Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3411507 A
Publication typeGrant
Publication dateNov 19, 1968
Filing dateApr 1, 1964
Priority dateApr 1, 1964
Publication numberUS 3411507 A, US 3411507A, US-A-3411507, US3411507 A, US3411507A
InventorsWingrove Robert C
Original AssigneeMedtronic Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method of gastrointestinal stimulation with electrical pulses
US 3411507 A
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

, R. c. WINGROVE METHOD OF GASTROINTESTINAL STIMULATION Nov. 19, 1968 WITH ELECTRICAL PULSES 2 Sheets-Sheet 1 Filed April 1, 1964 JNVENTOR. 02227 6'. h/uvakavz United States Patent 3,411,507 METHOD OF GASTROINTESTINAL STIMULATIO WITH ELECTRICAL PULSES Robert C. Wingrove, New Brighton, Minn., assignor to Medtronic, Inc., Minneapolis, Minn., a corporation of Minnesota Filed Apr. 1, 1964, Ser. No. 356,590 4 Claims. (Cl. 128-422) This invention has relation to a method for electrical pacing of the intestines as an effective means in the management of so-called paralytic ileus. The method of the present invention involves introducing a specific electrode nasogastrically into the stomach in proximity to or past the pyloric valve. An indifferent plate electrode is applied to the body of the patient at a convenient location such as the abdominal wall, and electrical impulses of predetermined duration and magnitude are applied between the electrodes. This causes peristaltic waves to be induced in the antrum; and these waves cross the pylorus and are carried down to the duodenum. Here these waves necessarily activate the duodenum which in turn, having a pacemaker area of its own, is thus stimulated and may control the rest of the intestinal tract. The observed result is that peristaltic activity is rapidly restored; passage of feces or flatus generally occur-ring four to sixteen hours after the electrical stimulation has been initiated.

Before the development of the method of the invention, a catheter was introduced into the stomach in proximity to or past the pylorus in order to perform normal post-operative gastic suction. When the method of the invention is used, this suction will generally be unnecessary and quite often oral administrations of fluids may begin immediately, thereby eliminating or at least substantially reducing the need for intravenous replacement of fluids and electrolytes normally lost by such suction. As gastrointestinal mobility can be induced and maintained by use of the invention and the swallowed gas or gas formed in the intestines are thus carried away by peristalsis, the need for the suction or delivery aspects of the cathether are greatly lessened.

However, a combination of nasogastric suction and electrical stimulation in accordance with the invention is sometimes desirable at the start of therapy in cases with a full-blown picture of ileus. For this reason, the electrode for stimulation at or near the pylorus is situated at or near the tip of an ordinary plastic nasogastric tube, and the electrical lead to that electrode extends out through the tube to position where the electrical stimulation is applied to it.

The problem Paralytic ileus is a form of intestinal obstruction characterized by inadequate peristaltic activity affecting the gastrointestinal system in its entirety or segmantally. Loss of normal peristaltic activity frequently occurs following intra-abdominal surgery, and secondary to a variety of pathological conditions such as peritonitis of various etiologies, retroperitoneal sepsis and hemorrhage, and from trauma, infections, or surgery in areas remote from the abdominal cavity. Spinal injuries, diseases of the genitourinary tract, and thoracic surgery or trauma are frequently observed causes of paresis of the bowel occurring as a reflex inhibition. Loss of effective peristaltic activity of the gastrointestinal tract rapidly leads to distention of bowel loops with fluid and gas which, if left untreated, is

prone to perpetuate itself as a vicious cycle, the more distention occurring the more paralyzed the bowel becomes. Fluid and electrolytes are lost into this third space and distention of the intestine further impairs obsorption. In addition, distended inactive loops may twist or kink and a mechanical obstruction thus may be superimposed.

Management of this condition heretofore has been 3,411,507 Patented Nov. 19, 1968 largely passive in nature and has not changed significantly since introduction of nasogastric intubation and suction with administration of intravenous fluids and electrolytes continued until the paretic bowel resumes its tonus and peristaltic activity. Hypertonic saline, multiple enemas, spinal anesthesia, repeated use of hot stupes to the abdomen, and bowel stimulants such as prostigimine, nestigmine, pitressin, and pantothenic acid have all been used with variable and inconsistent success.

