WALL
US5150812A (en) * 1990-07-05 1992-09-29 Hoechst Celanese Corporation Pressurized and/or cryogenic gas containers and conduits made with a gas impermeable polymer
EP1010513A3 (en) * 1998-12-15 2001-02-28 United Technologies Corporation Foam mandrel for a filament wound composite casing
US6708502B1 (en) * 2002-09-27 2004-03-23 The Regents Of The University Of California Lightweight cryogenic-compatible pressure vessels for vehicular fuel storage
US20100213198A1 (en) * 2008-04-18 2010-08-26 Ferus Inc. Composite structure vessel and transportation system for liquefied gases
WO2009129530A1 (en) * 2008-04-18 2009-10-22 Ferus Inc. Composite structure vessel and transportation system for liquefied gases
US20090283176A1 (en) * 2008-05-16 2009-11-19 Berry Gene D Cryogenic Capable High Pressure Containers for Compact Storage of Hydrogen Onboard Vehicles
GB0905538D0 (en) * 2009-03-31 2009-05-13 Cobra Uk Automotive Products D Aircraft seat
US8511504B2 (en) * 2011-03-21 2013-08-20 Hamilton Sundstrand Corporation Demisable fuel supply system
US8534489B2 (en) * 2011-03-21 2013-09-17 Hamilton Sundstrand Space Systems International, Inc. Demisable fuel supply system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2000882A (en) * 1928-09-07 1935-05-07 Stator Refrigeration Inc Insulating housing
US2728702A (en) * 1951-07-13 1955-12-27 Lockheed Aircraft Corp Composite cellular plastic structure
GB796450A (en) * 1956-03-23 1958-06-11 British Oxygen Co Ltd Apparatus for the storage of liquefied gases
US2863179A (en) * 1955-06-23 1958-12-09 Gen Motors Corp Refrigerating apparatus
CA628313A (en) * 1961-10-03 Hoppe Peter Compound structures and process for the manufacture thereof
US3047191A (en) * 1957-11-26 1962-07-31 Hercules Powder Co Ltd Filament wound vessels and methods for forming same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2639252A (en) * 1949-02-17 1953-05-19 Lockheed Aircraft Corp Method of making housing for electrical apparatus
US2642920A (en) * 1950-10-04 1953-06-23 Lockheed Aircraft Corp Housing for electrical apparatus
US2802766A (en) * 1954-02-11 1957-08-13 Roy F Leverenz Method of manufacturing a laminated article
US3196735A (en) * 1962-06-12 1965-07-27 John E Baldwin Method of casting a foam-cored rocket propellant grain
US3372075A (en) * 1964-03-06 1968-03-05 Amercoat Corp Method of making an insulated storage tank
US3286004A (en) * 1964-04-30 1966-11-15 Gen Electric Method of manufacturing a foam plastic article
US3239092A (en) * 1964-06-04 1966-03-08 Whittaker Corp Pressure vessel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA628313A (en) * 1961-10-03 Hoppe Peter Compound structures and process for the manufacture thereof
US2000882A (en) * 1928-09-07 1935-05-07 Stator Refrigeration Inc Insulating housing
US2728702A (en) * 1951-07-13 1955-12-27 Lockheed Aircraft Corp Composite cellular plastic structure
US2863179A (en) * 1955-06-23 1958-12-09 Gen Motors Corp Refrigerating apparatus
GB796450A (en) * 1956-03-23 1958-06-11 British Oxygen Co Ltd Apparatus for the storage of liquefied gases
US3047191A (en) * 1957-11-26 1962-07-31 Hercules Powder Co Ltd Filament wound vessels and methods for forming same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3508677A (en) * 1968-08-20 1970-04-28 Whittaker Corp Vessel for storing high-pressure gases
US4579617A (en) * 1983-06-27 1986-04-01 Dynatrans Technology, Ltd. Method of manufacturing tanks, containers, pipes, etc.
US4660738A (en) * 1985-03-25 1987-04-28 Ives Frank E Leak-resistant fiberglass tank and method of making the same
US4773952A (en) * 1987-08-03 1988-09-27 Biomagnetic Technologies, Inc. Nonmetallic cylindrical cryogenic container
US4933040A (en) * 1987-08-03 1990-06-12 Biomagnetic Technologies, Inc. Hollow article formed of composite material
US5308423A (en) * 1990-07-16 1994-05-03 Theresa M. Kauffman Method of making multi-walled pipes and storage tanks for toxic and corrosive fluids
US5368670A (en) * 1990-07-16 1994-11-29 Theresa M. Kauffman Method of making multi-walled pipes and storage tanks for toxic and corrosive fluids
US5346570A (en) * 1992-07-30 1994-09-13 Biomagnetic Technologies, Inc. Cryogenic dewar and method of fabrication
US20060169704A1 (en) * 2003-02-18 2006-08-03 Klaus Brunnhofer Double-walled container for cryogenic liquids
US7743940B2 (en) 2003-02-18 2010-06-29 Magna Steyr Fahrezeugtechnik AG & Co. KG Double-walled container having supports for positioning the inner and outer walls
US7731051B2 (en) * 2005-07-13 2010-06-08 Gm Global Technology Operations, Inc. Hydrogen pressure tank including an inner liner with an outer annular flange
US20070012551A1 (en) * 2005-07-13 2007-01-18 Thorsten Rohwer Hydrogen pressure tank
US20100187237A1 (en) * 2008-09-23 2010-07-29 Alec Nelson Brooks Cryogenic Liquid Tank
US8960482B2 (en) 2008-09-23 2015-02-24 Aerovironment Inc. Cryogenic liquid tank
US9829155B2 (en) 2008-09-23 2017-11-28 Aerovironment, Inc. Cryogenic liquid tank
US10584828B2 (en) 2008-09-23 2020-03-10 Aerovironment, Inc. Cryogenic liquid tank
US11346501B2 (en) 2008-09-23 2022-05-31 Aerovironment, Inc. Cryogenic liquid tank
CN111219598A (en) * 2020-01-07 2020-06-02 浙江大学 Vacuum degree detection method and device for vacuum heat-insulation storage tank
CN111219598B (en) * 2020-01-07 2021-06-01 浙江大学 Vacuum degree detection method and device for vacuum heat-insulation storage tank
DE102021110452A1 (en) 2021-04-23 2022-10-27 Airbus Operations Gmbh Fluid cryogenic pressure vessels and aircraft

