Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3400008 A
Publication typeGrant
Publication dateSep 3, 1968
Filing dateJun 30, 1964
Priority dateJun 30, 1964
Publication numberUS 3400008 A, US 3400008A, US-A-3400008, US3400008 A, US3400008A
InventorsMerrill Bleyle, Mitchell Jr Charles T
Original AssigneeGrace W R & Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Paper article coated with a novel slip composition
US 3400008 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

P 1968 M. BLEYLE ETAL 3,400,008

PAPER ARTICLE COATED WITH A NOVEL SLIP COMPOSITION Filed June 30, 1964 United States Patent 3,400,008 PAPER ARTICLE COATED WITH A NOVEL SLIP COMPOSITION Merrill Bleyle, Waltham, and Charles T. Mitchell, In, North Reading, Mass., assignors to W. R. Grace & Co., Cambridge, Mass., a corporation of Connecticut Filed June 30, 1964, Ser. No. 379,384 7 Claims. (Cl. 117-76) ABSTRACT OF THE DISCLOSURE A paper article coated with a film of vinylidene chloride polymer and having as a slip coating superimposed on the vinylidene chloride polymer coating a dried film of an emulsion of paraffin wax, sodium alkyl sulfate, e.g., sodium lauryl sulfate and an aqueous solution of a binder polymer, e.-g., styrene maleic anhydride. The slip coating may further contain polyethylene.

This invention relates to a composition suitable for use as a slip agent in the preparation of spiral-wound tubular paper cans.

Spiral-wound tubular paper cans have been adapted for packaging a number of materials. The spiral-wound tubes are made on a spiral winder. In brief, this machine consists of a stationary round steel mondrel over one end of which is looped an endless belt, while the other end has a traveling saw. The raw paper stock, i.e., flexible paperboard or paper of the type used in manufacturing paper cans, is slit into narrow rolls which are fed into the winder from either side.

Each web of paper passes over a glue roll and from there around the mandrel and under the endless belt at an angle of 45 to 60. The pressure of the moving belt causes the formed tube to rotate on the mandrel, thus drawing in more material and causing the formed tube to move forward in a helical motion along the mandrel. The continuous spiral tube may be cut to size on the winder or as a separate operation. The cut tubes are then placed in a press and the ends of the tube are flared to receive the can end.

Paper cans are normally provided with a foil lining or a film or coating of a material which bars moisture penetration. Representative of the moisture barriers are coatings formed from vinylidene chloride polymers. These coatings, and moisture barrier materials in general, suffer from a lack of slip, i.e., the film-to-metal coefiicient of friction is high. This'is a serious handicap in the formation of paper cans because it results in jamming of automatic machinery and difiiculty in removing the tubes from the mandrel.

In actual operation, for example, the webs of paper are provided with the vinylidene chloride polymer coating. The coated webs are fed into the belt loop and wrapped around the mandrel. This action produces'a great deal of frictional heat and galling, i.e., wearing away by friction, of the coating. The mandrel, if uncooled, will heat up to 200 F. and the coating will adhere to the mandrel causing a shutdown and requiring cleaning and rethreading. The water cooled mandrel offers a slight improvement in that the temperature can be kept below 150 F., but galling still occurs. The desired winding speed of 300 to 1000 feet per minute requires a slip coat of some type even on foil lined cans.

Various agents of different types have been proposed for use as slip agents, but most of the materials of the prior art have had one or more defects which detract from their usefulness on a practical commercial scale. They may not impart the desired slip; they may be effective only in relatively large amounts so that use thereof increases the manufacturing cost of the cans too greatly; they may fail to give good slip at the higher temperatures to which the tube is subjected when it is exposed to heat developed by friction on the mandrel; or they may not have the hardness necessary to protect the barrier material from galling.

Specifically, One of the methods used to reduce the friction between a steel mandrel and a vinylidene chloride polymer coated paper web was to apply a lubricant to the coating as the coated web was wound on the mandrel. Various water solutions and oils were applied, but these materials built up on the mandrel and resulted in streaks, galling, and oversized can bodies. Another method was to top coat the vinylidene chloride polymer coating with a slippery material such as wax, oil, soap, and curing silicones. Many of the old additives, floor waxes buffed and unpolished, metal stearate soaps, and silicone oils were found to increase the friction as measured by the angle indicative of the coefficient of friction.