Use of the method of the invention has been found effective to induce and maintain gastrointestinal activity when such paralytic ileus occurs. This early return of bowel activity has reduced the time interval required for intravenous administration of fluid and electrolytes and the period during which a catheter must be used has been shortened or eliminated except as the catheter is used as a means for placing the specific electrode of the invention. Oral intake by the patient is resumed sooner.

In the drawings,

FIG. 1 is an elevational view of the apparatus of the invention and a diagrammatic representation of its location when in use on a patient suffering from so-called paralytic ileus;

FIG. 2 is a fragmentary elevational view of the terminal end of a nasogastric catheter with parts in section and parts broken away showing the installation of a specific electrode of the invention and its electrical lead wire on the catheter;

FIG. 3 is a block diagram of one form of electrical circuitry for energizing the electrodes of the apparatus of the invention; and

FIG. 4 is a circuit diagram of one form of circuit useful in supplying the electrical energy to perform the method of the invention.

Referring now to the drawing and the numerals of reference thereon, a nasogastric catheter 10 is provided with the usual openings 11 which are useful in its normal use as a catheter. An electrical lead wire 12 extends through the catheter for a substantial portion of its length, leaving the catheter as at 13 to extend to a first terminal 14 of an electrical stimulator circuit indicated generally in FIG. 4 as 15, said circuit being encased in stimulator case 20.

The terminal end of the electrical lead wire 12 is soldered or fastened in some other suitable way to a cylindrical shaped specific electrode 21 as at 22, said wire extending through one of the openings 11 in the catheter 10.

As is clearly seen in FIG. 1, a nosagastric tube or catheter 10 is passed into the stomach transnasally and advanced to lie in the antral region. An indifferent electrode 23 is secured to the abdominal wall by means of surgical tape 24. In order to secure good electrical contact, it is advisable to use a small amount of electrode paste between the electrode 23 and the abdominal wall. An electrical lead wire 26 extends from this electrode 23 to a second terminal 27 of the electrical stimulator circuit 15.

If operative incisions, or dressings, or other obstructions do not permit the positioning of the indifferent electrode 23 as shown and described, this electrode may be applied to the flanks or to the dorsal abdominal wall.

With the apparatus in position as shown and described, an On-Off switch 30 will be turned on thus connecting a battery 31 to the timer circuit 32 and oscillator circuit 33. The area immediately adjacent the specific electrode 21 will then be stimulated as the electrical current passes from this specific electrode to the indifferent electrode. A discharge device or bulb 35 provides a visual indication of current flow and duration.

Operation of FIG. 4 is as follows. Closing switch 30 causes current to flow in the first timing network including resistor 40 and capacitor 41. Accumulation of charge on capacitor 41 forward biases the emitter-base junction of emitter follower transistor 42. However, no current flows through the collector-emitter circuit of transistor 42, current limiting resistor 43, Zener diode 44, and resistor 45 until the voltage rating, normally about four volts, of Zener diode 44 has been overcome. The values of timing resistor 40 and capacitor 41 are chosen so that it takes about fifty seconds after closing switch 30 to reach a voltage sufficient to cause flow in the collector-emitter circuit of transistor 42.

As soon as current flows through Zener diode 4, firing voltage is applied to the gate of SCR 46. As soon as SCR 46 fires, capacitor 41 discharges through diode 47 and conducting SCR 46. Dumping of capacitor 41 turns off transistor 42 thereby removing gate voltage from SCR 46. SCR 46, however, remains conductive until the anode to cathode current is reduced below the holding level. The combination of capacitor 48, resistors 49, 50 and 51 and the emitter-base junction of transistor 52 provides a current path through a second timing network designed to keep SCR 46, and therefore transistor 52, in the conductive state for a chosen time period, usually between five and ten seconds. While SCR 46 is on, transistor 52 is also on and supplies power to a decoupling network, comprised of resistor 53, resistor 54 and capacitor 55, and to oscillator circuit 33. When SCR 46 is off transistor 52 is also off and no power is supplied to the decoupling network or oscillator circuit 33.

The decoupling network prevents the oscillatory signal developed in oscillator 33 from affecting the timing intervals developed in timer circuit 32. A substantially constant charge is developed across capacitor 55 during the on time of transistor 52 and in effect, provides the power supply for oscillator 33.