Also Published As

Publication number Publication date
US3535179A (en) 1970-10-20

Similar Documents

Publication Publication Date Title
US3392865A (en) Filament-wound container
US3508677A (en) Vessel for storing high-pressure gases
US4584041A (en) Method of making a containment vessel
US4216803A (en) Self-sealing fuel lines
US5348603A (en) Composite/metal hybrid rocket motor case and methods for manufacturing
US6953129B2 (en) Pressure vessel with impact and fire resistant coating and method of making same
US8074826B2 (en) Damage and leakage barrier in all-composite pressure vessels and storage tanks
US6193917B1 (en) Method of making a composite tank
US5057071A (en) Hybrid centrifuge rotor
JP7026170B2 (en) Tank and method
US11859765B2 (en) Storage tank for liquid hydrogen
US5202165A (en) Vessel construction
US3321159A (en) Techniques for insulating cryogenic fuel containers
US3392864A (en) Insulation system
Shriver Method of making a filament-wound container Patent
US3562085A (en) Filament tape winding
KR101434150B1 (en) Cryogenic liquid storage tank with composite material reinforcement, composite material reinforcement and fabrication method of composite material reinforcement
US11873947B2 (en) High pressure composite pressure vessel method of manufacture and product
Heidelberg Evaluation of a subscale internally insulated fiber-glass propellant tank for liquid hydrogen
Frischmuth Jr Investigation of thin films as floating liners for fiber-glass cryogenic propellant tanks
US20230347607A1 (en) Method for manufacturing a vessel and a double-wall tank
Frischmuth Experimental Investigation of Glass Flakes as a Liner for Fiber-glass Cryogenic Propellant Tanks
PERKINS, JR et al. A lightweight insulation system for liquid hydrogen tanks of boost vehicles (Fiberglass constrictive-wrapped hermetically sealed foam insulation system for liquid hydrogen tanks of rocket boosters)
Pope et al. Testing of polymeric materials for use in multiple-ply expulsion bladders for cryogenic liquids.
JP2023164415A (en) Method for manufacturing vessel and double-wall tank