The angle indicative of the coefiicient of friction was measured in the following manner. A steel block weight was used which was 1.9 inches in height, 2 inches in width, and 4 inches in length, having at each end of the bottom a step 1 inch in length, 2 inches in width, and 0.25 inch in height, which was the surface in contact with the slip coated sheet being tested. The weight of the block was 4 pounds or 1 pound per square inch in the horizontal position. The slip composition was coated on kraft paper or similar type of paper and dried. The coated paper was attached to a smooth wooden board with Scotch tape with the uncoated side of the paper adjacent to the wooden board. The weight was placed on the coated surface of the paper, and the board was slowly tilted until slippage occurred. This angle was recorded as an indication of the static coefficient of friction.

In measuring the angle indicative of the kinetic coefficient of friction, the board was raised to a predetermined angle and the weight was then placed on the coated 'sur face of the paper, and the weight was observed to see if slip occurred. The angle of the board was then changed in the proper direction, and the weight again was placed on the coated surface. The angle at which the weight slipped was reported as an indication of the kinetic coefficient of friction.

It is a principal object of the present invention to provide a composition for use as a slip agent in the preparation of spiral-wound paper cans which overcomes the defects of the slip agents of the prior art. The slip agent composition of the instant invention is capable of forming extremely thin, smooth, and abrasive-resistant films.

The novel composition of the present invention comprises emulsion of parafiin wax, a sodium alkyl sulfate wherein the alkyl group is a C to C alkyl group, and an aqueous solution of a binder polymer.

While the above-described composition provides superior slip characteristics, it has been found that a still greater degree of slip can be provided by incorporating a polyethylene emulsion into the composition. Still more preferable is an emulsion of oxidized polyethylene.

The slip composition of the present invention is formulated as a homogeneous mixture to give a total solids content of between about 2 percent and 20 percent.

The solids are composed of about 5 to 35 percent by weight of parafiin wax, about 3 to 30 percent by weight of sodium alkyl sulfate, and between about 35.0 to 70 percent by weight of the binder polymer. In a preferred embodiment the composition comprises between 1.0 and 40 percent of polyethylene, more preferably oxidized polyethylene.

A composition having a solids content about 22.5 percent of oxidized polyethylene, 18.0 percent of paraffin wax, about 14.5 percent of the sodium alkyl sulfate, and about 45.0 percent of the binder polymer is particularly effective in providing a film with good slip characteristics.

The sodium alkyl sulfate has the general formula ROSO Na wherein R is the C to C alkyl radical such as capric, lauric, myristic, palmitic and stearic. Preferably, the alkyl group contains 10 to 18 carbon atoms. This component acts as a stabilizer and contributes to the formation of smooth continuous films. In this respect sodium lauryl sulfate is particularly preferred.

The binder polymer may be any polymer which is compatible with the other components of the instant composition and acts to bind them in forming a thin smooth clear film. It must also be capable of forming an aqueous solution. Representative binder polymers include polyvinyl alcohol, casein, carboxymethylcellulose, copolymers of an organic acid and styrene, and natural gums such as karaya gum and gum arabic. An ammonia solution of maleic anhydride-styrene copolymer (Lytron 820, Stymalon 1000A) is particularly eifective as a binder in forming smooth films with improved hardness.

Oxidized polyethylene may be prepared in a number of ways, several of which are disclosed in Great Britain Patent No. 581,279 to Whittaker et al. One method comprises heating the molten polymer on mixing rolls which permit good contact of the polymer with air in a temperature range of 140 to 250 C. for several hours. The oxidized polyethylene operable in the instant invention has a softening point of at least 110 C. and a melt index in the range of about 300 to about 5000. These oxidized polyethylenes can be emulsified by conventional methods and are commercially available in emulsion form.

The paraffin wax of the present invention should have a melting point of at least about 48 C. This wax can be emulsified by conventional methods and is commercially available in emulsion form.