The repetition rate of oscillator 33 is determined by timing resistor 56 and capacitor 57. The pulse width is determined by feed back capacitor 57 and the inductance of the primary winding of transformer 59. Upon application of supply voltage to oscillator 33, transistor 58 turns on and due to charging of capacitor 57, supplies a rapidly increasing current through the primary of transformer 59 until it becomes saturated and capacitor 57 is fully charged. At that time, the field collapses causing a polarity reversal which drives transistor 58 rapidly into cutoff where it is held until capacitor 57 discharges through a portion of the primary winding of transformer 59 and resistor 56. Diode 60 protects transistor 58 during collapse of the field in transformer 59. Oscillations continue in the manner described until transistor 52 turns off removing supply voltage from oscillator circuit 33.

The changing field in the primary of transformer 59 induces a pulsing current in the two secondaries causing illumination of lamp 35 to indicate proper operation of the oscillator and supplying power to the output circuit. Resistors 61 and 62 provides I protection for transistor 63 and hold it in cutoff until a pulse appears on the secondary of transformer 59. An induced pulse in the circuit containing resistors 61 and 62 and transistor 63 causes turn-on of transistor 63 thereby providing needed power gain and supplying current through the primary of trnsformer 64. The current flowing through the primary of transistor 64 induces a current in the secondary of transformer 64 which is applied to the patient through electrodes connected to terminals 14 and 27. A constant current output is achieved from this circuit. Diode 65 protects transistor 63 during field collapse in transformer 64.

One pattern of electrical stimulation which has been effective to institute peristaltic activity without being noticable to the patient consists of passing ten volts into onethousand ohms to cause ten milliamperes of current to flow for a period of 0.100 millisecond once every twenty-five milliseconds. After five seconds, these pulses are terminated and no current flows for fifty-five seconds. Then the ten milliampere flow per 0.100 millisecond once every twenty-five milliseconds resume for another five seconds. The cycle is repeated every minute until positive results are obtained. The first such result may be observed by ausculatating the abdomen for bowel sounds. Positive results in the form of passage of feces or flatus will generally be observed from four to sixteen hours after stimulation has begun, and the stimulation may be dis continued following the first bowel movement.

Other patterns of electrical stimulation have proved effective where the rates of the application of stimulation approximated the normal periodicity of the inherent peristaltic pacemaker activity of the duodenum of the animal on which the apparatus was being used. In fact, stimulation in time cycles of the same general order of magnitude as the entire normal range of periodicity of the inherent peristaltic pacemaker action of the duodenum have been found effective.

Initially, experiments upon dogs gastrointestinal motility were conducted to find optimal current amplitudes, pulse length frequency, and to determine feasible sites in the gastrointestinal tract for effective stimulation. Extensive experiments followed with various types of current in regard to wave shapes, pulse length and frequency and with regard to their effectiveness in inducing peristaltic activity. These findings were then tested and modified for human use based on experiments carried out on the researchers under fiuoroscopy and later in the operating room by direct observation upon patients undergoing laparotomy.

It was found from these studies that a current of 7 to 10 milliamperes output and a frequency of 50 cycles per second given for 5l0 seconds duration and repeated in intervals of from 1 to 5 minutes would be sufiicient to induce effective peristaltic activity. Such stimulation was found not to be perceptible to the patient.

The foregoing experiments are published in a paper entitled, Gastrointestinal Pacing-a New Concept in the Treatment of Ileus, in the Annals of Surgery, volume 158, No. 3, of September 1963, publisher J. B. Lippincott Company, USA.

Since the foregoing studies were made, it has been found that up to 30 milliamperes of current can be used with a frequency of from 40 to 50 cycles per second and with this stimulation applied continuously for a first finite time period of from 5 to 10 seconds. The stimulation is then removed and repeated every minute.

With the use of the present invention, nasogastric suction may not be required following ordinary abdominal procedures. In these cases, fluid intake (drip feeding) may be administered through the catheter 10, while the bowel activity is being restored and maintained by gastrointestinal stimulation or pacemaking in accordance with the invention.

Should nasogastric suction be indicated, this can be employed using the catheter 10 while the stimulation of the gastrointestinal tract is taking place as described. This suction will relieve excessive abdominal extension and will thereby shorten the patients recovery time.

