Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3415287 A
Publication typeGrant
Publication dateDec 10, 1968
Filing dateAug 21, 1964
Priority dateAug 21, 1964
Also published asDE1504803A1
Publication numberUS 3415287 A, US 3415287A, US-A-3415287, US3415287 A, US3415287A
InventorsHeslop William Rosse, Vincent L Lanza, Edward C Stivers
Original AssigneeRaychem Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Protective covering and article
US 3415287 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Dec. 10, 1968 w. R. HEsLoP ET AL 3,415,287

PROTECTIVE COVERING AND ARTICLE F11-ed Aug. 21, 1964 /f Z E2/f2.5.

RECO VERED JAC/(7 MAS 77C P/PE United States Patent O 3,415,287 PROTECTIVE COVERING AND ARTICLE William Rosse Heslop, Vincent L. Lanza, and Edward C.

Stivers, Atherton, Calif., assignors to Raychem Corporation, Redwood City, Calif., a corporation of California Filed Aug. 21, 1964, Ser. No. 391,090 11 Claims. (Ci. 13S-141) ABSTRACT OF THE DISCLOSURE Means for covering pipes or other substrates comprising a heat recoverable member having an adhesive material which is tacky at normal temperature on one side thereof and an anti-tack coating which is soluble in the adhesive at the recovery temperature of the heat recoverable member and covering said tacky adhesive so that the non-tacky surface is exposed. This covering means may be used to cover pipes or other substrates by positioning the covering means adjacent to the substrate and applying heat such that the heat recoverable member changes dimension and forces the adhesive and dissolved anti-tack coating into contact with the substrate to produce a covered article in which the forces exerted on the adhesive by the heat recoverable member and the substrate will cause the adhesive to till any holes or abrasions which may be made in the outer surface of the covering.

BACKGROUND OF THE INVENTION The present invention relates to a means and process for protecting pipe and similar articles against corrosion and other damage by applying a protective coating thereto. The present invention relates to a means and process which are particularly suitable for protecting pipe joints and the like, but which have a wide variety of other applications.

It has long :been known to apply protective coatings over metal pipe to impart corrosion resistance thereto. Such coatings are particularly useful when applied to steel pipe and tubing which is to be buried, eg., those used for gas transmission lines. One of the most suitable methods of applying such coatings to metal pipe has been to extrude a plastic coating over the pipe. Generally, this coating is a hard, abrasion resistant, electrically insulative plastic, e.g., vinyl polymers such as polyvinyl chloride, polyethylene, cellulose esters such as cellulose acetate or cellulose acetate butyrate, copolymers such as copolymers of ethylene and alkyl acrylates, etc. More recently, it has been proposed to provide protective coatings to pipes by first applying a coating of viscous material to the pipe and then extruding an outer protective coating over the viscous material, e.g., in the manner disclosed in Patent No. 3,012,585. Such coatings have several advantages over simple extruded coatings including better adhesion of the outer coating to the pipe and, in some cases, a certain degree of self-sealing capability. This self-sealing capability results from a certain amount of presure being exerted on the viscous inner coating by the outer coating due to post-extrusion shrinkage and/or pressure exerted by the soil in which the pipe is buried. Thus, provided the inner coating is sufficiently fiowable and suiiicient pressure is exerted by the outer coating, the inner coating may be forced into punctures made in the outer coating by this pressure.

In general, the prior art coatings have been found satisfactory for lengths of pipe as such when it has been possible to extrude the covering over the pipe. However, in practice, it is invariably necessary to use several lengths of pipe in a given pipe line and it is necessary to form joints between these lengths of pipe. These joints are,

ICC

of course, fabricated in the lield while the pipe line is being laid. Thus, there is no practical method available for extruding the protective coating for the pipe joint over the joint. Generally, the joints have been covered with tape-wound coatings. However, such tape wound joint coverings have been found to be substantially inferior to the extruded coatings provided on the body of the pipe. Thus, the great majority of failures of pipe lines have occurred at the joints where the tape-wound or other coatings have permitted corrosion or other damage which has resulted in failure. It has long been apparent to those skilled in the art that there is a pressing need for an effective means and process for protecting pipe joints, but no satisfactory solution to this problem has previously lbeen proposed. The same problems are associated with attempts to install or repair protective coverings on lengths of pipe in the iield.

Thus, it is a primary object of the present invention to provide a means and process for providing highly effective protective coverings to metallic pipes, pipe joints and the like.

It is another object of the present invention to provide a means and a process for applying protective coatings to pipes and pipe joints which may simply and easily be applied to the joint while the pipe line is being laid.