The components of the instant composition may be mixed at room temperature and atmospheric pressure. To form a particularly smooth uniform blend of the components, an aqueous solution of the binder polymer is first formed. If the composition is to contain polyethylene emulsion, it is then mixed with the binder polymer solution until a uniform dispersion is produced. In a separate step, the emulsion of wax is thoroughly mixed with the sodium alkyl sulfate. The resulting wax-sodium sulfate mixture is mixed with the dispersion until a smooth homogeneous blend of the composition is produced. Water is then added to the composition to form the final composition with the desired solids content.

The viscosity of the resulting slip composition is dependent upon the solids content and may be varied over a relatively wide range. The particular viscosity used is determined to some extent by the method of application, but in general the lowest possible viscosity is preferred.

The method or means of depositing a coating of the slip agent on the substrate is not critical. Any type of coating mechanism or device which is capable of depositing a uniform amount in the desired thickness to the substrate may be employed. Special types which may be used include air knife coater, horizontal and vertical size presses, trailing blade, transfer roll, reverse roll, roller coater, gravure, bead coat, metering bar, spray coater and curtain coater. Deposition may be carried out in one or a number of applications, and the amount deposited is such as to provide a dry weight coating ranging between about 0.1 to 1.0 pound per 3000 square feet of paper. Dry weight coatings greater than 1.0 pound per 3000 square feet of paper do not provide improved slip characteristics to any greater degree and any amounts in excess of that amount are merely wasteful. Dry weight coatings ranging from 0.2 to 0.5 pound per 3000 square feet of paper are particularly satisfactory.

The slip-coated substrate is then dried either in air or a suitable drying apparatus. Air-drying can be accomplished in less than 10 minutes while oven-drying can be effected within 10 to 30 seconds at an oven temperature of to 130 C. The dried slip coating is odorless, clear and very glossy, and exhibits no separation between it and the substrate. The degree of adhesion is measured by the pressure-sensitive tape test in which a strip of tape is applied with the fingers to the dried slip coating and then rapidly pulled off. When subjected to this test, the slip coatings of this invention remain intact, indicating excellent adhesive properties.

Although film formation of the slip composition will take place by drying for about 8 minutes at room temperature, true coalescence requires somewhat higher temperatures. Excellent films are obtained by fusing the dried coatings for about 10 to 20 seconds at an oven temperature of C.

For a better understanding of the process of the present invention, reference is made to the accompanying figure, which is an enlarged fragmentary cross-sectional elevational view illustrating a coated paper product of the present invention showing a paper or paperboard substrate 3, vinylidene chloride polymer film 2, and the dried slip coating composition of the invention 1 deposited on the polymer film.

Proportions used here and elsewhere herein refer to parts by weight. In the following examples the coefficient of friction was determined according to ASTM D1894- 61T, Procedure B, except that a weight of 4.4 pounds was used.

EXAMPLE 1 A vinylidene chloride copolymer emulsion (Daran 210) was coated on one side of a large piece of flexible paperboard of the type used in forming spiral-wound paper containers. The paperboard was about 17 mils thick. Typical properties of the emulsion included the following:

Total solids About 60%. Color Cream white. Freezing point 36 F.

Particle size .13 avg. (micron). Specific gravity 132010.015.

The polymer emulsion (Daran 210) was applied to the paperboard with a roller and then levelled with a No. 6 Mayer Rod. The coated paperboard was initially dried by passing it under infra red lights and then through an oven maintained at 250 F. The dried coated paperboard was then passed again under the infra red lights to fuse the dried vinylidene chloride polymer coating. The web speed was 350 feet per minute. The weight of the dried coatgng was approximately 8 pounds per ream (3000 sq. t.

A second coating of the vinylidene chloride polymer emulsion (Daran 210) was applied to the dried coating in the same manner except that a No. 4 Mayer Rod was used and that drying temperatures of the first and second zones of the oven were maintained at 300 F. The weight of the dried coating was approximately 2.8 pounds per ream (3000 sq. ft.). A third coating of the vinylidene chloride polymer emulsion was applied in the same manner as the second coating, and the coating weight was approximately 3.6 pounds per ream (3000 sq. ft.). The total weight of the coating was approximately 14.4 pounds per ream (3000 sq. ft.), and the total thickness of the paperboard and the coating was about 18 mils. The vinylidene chloride polymer coating was colorless, clear, smooth, continuous, and glossy.