What is claimed is:

1. A method of treatment of paralytic ileus in the bodies of animals including humans including the steps of positioning a first electrode in the antral region in proximity to the pylorus in such a body, positioning a second electrode in spaced relation to the first electrode and in contact with said body, generating a series of electrical pulses and impressing said series of impulses be tween said electrodes for a first finite time period, allowing a second finite time period to elapse without any electrical impulses being impressed, and repeating the impulse and non-impulse steps until positive signs of restored peristaltic activity are observed; wherein said first time period is approximately five seconds and said first and second time periods together are approximately one minute.

2. A method of treatment of paralytic ileus in the bodies of animals including humans including the steps of positioning a first electrode in the antral region in proximity to the pylorus in such a body, positioning a second electrode in spaced relation to the first electrode and in contact with said body, providing a generator of electrical impulses, electrically associating said electrodes with said generator, impressing a series of electrical impulses upon said generator across said electrodes for a first portion of a finite time period, allowing a second remaining portion of said finite time period to elapse without any electrical impulses being impressed, and repeating said impulse and no impulse steps during successive similar finite time periods until positive signs of restored peristaltic activity are observed, wherein said finite time period is approximately one minute.

3. The method of claim 2 wherein the step of positioning the first eletcrode includes positioning said electrode outside of one open end portion of a hollow flexible insulating tube and introducing said electrode and tube into the stomach through the nose and at least in part through the alimintary tract; wherein the step of electrically associating said first electrode with said generator includes extending a flexible electrical conductor from said generator, through said hollow tube and into elec-- trical contact with said electrode; and the further steps of connecting said tube to a source of suction and performing nasogastric suction with said hollow open-ended tube during the repetition of said impulse and no impulse steps.

4. A method of treatment of paralytic ileus in the bodies of animals including humans including the steps of positioning a first electrode in the antral region in proximity to the pylorus in such a body, positioning a second electrode in spaced relation to the first electrode and in contact with said body, providing a generator of electrical impulses, electrically associating said electrodes and said generator, impressing a series of electrical impulses from said generator across said electrodes for a first portion of a finite time period, allowing no electrical impulses across said electrodes during a second remaining portion of said finite time period, and repeating said impulse and no impulse steps during successive similar finite time periods until positive signs of restored peristaltic activity are observed, said finite time period being approximately one minute and said first portion of said period being at least five seconds.

References Cited UNITED STATES PATENTS 2,055,540 9/1936 Karnofsky 128-409 623,022 4/1899 Johnson 128--348 X 3,046,988 7/1962 Moreau et al. 128349 X OTHER REFERENCES Stephenson, et al.: Journal of Thoracic and Cardiovascular Surgery, vol. 38, No. 5, pp. 604-609, November, 1959.

RICHARD A. GAUDET, Primary Examiner.