It is a further object of the present invention to provide a means for applying protective coating to pipes and pipe joints comprising a heat dimensionally unstable article, a owable viscous material and an antitack coating over the viscous material, the antitack coating going into solution in the viscous material under the temperature conditions at which the dimensionally heat unstable article can be caused to change dimension and the use thereof.

Still another object of the present invention is to provide a means for applying a protective coating to pipes and pipe joints comprising an elastic memory material, a mastic-type coating on at least one surface of the elastic memory material and a wax antitack coating covering the mastic-type material, the Wax going into solution in the mastic-type material under the temperature conditions at which the elastic memory material undergoes recovery and the use thereof.

Other objects and advantages of the present invention, it is believed, will be apparent from the following detailed description of Specific embodiments thereof when read in connection with the drawings.

Briefly, the present invention comprises a means suitable for functioning as a protective coating for pipes and pipe joints comprising a dimensionally heat unstable member, a mastic-type viscous material which is fiowable at ordinary temperatures under the pressure exerted by the dimensionally heat unstable member on at least one surface of the dimensionally heat unstable member, and an antitack coating covering the mastic-type material which antitack coating goes into solution in the mastictype material under the temperature conditions at which the dimensionally heat unstable member undergoes recovery and remains in solution at service temperature. This means may be applied to a pipe joint which it is desired to protect by sliding the means along the pipe until it is positioned adjacent to the exposed joint. ln most cases, the body of the pipe will, of course, already have been provided with a protective coating, usually an extruded coating. Heat is then applied to the means of the present invention to cause the dimensionally heat unstable member to change dimension in such a manner as to urige the mastic-type material toward the pipe joint Preferably, the pipe is preheated immediately before the means of the present invention is applied, particularly when external coverings are applied to large diameter pipes, eg., on the order of three feet. As previously noted, the antitack coating goes into solution in the mastic-type material under these temperature conditions and will dissolve into the mastic-type material without substantially affecting the properties thereof and remain-s in solution at service temperature.

The means of the present invention will often be tubular in shape with the mastic-type coating being provided on the inner surface thereof and the antitack coating covering the mastic-type coating. However, it may also Ibe a tape capable of being wound around the article to be protected or may have any other suitable shape. When used to protect pipe joints, the means of the present invention is also preferably provided with a longitudinal dimension lsufficient to cause it to overlap with the -protective covering already present on the pipe in Such a manner as to effectively bond the means of the present invention to a portion of the existing protective coating as well as the exposed metal portion of the pipe and joint. Thus, when the dimensionally heat unstable member is caused to recover the mastic-type material will be forced into contact with the exposed pipe and a portion of the pre-existing protective coating. When the means of the present invention is allowed to cool after recovery, a highly effective protective covering for the pipe joint results. In addition, the dimensionally heat unstable member of the means of the present invention continues to apply pressure to the mastic-type material after the means of the present invention has been installed due to residual internal stresses generated by phase change to the crystalline state caused by the recovery process and to the difference in coefficient of thermal expansion between the dimensionally heat unstable member and the pipe, This continued application of pressure imparts a highly effective self-sealing capability to the means of the present invention after it has been installed since it causes the mastic-type material to flow into any puncture or hole which may be made in the protective covering. As previously noted, the mastic-type material is selected so as to be capable of -owing at service temperatures such as room temperature and substantially lower temperature as llow as C. and lower under the pressure exerted by the dimensionally heat unstable member after installation of the means of the present invention on a pipe or pipe joint. In this regard, it has been found desirable to use mastictype materials which are thixotropic.

Referring now to the drawings:

FIGURE l is a transverse cross section of the means of the present invention.

FIGURE 2 illustrates the manner in which the means of the present invention may be positioned over a pipe joint preparatory to providing a protective covering thereon.

FIGURE 3 illustrates a pipe joint after a protective covering has been applied according to the present invention.

FIGURE 4 illustrates a pipe which has been provided with an internal protective covering according to the present invention.

As shown in FIGURE l, the means of the present invention comprises a dimensionally heat unstable member 11, the inner Isurface of which is provided with mastictype material 12. Antitack coating 13 is provided over mastic-type material 12. Antitack coating 13 is an essential part of the present invention because in the absence of this coating it has been `found that the extremely strong adhesive properties of mastic-type coating 12 result in making it almost impossible to slide a tubular member having a mastic coating on its inner surface along a pipe of any substantial length without the mastic sticking to the outer surface of the pipe and causing the mastic to be removed from the inner surface of the tubular member and/ or causing the tubular member to adhere to the outer surface of the pipe at a location where such adhesion is not desired.