. A slip composition was formed comprising the following:

Parts by Weight Dry Wet Styrene-maleic anhydride copolymer (Lytron 820 4. 0 4. 0 28% ammonium hydroxide 1. 2 Water 78. 1 Emulsion of oxidized polyethylene (23% solids) Grex 39-1) 2.0 8. 7 Emulsion of paratfin wax (40% solids) (Alwax 253A 1. 6 4. 0 Solution of sodium lauryl sulfate (32% solids) (Duponol) 1. 3 4. 0

The styrene-maleic anhydride copolymer (Lytron 820) was a free flowing powder which had the following properties:

Specific gravity 1.14 to 1.16.

Particle size 100% through US. No. 40 sieve, 2% max. retained on US. No. 60 sieve,

25% max. retained on U.S. No. 80 sieve.

Softening temperature No softening below decomposition temperature.

Decomposition 210 C.

Temperature Chars on long exposure to 200 C. to 250 C.

Free styrene 1.0% max.

Acidity (acid No.) a 180 to 190.

Equivalent weight 295 to 310.

The emulsion of oxidized polyethylene (Grex 39-1) had the following characteristics:

The emulsion of'the paraffin wax (Alwax 253A) had the following characteristics: r

Type emulsion.

Solids content, percent by weight 40.

Specific gravity, lbs/gallon 8.

pH 6-7. Dilutability Infinite. Wax present, percent on solids 100. Average particle size; microns 0.5 tol15. Melting point 123 F.

The solution of sodium lauryl sulfate (Duponol) had the following characteristics: 1

Chemical type Anionic.

Composition Sodium lauryl sulfate technical.

Molecular weight 302.

Physical appearance Pale yellow liquid.

Active ingredient, percent 30.0. 1

Unsulfated alcohol, percent 1.0.

Sodium chloride, percent 0.3.

Sodium sulfate, percent 0.7.

Viscosity, cps. at 80 F. 200.

A solution of the ammonium hydroxide and styrenemaleic anhydride copolymer (Lytron 820) was formed. The emulsion of oxidized polyethylene (Grex 39-1) was then mixed with the solution until a uniform dispersion was formed. In a separate step the emulsion of parafiin wax was thoroughly mixed with the solution of sodium lauryl sulfate. The resulting mixture was then mixed With the dispersion until a uniform blend was produced to form a final composition having 8.9 percent solids and a viscosity of 2 cps. (LVF Brookfield Viscosimeter, No. 2 spindle at 60 rpm).

The slip composition was applied to the coated paperboard with a roller and then levelled with a No. 4 Mayer Rod. The slip coated paperboard was initially dried by passing it under infrared lights and then through a first and second zone of an oven maintained at 300 F. The dried coated paperboard was then passed again under the infrared lights to fuse the dried slip coating. The web speed was 350 feet per minute. The weight of the dried slip coating was approximately 0.2 pound per ream (3000 ,sq. ft). The slip coating was clear, colorless, and very Acid and alkali stable I glossy.

The slip coated paperboard was then cut to strips about 6 /2 inches wide.

EXAMPLE 2 Spiral-wound tubes of the coated paperboard strips prepared in Example 1 were formed in the conventional manner. The machine used consisted of a stationary round steel mandrel with an endless drive belt looped over one end of it. The drive belt was approximately 6 inches wide and was driven by two vertically mounted drums. The distance between the drums could be varied to adjust the tension on the belt.

Certain sections of the coated paperboard strips were passed over a glue roll and then fed into the belt loop and wound around the mandrel. The winding speed was at least 40 feet per minute. Due to the lack of friction between the slip coating and the mandrel, spiral tubes were formed quickly, and no difficulty was experienced in removing the tubes from the mandrel. The limiting factor in the preparation of spiral-wound cans was not the slip coat or the frictional forces of the paperboard on the mandrel but other steps involved in the can manufacture. Therefore, 40 feet per minute is by no means the maximum speed at which the slip coat can be utilized.