W. E. KAMM, Assistant Examiner.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US623022 *Mar 30, 1898Apr 11, 1899 johnson
US2055540 *Dec 18, 1933Sep 29, 1936Gen Therapeutics CorpProcess and apparatus for treating pathological conditions
US3046988 *Dec 1, 1958Jul 31, 1962Davol Rubber CoEsophageal nasogastric tube
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3499435 *Jun 2, 1967Mar 10, 1970Paul E RockwellEsophageal probe for use in monitoring
US3800800 *Jan 24, 1972Apr 2, 1974D GarbeApparatus and method for incontinence control
US3846644 *Jul 2, 1973Nov 5, 1974Tokai Rika Co LtdIntermittently driving circuit for a load such as a buzzer or a bell
US3881494 *May 22, 1973May 6, 1975Jr James M PaulElectro pulse arthritic physiotherapy system
US3902494 *Apr 30, 1974Sep 2, 1975ScheererSuction surgical instrument
US3911930 *Mar 1, 1974Oct 14, 1975Stimulation TechMethod and structure of preventing and treating ileus, and reducing acute pain by electrical pulse stimulation
US4055190 *Dec 19, 1974Oct 25, 1977Michio TanyElectrical therapeutic apparatus
US4572214 *Apr 10, 1981Feb 25, 1986Ursus Konsult AbElectrode device
US4616640 *Nov 14, 1983Oct 14, 1986Steven KaaliBirth control method and device employing electric forces
US4681122 *Sep 23, 1985Jul 21, 1987Victory Engineering Corp.Stereotaxic catheter for microwave thermotherapy
US4683890 *Oct 2, 1986Aug 4, 1987Brunswick Manufacturing Co., Inc.Method and apparatus for controlled breathing employing internal and external electrodes
US4763671 *Apr 25, 1986Aug 16, 1988Stanford UniversityMethod of treating tumors using selective application of heat and radiation
US4770167 *Jul 1, 1987Sep 13, 1988Steven KaaliElectrical, generally rounded resilient, canopy-like contraceptive devices
US4921481 *Mar 23, 1988May 1, 1990Abbott LaboratoriesEnteral feeding system utilizing gastrointestinal myoelectrography
US5236413 *May 7, 1990Aug 17, 1993Feiring Andrew JMethod and apparatus for inducing the permeation of medication into internal tissue
US5292344 *Jul 10, 1992Mar 8, 1994Douglas Donald DPercutaneously placed electrical gastrointestinal pacemaker stimulatory system, sensing system, and pH monitoring system, with optional delivery port
US5423872 *May 26, 1993Jun 13, 1995Cigaina; ValerioProcess and device for treating obesity and syndromes related to motor disorders of the stomach of a patient
US5425703 *Jan 14, 1994Jun 20, 1995Feiring; Andrew J.Method and apparatus for inducing the permeation of medication into internal tissue
US5549603 *Nov 28, 1994Aug 27, 1996Feiring; Andrew J.Method and apparatus for inducing the permeation of medication into internal tissue
US5669874 *Jul 3, 1996Sep 23, 1997Feiring; Andrew JonathanMethod and apparatus for inducing the permeation of medication into internal tissue
US5690691 *May 8, 1996Nov 25, 1997The Center For Innovative TechnologyGastro-intestinal pacemaker having phased multi-point stimulation
US5800495 *Mar 27, 1997Sep 1, 1998Sulzer Intermedics Inc.For implantation in a patient
US5810763 *Jul 25, 1997Sep 22, 1998Feiring; Andrew JonathanMethod and apparatus for inducing the permeation of medication into internal tissue
US5938692 *Mar 26, 1996Aug 17, 1999Urologix, Inc.Voltage controlled variable tuning antenna
US6032078 *Oct 22, 1997Feb 29, 2000Urologix, Inc.Voltage controlled variable tuning antenna
US6195583Sep 14, 1998Feb 27, 2001Andrew Jonathan FeiringMethod and apparatus for inducing the permeation of medication into internal tissue
US6389314Dec 26, 2000May 14, 2002Andrew Jonathan FeiringMethod and apparatus for inducing the permeation of medication into internal tissue
US6535764May 1, 2001Mar 18, 2003Intrapace, Inc.Gastric treatment and diagnosis device and method
US6600953Dec 11, 2000Jul 29, 2003Impulse Dynamics N.V.Acute and chronic electrical signal therapy for obesity