The primary difficulty presented by any attempt to provide the mastic-type material 12 with an antitack coating is that such a coating, by its very nature, would be expected to interfere with the adhesive properties of the mastic-type material -at the time when it is desired to cause the mastic-type material to adhere to a pipe joint or the like. Stated differently, the antitack coating must effectively prevent the mastic material from adhering to other objects while the protection means is in storage and while the protection means is `being positioned over the joint by sliding it along the length of the pipe and at the same time must not interfere with the adhesion of the mastic to the pipe joint when the protective covering is actually applied.

One of the primary contributions of the present invention is the use of suitable waxes as an antitack coating. lt has been found that Some waxes will provide eective antitack properties at ordinary temperatures and also go into solution in mastic under the temperature conditions at which dimensionally heat unstable materials undergo recovery. Thus, there is a unique and unexpected threeway c-oaction between the dimensionally heat unstable member, mastic-type material and wax antitack coating of the means of the present invention.

In the practice of the present invention, it is preferred to use a material having the property of elastic memory such as that disclosed in United States Patent Number 3,086,242 as the dimensionally heat unstable member 11. As is well known to those skilled in the art, materials having the property of elastic memory are dimensionally heat unstable and may be caused to change shape and/ or dimension simply by the application of heat. Elastic memory may be imparted to polymeric materials by first extruding or otherwise molding the polymer into a desired shape. The polymer is then cross-linked or given the properties of a cross-linked material by exposure to high energy radiation, eg., a high energy electron beam, initiation of cross-linking by exposure to ultra-violet irradiation, or by chemical means, eg., peroxides` when polyolefins are used. The cross-linked polymeric material is then heated and deformed and then locked in the deformed condition by quenching or -other suitable cooling or, in the alternative, the same process can be accomplished at room temperature by using greater force to deform the polymer. The deformed material will retain its shape almost indefinitely until exposed to a temperature sufficient to cause recovery, e.g., approximately 250 F. in the case of polyethylene. Among the polymers which may be so processed are polyoleiins such as polyethylene and polypropylene, polyamides, polyurethanes, polyvinylchloride, polyvinylideneuoride, and elastomeric materials such as elastomeric polyurethanes and those disclosed in copending application Ser. No. 65,953, tiled Oct. 31, 1960, the disclosure of which is incorporated by reference herein. The property of elastic memory may also be imparted to materials having the properties of cross-linked polymers such as polytetrauoroethylene and very high molecular weight polyolens or vinyl polymers such as polyvinyl chloride. While elastic memory materials such as those described above are preferred for use in the present invention, it is to be understood that other dimensionally heat unstable materials such as those disclosed in United States Patent No. 2,027,962 may be used.

The present invention is further illustrated by the following examples.

Example I A protection means of the present invention was prepared by providing the inner surface of an irradiated polyethylene tube having an inside diameter of 1.55 inches with a coating of mastic (67l8-31F manufactured by Farboil Company) having a thickness of 20 mils. The irradiated polyethylene possessed the property of elastic memory such that it would decrease in diameter upon the application of suicient heat and had a recovery temperature of 275 F. A coating of approximately 0.0005 inch of wax was applied over the mastic. The resultant wax lm was virtually invisible, tack free and imparted an even gloss to the mastic. The wax used was Trewax-nonslip liquid floor wax and contained carnauba wax as 70% of the total solids.

As illustrated in FIGURES 2 and 3, this protective means comprising polyethylene 11, mastic 12 and wax 13 was positioned over a joint between pipes 14 and 15. As shown in FIGURE 2, there is a clearance between the protective means and the pipe to permit easy positioning of Ithe protective means. Pipes 14 and 15 were standard commercial pipes which had been provided with protective coatings 16 and 17, respectively, yby extruding polyethylene over an initial mastic coating l(not shown) on the pipe. Such protected pipe is available commercially as X-Tru-Coat pipe (manufactured by Republic Steel Corporation) and is believed to be the most economically satisfactory protected pipe presently avail-able. Polyethylene tube 11 was one foot long while the exposed metal pipe surface had an axial length of four inches.

The pipe was preheated to approximately 220 F. for 45 seconds before the protective sleeve was positioned in the manner illustrated in FIGURE 2.. The assembly illustrated in FIGURE 2 was then exposed to a temperature of 275 F'. thereby causing polyethylene tube 11 to recover around pipes 14 and 15, and around weld 18. Under these temperature conditions, wax 13 was completely dissolved by mastic 12. As illustrated in FIGURE 3, the recovered polyethylene t-ube tightly gripped existing protective coverings 16` and 17 and the exposed portions of pipes 14 and 15 with mastic 12` lilling all spaces between polyethylene tube 11 and the remaining elements of the assembly.