A strip of the coated paperboard prepared in Example 1 was used to measure the degree of adhesion of the slip coating to the vinylidene chloride polymer coating.

Scotch tape was applied with the fingers to the slip coating and then rapidly pulled off. The slip coating remained intact.

The viscosity of the composition prepared in Example 1 was measured on an LVF Brookfield Viscosimeter. In addition, the viscosity of the same composition at various solids concentrations was measured. The results are shown The slip characteristics of the slip composition prepared in Example 1 at varying dry weights and drying procedures were measured in the following manner:

A flexible standard bleached kraft paperboard with a standard clay coating (Moss-Cote Board) was used. This paperboard was about 15 mils thick. The vinylidene chloride polymer emulsion of Example 1 (Daran 210) was applied to the paperboard with a No. 8 Mayer Rod. The coated paperboard was dried for 20 seconds in a forced-draft oven maintained at C. Several samples were prepared. One of these was used as a control. The slip composition was applied to the remaining samples with a Mayer Rod. The slip coated samples were dried for 20 seconds in a forced-draft oven maintained at 125 The emulsion of non-oxidized polyethylene (Poly BM 40) had the following characteristics:

Sample No 1 2 3 4 Control Mayer rod N o. 4 8 4 Drying procedure Slip Characteristics:

Angle Indicative oi Coeflicient of Friction:

Static, deg-.." 12 8 10 12 30+ Kinetic, deg s 7 7 7 22% Coefficient of Friction (ASTM D1894-61T Procedure 13):

Static .12 .12 .12 .11 .57 .12 .10 .12 .11 .36

3,000 sq. it.) I .2 .3 .4 .a

l N o slip coat. 1 125 C. sec. 3 Air dry 8 min.

As noted in the table above, the instant composition is 20 Emulsion capable of providing a very thin slip coating with slip characteristics significantly better than that of the control, 5Q1 ds, percent 40, i.e., the vinylidene chloride polymer coated sample with- Viscosity cps., Brookfield, C. Spmdle out a slip coating. In addition, as illustrated by Samples 9 6 r-p-i n- Less than 100. 2 and 4, the slip coating formed by drying at an elevated 25 P r l l lZ ml rfms Less than 0.1. temperature is somewhat better than that formed by air PH range of chemlcal s ablllty 1 to 12. dr in".

y 5 EXAMPLE 3 Typical properties of the solid polymer A slip coating composition was prepared according to Density gmjm 0920 to 0935. the procedure of Example 1 contarnlng the following con- Inherent viscosity, (02% stltu ntsl polymer in tetralin at 135 C.) 0.5 to 0.9.

Average molecular weight 15,000 to 30,000. Parts by weight Hardness, Shore D 45 to 48.

Dry wet Melting point (modified ring and O Styrgne-maleic anhydride copolymer (Lytron 4 o 4 0 ball method) Greater than 200 F 82 i 23% ammonium hydroxiden n 1.2 Samples of vlnylidene chloride polymer coated paperi$2ififfffiffiff???ifigffi 20 7 board were prepared as described above. One of the Emuls ofpareifinwax 1 0 40 samples was used as a control and contained no coating. fi 355 5 5 gg-555g5.515 The remainder of the coated samples were each pro- 3%% solids 3 vided with the slip composltrons of Examples 1 and 3 1n a er--- three different weights as illustrated in the table below:

SLIP CHARACTERISTICS Angle Indicative of Coeflicient Coefficlent of Friction (ASTM of Friction Composition lvgiyder D1894-61T, Procedure B) Appearance Static, deg. Kinetic, deg. Static Kinetic Example 1 (oxidized poly- 0 13.0 7. 5 14 14 ethylene) 4 s. 0 7. 5 10 .16 P glossy s 8.0 6. 0 .13 .11 Example 3 (nonoxidized poly- 0 17.0 10. 0 15 .15

ethylene) 4 15. 0 10. 0 14 14 Dull surface.

8 l2. 5 10. 0 14 14 0 11. 0 10. 0 Example 4 (no polyethylene) g 132 }Dull surface. Control 30+ 2110 i .57 .36

EXAMPLE 4 As noted in the table above, the oxidized polyethylene A slip coating composition was prepared according to the procedure of Example 1 containing the following constituents:

provided the slip composition with slip characteristics significantly better than those provided by the other slip compositions.