US6684105Aug 31, 2001Jan 27, 2004Biocontrol Medical, Ltd.Treatment of disorders by unidirectional nerve stimulation
US6709388Aug 3, 2000Mar 23, 2004University College London Hospitals Nhs TrustPassage-travelling device
US6754536Jan 30, 2002Jun 22, 2004Medtronic, IncImplantable medical device affixed internally within the gastrointestinal tract
US6892098Sep 24, 2002May 10, 2005Biocontrol Medical Ltd.Nerve stimulation for treating spasticity, tremor, muscle weakness, and other motor disorders
US6907295Jul 24, 2002Jun 14, 2005Biocontrol Medical Ltd.Electrode assembly for nerve control
US6993391May 28, 2003Jan 31, 2006Metacure N.V.Acute and chronic electrical signal therapy for obesity
US7016735Nov 7, 2002Mar 21, 2006Intrapace, Inc.Gastric anchor and method
US7020526May 16, 2002Mar 28, 2006Ruan Jin ZhaoElectronic gastro-intestinal stimulation device
US7020531Apr 2, 2002Mar 28, 2006Intrapace, Inc.Gastric device and suction assisted method for implanting a device on a stomach wall
US7076305Nov 14, 2002Jul 11, 2006Intrapace, Inc.Gastric device and instrument system and method
US7107100Nov 7, 2002Sep 12, 2006Intrapace, Inc.Aendoscopic instrument system@
US7120498Oct 23, 2003Oct 10, 2006Intrapace, Inc.Method and device for securing a functional device to a stomach
US7127295May 2, 2005Oct 24, 2006Evans John RDevice and method for placement of electrodes in the GI tract
US7200443Oct 7, 2003Apr 3, 2007John FaulTranscutaneous electrical nerve stimulator for appetite control
US7321793Jun 13, 2003Jan 22, 2008Biocontrol Medical Ltd.Vagal stimulation for atrial fibrillation therapy
US7324853Nov 5, 2004Jan 29, 2008Biocontrol Medical Ltd.Nerve stimulation for treating spasticity, tremor, muscle weakness, and other motor disorders
US7330753Apr 16, 2002Feb 12, 2008Metacure N.V.Analysis of eating habits
US7346398Sep 23, 2004Mar 18, 2008Bio Control Medical (B.C.M.) Ltd.Electrode assembly for nerve control
US7371215Jul 9, 2004May 13, 2008Intrapace, Inc.Endoscopic instrument for engaging a device
US7437195Jan 3, 2002Oct 14, 2008Metalure N.V.Regulation of eating habits
US7444183 *Jan 6, 2004Oct 28, 2008Enteromedics, Inc.Intraluminal electrode apparatus and method
US7483754Nov 16, 2005Jan 27, 2009Intrapace, Inc.Endoscopic instrument system for implanting a device in the stomach
US7489969Sep 29, 2003Feb 10, 2009Enteromedics Inc.Vagal down-regulation obesity treatment
US7502649Jun 20, 2004Mar 10, 2009Metacure Ltd.Gastrointestinal methods and apparatus for use in treating disorders
US7509174Nov 14, 2002Mar 24, 2009Intrapace, Inc.Gastric treatment/diagnosis device and attachment device and method
US7509175Jul 30, 2007Mar 24, 2009Intrapace, Inc.Method and devices for stimulation of an organ with the use of a transectionally placed guide wire
US7545740Apr 7, 2006Jun 9, 2009Corrigent Systems Ltd.Two-way link aggregation
US7551599Mar 29, 2004Jun 23, 2009Corrigent Systems Ltd.Layer-3 network routing with RPR layer-2 visibility
US7561922Dec 22, 2004Jul 14, 2009Biocontrol Medical Ltd.Construction of electrode assembly for nerve control
US7590452Jul 9, 2004Sep 15, 2009Intrapace, Inc.Endoscopic system for attaching a device to a stomach
US7613515Jan 21, 2005Nov 3, 2009Enteromedics Inc.High frequency vagal blockage therapy
US7616996Sep 1, 2005Nov 10, 2009Intrapace, Inc.Randomized stimulation of a gastrointestinal organ
US7627384Nov 15, 2005Dec 1, 2009Bio Control Medical (B.C.M.) Ltd.Techniques for nerve stimulation
US7630769Jan 22, 2007Dec 8, 2009Enteromedics Inc.GI inflammatory disease treatment
US7634317Feb 18, 2005Dec 15, 2009Bio Control Medical (B.C.M.) Ltd.Techniques for applying, calibrating, and controlling nerve fiber stimulation
US7643887Oct 12, 2005Jan 5, 2010Intrapace, Inc.Abdominally implanted stimulator and method
US7672727Aug 17, 2005Mar 2, 2010Enteromedics Inc.Neural electrode treatment
US7689284Oct 12, 2005Mar 30, 2010Intrapace, Inc.Pseudounipolar lead for stimulating a digestive organ