The protected pipe joint prepared as described immediately above was then subjected to a comparison test with Ia length of X-Tru-Coat pipe without any splice and a length of such pipe in which the joint was protected with a mastic coated polyethylene tape wound around the joint, such tape being available commercially as X-Tru- Tape. A 0.04 inch diameter hole and a 1/32 inch wide slit two inches long were made in each specimen so that bare metal was exposed. The pipe ends were then sealed with rubber Stoppers and dipped in hot wax to form an electrically insulative coating and the specimens were immersed in tap Water.

After 315 days immersion, each specimen was examined. In the protective coating of the present invention, it was found that there was no rust in the hole and the mastic was extruding about A inch out of the hole while the slit was completely lled with mastic with only a small spot of rust at the center and at one end of the slit. In the X-Tru-Coat pipe without any splice therein, it was found that there was a substantial amount of rust in the hole with no mastic extruding therefrom and that there was rust in three quarters of the length of the slit with mastic being present only `at one end of the slit. In the X-Tru- Tape protected joint, it was found that the tape had partially delaminated on one side of the slit to form a gap about 0.3 inch Wide. The tape was also beginning to loosen near the top of the splice. In the tape protected splice, it was found that there was rust in the hole and severe rust in the slit.

Thus, this comparison clearly established that the pipe joint protection means of the present invention functioned in a manner far superior to that of tape protection and, in fact, better than the conventional extruded protection on the length of the pipe with no joint therein.

Example II A length of polyethylene tubing which had been irradicated to a dose of 15 megarads and which had been given the property of elastic memory such that it would increase in diameter upon the application of sufficient heat was provided with an outer coating of mastic (Johns-Manville Asbestos Fibrous Roof and Foundation Coating). The

polyethylene tubing had an outside diameter of 2.015 inches and the mastic layer was 20-30 mils thick. The mastic coating was provided with an outer coating of approximately 0.0005 inch of wax which imparted a tack-free surface on the mastic. The wax used was Trewax-nonslip liquid oor wax. The coated polyethylene tubing was then inserted into a length of aluminum pipe having an inside diameter of 2.082 inches. This assembly was then heated such that the tubing was exposed to a temperature of 575 F. until the tubing expanded and forced the Wax was completely dissolved by the mastic. As illusof the aluminum pipe. Under these temperature conditions, the was was completely dissolved by the mastic. As illustrated in FIGURE 4, the pipe 18 was thus provided with an effective protective lining comprising mastic 19 which had wax dissolved therein and expanded polyethylene tube 20.

Example III The protection means of the present invention is most suitable for protecting pipes and the like having large diameters as well as small diameters. In this example, a steel pipe having an outside diameter of 36 inches was provided with a protective covering. The protection means used in this example comprised an irradiated polyethylene tube having an inside diameter of 38 inches with a coating of mastic (6718-3113, manufactured by Farboil Company). The irradiated polyethylene possessed the property of elastic memory such that it would decrease in diameter upon the application of suicient heat and had a recovery temperature of 275 F. A coating of appropriately 0.0005 inch of wax was applied over the mastic. The resultant wax coated mastic was tack free. The wax used was Trewax-non-slip liquid lloor wax.

This protection means was six inches wide and was positioned over a section of bare pipe. The pipe was preheated for 45 seconds to a temperature of approximately 220 F. before the protective sleeve was positioned and the assembly was then exposed to a temperature of 275 F. thereby causing the polyethylene tube to recover around the pipe. Under these temperature conditions, the wax was completely dissolved by the mastic. The recovered polyethylene tube tightly gripped the pipe with the mastic filling all of the spaces between the inner surface of the polyethylene tube and the outer surface of the pipe.

A 0.04 inch diameter hole and a 1/32 inch wide slit two inches long were then made in the protective covering. Within 24 hours at room temperature, each of these apertures had been closed by the mastic which llowed into them. Thus, this protection means was clearly shown to possess effective self-sealing capability.

The present invention possesses other advantages in addition to those already discussed herein. One such advantage is the function of the Wax coating 13 to inhibit oxidation of mastic 12 during storage. It has been found that exposure of mastic to the atmosphere for substantial periods of time results in oxidation of the mastic which in turn has an adverse effect on the properties of the mastic, particularly the adhesive properties thereof. This deterioration due to oxidation is particularly acute when storage is at moderately elevated temperatures as often occurs in conventional industrial practice. Wax coatings such as that described in the preceding examples which are stable at temperatures up to F. and higher, effectively inhibit this oxidative deterioration.