In the following examples, various slip compositions containing oxidized polyethylene emulsion were prepared and the slip characteristics of each composition were measured. Samples of vinylidene chloride polymer-coated paperboard were prepared. The samples were then provided with a coating of a slip composition. The dry weight of each slip composition coating was about 0.2 pound per ream (2000 sq. ft.).

The superior and preferred characteristics of the compositions which contain oxidized polyethylene emulsion are emphasized When compared with Example 4, which contains no polyethylene.

Example 5 Percent by Parts by Percent by Parts by Percent by Parts by Percent by Parts by wt. solids wt. wet wt. solids wt. wet wt. solids wt. wet wt. solids wt. wet

Slip composition:

Styrene-maleic anhydride copolymer (Lytron 820 45.0 4.0 39.2 4.0 38. 1 4.0 50. 6 4.0 28% ammonium hydroxide. 1. 2 1. 2 1.2 1.2 Wat 78. 1 78. 1 78. 1 78. 1 Emulsion of oxidized polyethylene (23% s ds) (Grex 39-1") 22. 5 8. 7 19.6 8. 7 19.0 8. 7 25. 4 8.7 Emulsion of paraffin wax (40% so ds) (Alwax 253A) 18. O 4. O 15. 7 4. 30. 8. 0 20. 2 4. 0 Solution of sodium lauryl sulfate (32% solids) (Duponol) 15.0 4. 0 25. 5 8.0 12. 4 4.0 3. 8 l. 0 Angle indicative of coefiicient of friction:

Static, deg 11 12 12 12 Kinetic, deg 7 7 7 7Vz-8 Cggfhcient of friction (ASTM D1894-61I, Procedure Example 9 Example 10 Example 11 Example 12 Percent by Parts by Percent by Parts by Percent by Parts by Percent by Parts by wt. solids wt. wet wt. solids wt. wet wt. solids Wt. wet wt. solids wt. wet

Slip composition:

Styrene-maleic anhydride copolymer (Lytron 820)- 52. 0 4.0 37. 7 4.0 58. 0 4.0 4. 0 28% ammonium hydroxide 1. 2 1. 2 1. 2 1. 2 Water 78. 1 78. 1 78. 1 78. 1 Emulsion of oxidized polyethylene (23% solids) (Grex 39-1) 26.0 8. 7 35.0 16. 0 0. 0 0.0 12. 6 4. 0 Emulsion of paraflin wax (40% solids) (Alwax 253A 5. 2 1.0 15. 1 4.0 23.2 4. 0 20.3 4.0 Solution of sodium lauryl sulfate (32% solids) (Duponol) 16. 8 4.0 12. 2 4.0 18. 8 4.0 16. 5 4.0 Angle indicative of coefficient of friction:

Static, deg l6 13 18 18 Kinetic, deg 9 6 11 8 Cziaegiicient of friction (ASTM D1894-61T, Procedure Static 12 10 15 Kinetic .12 .11 12 .11

What is claimed is:

1. An article comprising a paper substrate, a vinylidene chloride polymer film superimposed on said substrate, and a slip coating composition deposited and dried on said film, said slip coating composition consisting essentially of emulsion of paratfin Wax, sodium alkyl sulfate wherein the alkyl group is a C to C alkyl group, and an aqueous solution of a binder polymer selected from the group consisting of polyvinyl alcohol, casein, carboxymethyl cellulose, a polymer of maleic anhydride and styrene, karaya gum and gum arabic, the total solids content of said composition being about 2 to 20 percent by weight and said solids being composed of about 5 to 35 percent by weight of paraflin wax, about 3 to percent by weight of said sodium alkyl sulfate, and about to 70 percent by weight of said binder polymer.

2. An article as defined in claim 1 wherein said slip coating contains about 1 to by weight of the solids of polyethylene.