US7693577Jan 22, 2007Apr 6, 2010Enteromedics Inc.Irritable bowel syndrome treatment
US7702394Sep 23, 2004Apr 20, 2010Intrapace, Inc.Responsive gastric stimulator
US7720540Jan 22, 2007May 18, 2010Enteromedics, Inc.Pancreatitis treatment
US7729771Aug 13, 2007Jun 1, 2010Enteromedics Inc.Nerve stimulation and blocking for treatment of gastrointestinal disorders
US7734355Jan 23, 2002Jun 8, 2010Bio Control Medical (B.C.M.) Ltd.Treatment of disorders by unidirectional nerve stimulation
US7747322Oct 12, 2005Jun 29, 2010Intrapace, Inc.Digestive organ retention device
US7756582Oct 21, 2005Jul 13, 2010Intrapace, Inc.Gastric stimulation anchor and method
US7765006Dec 13, 2007Jul 27, 2010Leto Medical, LlcMethod and apparatus for providing continence to a gastrointestinal ostomy
US7765007Nov 4, 2008Jul 27, 2010Leto Medical, LlcApparatus and method for providing continence to a gastrointestinal ostomy
US7778703Jul 24, 2002Aug 17, 2010Bio Control Medical (B.C.M.) Ltd.Selective nerve fiber stimulation for treating heart conditions
US7778711Nov 20, 2003Aug 17, 2010Bio Control Medical (B.C.M.) Ltd.Reduction of heart rate variability by parasympathetic stimulation
US7787948Jan 23, 2006Aug 31, 2010Ross Robert AEnergy efficient therapeutic pulse generator system
US7822486Aug 17, 2005Oct 26, 2010Enteromedics Inc.Custom sized neural electrodes
US7844338Jun 30, 2004Nov 30, 2010Enteromedics Inc.High frequency obesity treatment
US7844346Feb 2, 2006Nov 30, 2010Biocontrol Medical Ltd.Electrode assembly for nerve control
US7885709Sep 22, 2005Feb 8, 2011Bio Control Medical (B.C.M.) Ltd.Nerve stimulation for treating disorders
US7885711Jun 10, 2004Feb 8, 2011Bio Control Medical (B.C.M.) Ltd.Vagal stimulation for anti-embolic therapy
US7890185Nov 25, 2003Feb 15, 2011Bio Control Medical (B.C.M.) Ltd.Treatment of disorders by unidirectional nerve stimulation
US7899541Jun 18, 2007Mar 1, 2011Ebr Systems, Inc.Systems and methods for implantable leadless gastrointestinal tissue stimulation
US7904176Sep 7, 2006Mar 8, 2011Bio Control Medical (B.C.M.) Ltd.Techniques for reducing pain associated with nerve stimulation
US7974693Feb 22, 2005Jul 5, 2011Bio Control Medical (B.C.M.) Ltd.Techniques for applying, configuring, and coordinating nerve fiber stimulation
US7979127May 25, 2010Jul 12, 2011Intrapace, Inc.Digestive organ retention device
US7986995Jan 22, 2007Jul 26, 2011Enteromedics Inc.Bulimia treatment
US8010204Mar 11, 2010Aug 30, 2011Enteromedics Inc.Nerve blocking for treatment of gastrointestinal disorders
US8019422Nov 16, 2005Sep 13, 2011Intrapace, Inc.Gastric device and endoscopic delivery system
US8032222Jun 18, 2008Oct 4, 2011Loushin Michael K HDevice for electrically and mechanically stimulating a compartment in a body
US8032223Oct 1, 2009Oct 4, 2011Intrapace, Inc.Randomized stimulation of a gastrointestinal organ
US8046085Oct 20, 2010Oct 25, 2011Enteromedics Inc.Controlled vagal blockage therapy
US8060197Mar 16, 2007Nov 15, 2011Bio Control Medical (B.C.M.) Ltd.Parasympathetic stimulation for termination of non-sinus atrial tachycardia
US8103349Dec 15, 2009Jan 24, 2012Enteromedics Inc.Neural electrode treatment
US8190261May 4, 2009May 29, 2012Intrapace, Inc.Gastrointestinal anchor in optimal surface area
US8204591Jan 24, 2007Jun 19, 2012Bio Control Medical (B.C.M.) Ltd.Techniques for prevention of atrial fibrillation
US8239027Mar 12, 2010Aug 7, 2012Intrapace, Inc.Responsive gastric stimulator
US8265758Mar 24, 2006Sep 11, 2012Metacure LimitedWireless leads for gastrointestinal tract applications
US8275460Aug 26, 2011Sep 25, 2012Loushin Michael K HDevice for electrically and mechanically stimulating a compartment in a body
US8295932Dec 5, 2006Oct 23, 2012Metacure LimitedIngestible capsule for appetite regulation
US8301256Jun 4, 2006Oct 30, 2012Metacure LimitedGI lead implantation