In the preferred embodiment of the present invention wherein elastic memory materials are used to fabricate dimensionally heat unstable member 11, several additional advantages over and above those possessed by the broad concept of the present invention are obtained. One such advantage is the high degreee of penetration resistance of elastic memory materials comprising cross-linked polymers. This penetration resistance is, of course, of substantial importance with regard to many environments in which the present invention may be practiced, particularly those involving protecting pipe or other objects which are to be buried in the ground since such objects are subject to coming into contact with sharp stones or other buried objects which present the danger of damage to the protective covering. Another advantage results from the difference in coefficient of termal expansion between the elastic memory material and the metallic pipe or other substrate to which the means of the present invention is to be attached. This is particularly important with regard to the self-sealing characteristics of the protective means of the present invention. In addition to the compressive forces resulting from'the elastic memory properties of recoverable member 11, the fact that the coecient of thermal expansion of the elastic memory material will he greater than that of the metal of the pipe or other substrate to which it is applied will result in the contraction of the pipe on cooling to an extent which is less than the contraction of the elastic memory material even if the pipe is heated to the same temperature as the elastic memory material. Thus, an additional .pressure will be exerted by the recoverable member on the mastic material and substrate after the recoverable member has cooled which is greater than that exerted when the recoverable member is still hot after being caused to undergo recovery. The importance of this additional pressure is established by the preceding example wherein it was shown that the self-sealing properties of the protective coverings of the present invention are superior to conventional coverings which have been extruded over a pipe having a coating of mastic thereon.

While the foregoing description has emphasized the use of the present invention to -apply protective coatings to pipe joints, it is to be understood that it has a wide range of utility in addition to this specific use. In this regard it is important that the present invention may be used to to provide protective coverings on internal surfaces as described in Example II. Thus, the means of the present invention may be used to provide a protective covering over the internal surface of a pipe or pipe joint in those instances where a protective covering is desirable, e.g., where the entire internal surface of a pipe is provided with a protective covering to render it suitable for conveying corrosive liquids which would attack exposed metal surfaces. In such embodiments, the difference in coefficient of thermal expansion between the recoverable member and the pipe tends to cause the pipe and lining to separate but the mastic performs the highly desirable function of maintaining an effective bond between the two.

The mastic preferred for use in the present invention is a mixture of reclaimed rubber and asphaltic-based material made from the distillation of coal or petroleum products. The -mastics used should be thermoplastic, and should be thixotropic such that the viscosity thereof decreases with increases in shear. Mastics having viscosities of up to about 1013 centipoise at 25 C. have been found suitable for use in the present invention, but even more viscous materials could be used if they were suiciently thixotropic such that they would flow at ordinary temperatures under the pressure exerted by the dimensionally heat unstable member which forms a part of the protection means of the present invention. In general, the viscosity of the mastic at the recovery temperature of the dimensionally heat unstable member is preferably in the range of 103 to 106 centipoise. The softening point of the mastic, as measured by the ring and ball technique, is preferably in the range of 40 to 80 C. The interfacial tension of the mastic should be low and preferably on the order of to 40 ergs per square centimeter. The water absorption of the mastic should be low.

In general, the mastic-type substances which are most satisfactory for the present invention are materials which are quite tacky and sticky at room temperature. This stickiness or tackiness at room temperature is highly desirable since it enhances adhesion of the protection covering to the pipe. However, the sticky or tacky nat-ure of the mastic-type material represents a major problem in the fabrication, shipping and installation of articles of the type of those of the present invention. It often occurs that long periods of time must elapse between the coating of a dimensionally heat unstable member with mastic and the eventual installation of the dimensionally heat unstable member on a pipe, pipe joint or the like. If the mastic were exposed during this period of time, foreign substances of many types would be able to collect on the exposed mastic surface and tend to render it non-adhesive to the pipe, pipe joint or the like upon which it will ultimately be installed. Furthermore, the protective means must often be slid over a substantial length of pipe in order to locate it in the desired position. If the mastic coating is exposed, this sliding is rendered extremely difficult, if not impossible. Thus, the very stickiness which makes the mastic desirable also create competing problems.

A major contribution of the present invention is therefore to place an antitack coating over the mastic-type material. This antitack coating must have several properties. Perhaps the most important of these properties is that of going into solution in the mastic material under the temper-ature conditions at which the dimensionally heat unstable member undergoes recovery remaining in solution at service temperatures. The antitack coating hrnust be miscible with the mastic material, and yet yat or near room temperature its rate of solubi'ltiy into the mastic must be extremely low so as to assure a long effective life for the antitack coating. In addition, when the antitack material is `dissolved into the mastic during recovery, it must not interfere with the adhesive properties of the mastic.

It has been found that certain hard waxes which melt in the range of 50-90 C. are particularly effective as antitack coatings 'and carnauba wax is preferred. It has also been found that wax-rosin mixtures, particularly beeswax-rosin mixtures are effective. Other waxes which are contemplated for use in the present invention are ouricury, candelil'la and palm waxes.