3. An article as defined in claim 2 wherein said polyethylene is oxidized polyethylene.

4. An article comprising a paper substrate, a vinylidene chloride polymer film superimposed on said substrate, and a slip coating composition deposited and dried on said film, said slip coating composition consisting essentially of emulsion of paraifin wax, sodium alkyl sulfate wherein the alkyl group is a C to C alkyl group, polyethylene and an aqueous solution of a binder polymer selected from the group consisting of polyvinyl alcohol, casein, carboxymethyl cellulose, a polymer of maleic anhydride and styrene, karaya gum and gum arabic; the total solids content of said composition being about 2 to 20 percent by weight and said solids being composed of about 5 to 35 percent by weight of paraffin wax, about 3 to 30 percent by weight of said sodium alkyl sulfate, about 1 to 40 percent by weight of said polyethylene and about 35 to percent by weight of said binder polymer.

5. An article as defined in claim 4 wherein said binder polymer is styrene-maleic anhydride copolymer.

6. An article as defined in claim 5 wherein said polyethylene is oxidized polyethylene.

7. An article as defined in claim 6 wherein said sodium alkyl sulfate is sodium lauryl sulfate.

References Cited UNITED STATES PATENTS 2,777,781 l/1957 Kordig et al. 11776 X 2,907,681 10/1959 Dunbar et al. 11792 3,200,005 8/1965 Bauer l1776 3,251,709 5/1966 Bonzagni 117-76 WILLIAM D. MARTIN, Primary Examiner.

R. HUSACK, Assistant Examiner.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2777781 *Mar 4, 1955Jan 15, 1957Ditto IncTransfer sheet having waxy top protective coating
US2907681 *Jun 10, 1957Oct 6, 1959Franklin Res CompanyComposition for deposition of a parting surface film
US3200005 *May 28, 1962Aug 10, 1965Cellu Kote IncPaper products coated with vinyl resin and wax
US3251709 *Jun 11, 1965May 17, 1966Monsanto CoSized cellulosic paper
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3639148 *Apr 2, 1970Feb 1, 1972Dow Chemical CoPolymer film substrate with vinylidene chloride base coating and wax antisticking top coating
US4107380 *Nov 12, 1976Aug 15, 1978American Can CompanyNon-blocking coating composition
US4326006 *Feb 5, 1981Apr 20, 1982Bernard KaminsteinComprising a paper sheet coated with a blend of water, salt, wax, and polymer
US4536433 *Sep 16, 1983Aug 20, 1985Sagi Zsigmond LSlip resistant absorbent pad
US5654039 *Jun 5, 1995Aug 5, 1997International Paper CompanySubstrate coated with primer then top coat
US5763100 *May 10, 1993Jun 9, 1998International Paper CompanyRecyclable acrylic coated paper stocks and related methods of manufacture
US5782444 *Apr 26, 1996Jul 21, 1998Interface, Inc.Cabinet skate
US5827616 *Jul 19, 1996Oct 27, 1998Sibille DalleCoated greaseproof paper and process for manufacturing it
US5837383 *Aug 15, 1994Nov 17, 1998International Paper CompanyRecyclable and compostable coated paper stocks and related methods of manufacture
US6964993May 19, 2004Nov 15, 2005Basf Aktiengesellschaftbinder or thickener contains an addition polymer prepared by polymerizing the monomer(s) in the presence of polyvinyl alcohol: improved water retention
US7754411Feb 27, 2003Jul 13, 2010Tokushu Paper Mfg. Co., Ltd.protects planographic printing plate by having pulp fibers as a main constituent and a surface that contacts an image-forming surface of planographic printing plate and is physically separable from the planographic printing plate
EP1479824A1 *Feb 27, 2003Nov 24, 2004Tokushu Paper Mfg. Co., Ltd.Lining board for lithographic plate and its manufacturing method, and protected lithographic plate and its stack
Classifications
U.S. Classification428/484.1, 427/416, 428/514, 524/156, 524/278, 427/411
International ClassificationD21H19/22, D21H19/18, D21H19/82, D21H27/10, D21H19/00, D21H27/00, D21H19/20, B65D65/40
Cooperative ClassificationD21H19/22, D21H19/20, D21H27/001, B65D65/40, D21H19/824, D21H27/10, D21H19/18
European ClassificationB65D65/40, D21H27/00B