US8301265Sep 10, 2007Oct 30, 2012Medtronic, Inc.Selective depth electrode deployment for electrical stimulation
US8326438Oct 19, 2009Dec 4, 2012Bio Control Medical (B.C.M.) Ltd.Techniques for nerve stimulation
US8364269Oct 19, 2009Jan 29, 2013Intrapace, Inc.Responsive gastric stimulator
US8369952Jul 7, 2011Feb 5, 2013Enteromedics, Inc.Bulimia treatment
US8386056Feb 24, 2005Feb 26, 2013Bio Control Medical (B.C.M.) Ltd.Parasympathetic stimulation for treating atrial arrhythmia and heart failure
US8417329May 11, 2008Apr 9, 2013Metacure Ltd.Analysis and regulation of food intake
US8423130Oct 23, 2008Apr 16, 2013Metacure LimitedOptimization of thresholds for eating detection
US8427953May 31, 2011Apr 23, 2013Corrigent Systems Ltd.Tunnel provisioning with link aggregation and hashing
US8442841Oct 20, 2006May 14, 2013Matacure N.V.Patient selection method for assisting weight loss
US8463404Jan 14, 2007Jun 11, 2013Metacure LimitedElectrode assemblies, tools, and methods for gastric wall implantation
US8494637Jan 18, 2011Jul 23, 2013Ebr Systems, Inc.Systems and methods for implantable leadless gastrointestinal tissue stimulation
US8494655Oct 12, 2011Jul 23, 2013Bio Control Medical (B.C.M.) Ltd.Electrode devices with resistive elements
US8537682May 26, 2011Sep 17, 2013Orckit-Corrigent Ltd.Tunnel provisioning with link aggregation
US8538533Oct 19, 2011Sep 17, 2013Enteromedics Inc.Controlled vagal blockage therapy
US8538542Jul 21, 2011Sep 17, 2013Enteromedics Inc.Nerve stimulation and blocking for treatment of gastrointestinal disorders
US8541232Mar 8, 2007Sep 24, 2013Kwalata Trading LimitedComposition comprising a progenitor/precursor cell population
US8571651Feb 7, 2011Oct 29, 2013Bio Control Medical (B.C.M.) Ltd.Techniques for reducing pain associated with nerve stimulation
US8571653Feb 7, 2011Oct 29, 2013Bio Control Medical (B.C.M.) Ltd.Nerve stimulation techniques
US8609082Jan 25, 2006Dec 17, 2013Bio Control Medical Ltd.Administering bone marrow progenitor cells or myoblasts followed by application of an electrical current for cardiac repair, increasing blood supply or enhancing angiogenesis
US8612016Aug 18, 2005Dec 17, 2013Metacure LimitedMonitoring, analysis, and regulation of eating habits
US8666495Mar 18, 2005Mar 4, 2014Metacure LimitedGastrointestinal methods and apparatus for use in treating disorders and controlling blood sugar
US8685724Jun 1, 2005Apr 1, 2014Kwalata Trading LimitedIn vitro techniques for use with stem cells
US8715181Apr 27, 2012May 6, 2014Intrapace, Inc.Feedback systems and methods for communicating diagnostic and/or treatment signals to enhance obesity treatments
US8725271Jul 11, 2013May 13, 2014Bio Control Medical (B.C.M.) Ltd.Electrode device with elongated electrode
US8755893Jun 20, 2012Jun 17, 2014Bluewind Medical Ltd.Tibial nerve stimulation
USRE35755 *Sep 10, 1993Mar 24, 1998Scimed Life Systems, Inc.Balloon
USRE39200Jan 17, 1997Jul 18, 2006Boston Scientific Scimed, Inc.Apparatus for treating a blood vessel
EP0101595A1 *Aug 8, 1983Feb 29, 1984Vital Signs, Inc.Biological probes and methods of making same
EP2298166A1Apr 16, 2002Mar 23, 2011Metacure LimitedAnalysis of eating habits
WO1985002779A1 *Dec 24, 1984Jul 4, 1985Univ Leland Stanford JuniorCatheter for treatment of tumors and method for using same
WO1994001172A1 *Jul 9, 1993Jan 20, 1994Donald D DouglasA percutaneously placed electrical intestinal pacemaker
WO1997031679A2 *Feb 21, 1997Sep 4, 1997Vladimir Nikolaevich DirinBiological electrostimulator of viscera
WO1998048890A1 *Apr 6, 1998Nov 5, 1998Bourgeois IvanMethod and apparatus for electrical stimulation of the gastrointestinal tract
WO1999003532A2 *Mar 30, 1998Jan 28, 1999Medtronic IncApparatus for treatment of gastric arrhythmias
Classifications
U.S. Classification607/40, 604/21, 331/46, 331/111, 331/52, 607/71
International ClassificationA61M25/00, A61N1/36
Cooperative ClassificationA61N1/36007
European ClassificationA61N1/36B