Preferably, the wax is applied to the mastic in the 4form of an emulsion. Preferably, the wax emulsion will form a clear, transparent lm upon drying. The antitack coating must of itself yand in combination with the mastic be noncorrosive. The melting point of the antitack material may be chosen at will, the choice depending upon the shelf life requirement of the antitack coating and the time and temperature conditions which will be used to cause the dimensionally heat unstable member to undergo recovery. In general, since the time for recovery of many dimensionally heat unstable members will lbe quite short, antitack materials of relatively low molecular -weight are preferred.

In addition to the -antitack material disclosed in the foregoing examples, it has been found that an emulsion vcomprising parts water, three parts polyvinyl alcohol, 0.5 part sodium lauryl sulphate and 50 parts beeswaxrosin mixture, all parts being by weight, is most suitable for use in the present invention. The proportions of beeswax and rosin may be varied with increasing amounts of beeswax tending to reduce the shelf life at F. of the antitack coating. A beeswax-rosin mixture comprising 60% beeswax and 40% rosin has been found to provide excellent shelf life characteristics and good adhesion characteristics of the mastic after recovery. The adhesion characteristics after recovery improve with increasing amounts of beeswax and a 70-30 mixture has been found to give fair shelf life (slight tackiness 'after one week) at 120 F. and excellent adhesion after recovery.

When carnauba =wax emulsions are used, it has been found that emulsions containing 10-l5% solids, which are 80-90% alkyl wax acid esters, are particularly suitable.

In general, the thickness of the antitack coating should be at least about 0.0001 inch and for most purposes, coatings of more than 0.02 .inch are not required. HOW- ever,'even thicker wax coatings may be required for particular uses or for particularly large articles for asymmetrical or oddly shaped articles.

The thickness of the mastic coating on the protection means of the present invention may vary within wide limits depending upon the s ize of the article which it is desired to protect. For example, an inside mastic coating having a thickness of 0015-0020 inch has been found preferable for recoverable members having an expanded inside. diameter of about 1.5 inches while a thickness of 002-0025 inch has been found preferable for recoverable members having expanded inside diameters of about 2-3 inches. Outside mastic coatings on expandable articles of the same size may be substantially thicker. However, even very thin coatings of mastic have been found to function in a reasonably satisfactory manner. For example, in certain circumstances coatings as thin as 0.003 inch have been effective.

Having fully described the present invent-ion, it is to be understood that it is not to be limited to the specific details set forth, but is of the full scope of the appended claims. l

We claim:

1. A tubular article suitable for functioning as a protective covering comprising a dimensionally heat unstable member comprising a memory material, at least one surface of said dimensionally heat unstable member being provided with a coating of mastic, said mastic being covered over its entire exposed surface by an antitack coating said antitack coating comprising a wax which goes into solution in said mastic under the temperature conditions at which said dimensionally heat unstable member will undergo a change in dimension.

2. A tubular article suitable for functioning as a protective covering comprising a dimensionally heat unstable member, said dimensionally heat unstable member comprising an elastic memory material, said dimensionally heat unstable member being provided with a coating of mastic on at least one surface thereof, said mastic being covered over its entire exposed surface with an antitack coating, said antitack coating comprising a wax which goes into solution in said mastic under the temperature conditions at which said dimensionally heat unstable member may be `caused to undergo a change in dimension.

3. The article of claim 2 wherein said elastic memory material is a cross-linked polymer.

4. The article of claim 2 wherein said elastic memory material is an irradiated polymer.

5. The article of claim 2 wherein said elastic memory material is a chemically cross-linked polymer.

6. An article su-itable for functioning as a protective coating comprising a dimensionally heat unstable member, said member comprising a memory material tubular and .being capable of contracting radially inwardly upon being exposed to heat at its recovery temperature, the internal surface of said member being provided with a mastic coating, said mastic coating being covered over its entire exposed surface with an antitack coating, said antitack coating comprising a wax which goes rinto solution in said mastic under the temperature conditions at which said dimensionally heat vunstable member undergoes recovery.

7. A tubular article suitable for functioning as -a protective covering comprising a dimensionally heat unstable member, said member comprising an irradiated polyoleiin having the property of elastic memory, at least one surface of said dimensionally heaty unstable member being provided with a mastic coating, said mastic coating being covered over its entire exposed surface with an antitack coating, said antitack coating comprising a wax capable of going into solution in said mastic under the temperature conditions at which said dimensionally heat unstable member will undergo a change in dimension.

`8. The article of claim 7 wherein said polyoleiin is polyethylene.

9. The article of claim 7 wherein said elastic memory material comprises a copolymer of ethylene and an alkyl acrylate.

10. An article suitable for functioning as a protective coating comprising a dimensionally heat unstable member comprising a memory material, said member being tubular and being capable of expanding radially outwardly upon being exposed to heat at its recovery temperature, the external surface of said member being provided with a mastic coating, said mastic coating being covered over .its entire exposed surface with an antitack coating, said antitack coating comprising a wax which goes into solution in said mastic under the temperature conditions at which said dimensionally heat unstable member undergoes recovery.

11. The article of claim 2 wherein said elastic memory material has been irradiated with ultraviolet radiation.

References Cited UNITED STATES PATENTS 1,984,649 12/1934 McDonald et al. 117-135 X 2,915,413 12/1959 Ragan et al 117-168 X 3,012,585 12/1961 OBrien 13S-141 3,035,113 5/1962 Danehuk.

2,992,457 7/ 1961 Harrison.

3,184,358 5/1965 Utz.

3,226,807 1/1966` Orr.

3,243,211 3/1966 Wetmore 174-84 3,297,819 1/1967 Wetmore 174-127 3,312,772 4/ 1967 Sherlock 174-84 XR LAVERNE D. GEIGER, Primary Examiner.

B. KILE, Assistant Examiner.

U.S. Cl. X.R. 174-84

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1984649 *Dec 7, 1929Dec 18, 1934Standard Oil Co CaliforniaProtective coating and objects coated therewith
US2915413 *Jun 13, 1955Dec 1, 1959United Biscuit Company Of AmerNon-blocking adhesive sheet
US2992457 *Mar 28, 1960Jul 18, 1961Grace W R & CoMethod of joining pipe and tubing
US3012585 *Jun 6, 1957Dec 12, 1961Royston LabPipe coating with flowable inner layer
US3035113 *Dec 7, 1959May 15, 1962Bendix CorpMethod and means for terminating braided insulation and shielding of a wire cable
US3184358 *Jun 20, 1961May 18, 1965Multifol Patentverwert AgMethod of forming laminated plastic tubing
US3226807 *Jan 20, 1964Jan 4, 1966Hill Hubbell CompanyMethod of constructing a continuous pipeline
US3243211 *Jul 23, 1962Mar 29, 1966Raychem CorpConnector with fusible material
US3297819 *Aug 10, 1964Jan 10, 1967Raychem CorpHeat unstable covering
US3312772 *Aug 23, 1963Apr 4, 1967Raychem CorpConnectors with heat recoverable members
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3631898 *Jan 13, 1970Jan 4, 1972Harley Alfred HInsulating pipe joint fitting and method of making same
US3744823 *Feb 25, 1972Jul 10, 1973Shaw Pipe Ind LtdHigh temperature pipeline joints
US3814139 *Aug 23, 1972Jun 4, 1974Stone Ind CorpInsulating connector
US3877490 *Jun 8, 1973Apr 15, 1975Nippon Kokan KkSteel pipes provided with plastic coatings
US3908267 *Mar 22, 1974Sep 30, 1975Stone Ind CorpMethod of applying an insulating connector
US3957382 *Jun 11, 1974May 18, 1976Raychem CorporationMethod of processing fusible inserts
US4035534 *Sep 1, 1972Jul 12, 1977Raychem CorporationHeat-shrinkable laminate
US4070044 *Jan 22, 1976Jan 24, 1978Phillips Petroleum CompanyPolymer pipe connection and method to make it
US4075752 *Apr 15, 1974Feb 28, 1978Robert Bosch GmbhMethod of making distributor assembly bearing structures and the like
US4135553 *Jun 16, 1975Jan 23, 1979Raychem CorporationRecoverable sleeve
US4168192 *Jun 10, 1977Sep 18, 1979Raychem CorporationProcess for making recoverable tubular article
US4188979 *Sep 12, 1978Feb 19, 1980Nitto Denki Kogyo Kabushiki KaishaProtective cover for a thermoresponsive tube
US4207364 *Jun 10, 1977Jun 10, 1980Raychem CorporationHeat-shrinkable laminate
US4374881 *Mar 24, 1981Feb 22, 1983Eaton CorporationHeat recoverable connector
US4450871 *Apr 21, 1982May 29, 1984Sumitomo Electric Industries, Ltd.Heat-shrinkable tubes
US4465309 *Aug 13, 1981Aug 14, 1984Umac, Inc.Connecting or repair device
US4549752 *May 25, 1984Oct 29, 1985Umac, Inc.Connector for tubular members
US4693501 *Jul 23, 1986Sep 15, 1987American Standard Inc.Refrigeration tubing joint
US4709948 *Feb 18, 1986Dec 1, 1987Raychem LimitedFibre reinforced polymeric article
US4731273 *Jul 8, 1985Mar 15, 1988Minnesota Mining And Manufacturing CompanyHeat-recoverable closure with crosslinked pressure-sensitive adhesive
US4732412 *Dec 19, 1986Mar 22, 1988Nv Raychem S.A.Coated recoverable articles
US4756781 *Sep 29, 1986Jul 12, 1988Etheridge David RMethod of connecting non-contaminating fluid heating element to a power source
US4790544 *Oct 13, 1987Dec 13, 1988Raychem GmbhExpansible seal
US4835365 *Apr 6, 1987May 30, 1989Etheridge David RDe-ionized fluid heater and control system
US4875957 *Jun 30, 1988Oct 24, 1989Etheridge David RMethod of connecting a non-contaminating fluid heating element to a power source
US5033775 *Apr 3, 1989Jul 23, 1991Caoutchouc Manufacture Et PlastiquesConnecting or branching device for flexible hoses
US5302428 *Sep 29, 1992Apr 12, 1994Shaw Industries Ltd.Multi-layer wraparound heat shrink sleeve
US5988689 *Dec 26, 1997Nov 23, 1999Central Plastics CompanyHeat-shrinkable electrofusion fittings and methods
US6736430 *Mar 3, 2000May 18, 2004Tyco Electronics Raychem NvMethod of sealing a joint between two pipes
US7093860 *Apr 7, 2004Aug 22, 2006Ncf Industries, Inc.System for joining sections of composite reinforced line pipe
US7361384 *Jan 14, 2005Apr 22, 2008Covalence Specialty Materials Corp.Corrosion protection system for transport pipe
US8079600 *Aug 23, 2006Dec 20, 2011Nok CorporationSealing structure
US20030080561 *Oct 3, 2002May 1, 2003Martin Ronald Allen Ezra Martin RonUnderground couplings
US20060159942 *Jan 14, 2005Jul 20, 2006Mamish Abboud LCorrosion protection system for transport pipe
US20080054629 *Jul 5, 2005Mar 6, 2008Bussan Nanotech Research Institute, Inc.Tube End Connector
US20090066038 *Aug 23, 2006Mar 12, 2009Daihachi ShojimaSealing structure
US20130113210 *Jun 7, 2011May 9, 2013Logstor A/SShrink sleeve for joining insulated pipes
US20130307260 *Jan 31, 2012Nov 21, 2013Uponor Innovation AbClamping ring
US20150091293 *Aug 18, 2014Apr 2, 2015The Boeing CompanyApparatus for preventing spark propagation
USRE30447 *Feb 23, 1979Dec 16, 1980J. L. Clark Manufacturing Co.Insulating connector
USRE30817 *Feb 22, 1979Dec 8, 1981J. L. Clark Manufacturing Co.Method of applying an insulating connector
DE2647122A1 *Oct 19, 1976Apr 27, 1978Raychem CorpDistended shrink-fit sheating in a temporary hollow support - for use where heating elements cannot be used, e.g. mines
DE102007038257A1Aug 13, 2007Jan 29, 2009Stucke, Walter, Dipl.-Ing.Molding for steel natural gas-pipeline, is fabricated as branch or curve and/or as matching piece or adapter
EP0079610A1 *Nov 16, 1982May 25, 1983Ube Industries, Ltd.Method of forming covering protecting layer on joint between covered steel pipes
EP0172039A2 *Aug 16, 1985Feb 19, 1986Raychem LimitedFibre reinforced polymeric article
EP0172039A3 *Aug 16, 1985Apr 22, 1987Raychem LimitedFibre reinforced polymeric article
EP0173541A2 *Aug 21, 1985Mar 5, 1986Raychem GmbhMethod of forming a duct seal
EP0173541A3 *Aug 21, 1985Aug 12, 1987Raychem GmbhMethod and means for sealing
EP1384931A1 *Jul 7, 2003Jan 28, 2004Walter StuckeInsulation and insulating method for the welded joint of a pipe that is insulated with the exception of the welding zone
WO2007062871A1Dec 3, 2006Jun 7, 2007Skumtech AsCorrosion protection for anchors in rock
Classifications
U.S. Classification138/141, 174/84.00R, 285/381.5, 174/DIG.800, 285/289.1, 285/915
International ClassificationF16L58/10, F16L59/02, H02G15/18, B29C61/06, F16L47/22, F16L13/02, F16L58/18
Cooperative ClassificationH02G15/1806, Y10S174/08, B29C61/06, F16L58/181, F16L47/22, Y10S285/915, F16L13/0272, F16L59/021, B29K2023/00, F16L58/1063, B29C61/0616
European ClassificationF16L13/02F3, F16L58/18A, F16L47/22, F16L59/02B, F16L58/10C2, B29C61/06B2, H02G15/18B, B29C61/06