Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3419079 A
Publication typeGrant
Publication dateDec 31, 1968
Filing dateSep 27, 1967
Priority dateOct 23, 1965
Publication numberUS 3419079 A, US 3419079A, US-A-3419079, US3419079 A, US3419079A
InventorsJames H Current
Original AssigneeSchlumberger Technology Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Well tool with expansible anchor
US 3419079 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Dec. 31, 1968 J; CURRENT WELL TOOL WITH EXPANSIBLE ANCHOR Original Filed Oct. 23, 1965 M3076: u/r207,

ATTORNEY nited States ABSTRACT OF THE DISCLOSURE Apparatus for use in locking the normally retracted parts of a well packer in expanded positions in a well bore, including an inner member having a buttress thread form on its outer periphery, an outer member having a helical groove therein, and the resilient, helically arranged lock means engaging said thread form and movably disposed in said groove.

This is a division of application Ser. No. 503,503, filed Oct. 23, 1965, now Patent No. 3,371,716.

This invention relates generally to subsurface well tools and, more particularly, to a permanently set bridge plug for blocking fluid flow in a well conduit.

A bridge plug which is permanently set in a well bore to isolate zones from one another usually has a mandrel which carries normally retracted slips and packing elements. At setting depth, the slips and packing elements are expanded into anchoring and sealing contact with the well bore wall. In order for the bridge plug to remain permanently set, it is desirable to provide a locking mechanism which functions to prevent relative movements of parts once the slips and packing elements have been expanded.

It is accordingly an object of the invention to provide a new and improved locking device for maintaining parts of the bridge plug in expanded positions in a well conduit.

Apparatus in accordance with the present invention comprises an elongated tubular body which carries normally retracted anchors and packing. The body is provided with a fixed abutment and a movable abutment. The latter abutment is movable along the body to shift the normally retracted anchors into engagement with the well conduit and to foreshorten and expand the packing. A locking device between the movable abutment and the body locks the bridge plug permanently set in a well conduit. The locking device includes a resilient element which is cooperable with a thread form on the body and is movably disposed in an helical groove on the movable abutment, permitting relative movement between the body and the movable abutment in one direction to enable expansion of the anchors and packing, but preventing relative movement in the other direction to lock the plug in expanded.

The novel features of the present invention are set forth with particularly in the appended claims. The present invention both as to its structural organization and utility together with further objects and advantages thereof may best be understood by way of illustration and example of one embodiment when taken in conjunction with the accompanying drawings, in which:

FIG. 1 is a longitudinal half-section view of a new and improved bridge plug with parts in their normally retracted positions for running-in to a well conduit;

FIG. 2 is a fragmentary enlarged view of the new and improved locking device of the present invention; and

FIG. 3 is a fragmentary view of the various part of the bridge plug when permanently set in a well conduit.

atent Turning now to FIG. 1, the bridge plug includes an elongated tubular body having a lower guide and abutment 11 integrally formed on its lower end. Centrally of the body is a lower blind bore 12 and an upper threaded bore 13. Between these two bores is a solid plug 14 which prevents any fluid flow through the body. The threaded bore 13 provides a means for attaching the body to a conventional setting tool (not shown) in a well-known manner.

Movably disposed on the upper portion of the body 10 is an upper abutment 15. The upper abutment is in the form of an annular sleeve which is sized for reception on the tubular body. Between the sleeve and body is a locking device 16 for unidirectionally permitting longitudinal relative motion therebetween. The structure and function of the locking device 16 will be more fully described hereinafter.

Abutting an upper shoulder 17 on the lower abutment 11 is an integral, expansible slip member 18 having downward facing wickers or teeth 19 on the periphery thereof. An annular inclined surface 20 is formed on the interior of the slip member 18. Another integral, expansible slip member 21 abuts a lower shoulder 22 on the movable abutment 15 and is substantially identical to the lower slip member but is oppositely disposed and has upwardly facing wickers or teeth 23 on the periphery thereof. Both slip members have peripheral grooves 24 which receive encircling expansible restraining bands 25, 26 of differing predetermined strengths. The bands aid in initially holding the slips in inoperative positions as well as allowing various elements of the bridge plug to be selectively 0perated in response to setting force of predetermined magnitudes.

Each slip element is made radially expansible by providing a first series of radially cut slots 27 around the circumference thereof and providing a second series of like slots 28 alternately disposed between the first series. These slots extend from one end of each slip element to points 29 near the respective opposite ends of each slip element. Although the slip elements are integrally formed, they have sufiicient resiliency to be readily expanded into engagement with the conduit wall.

An annular elastomer packing element 30 surrounds the body 10 and is disposed between an upper expander 31 and a lower expander 32, the elements being slidably carried on body 10. The upper expander is generally frusto-conically shaped. The outer surface 33 thereof is overlaid by a frusto-conical thin metal sheet 34 which extends from near the base of the cone to its apex. The upper expander is cooperable with the upper slip element 21 to laterally shift the slip element outwardly of the body and into gripping engagement with the conduit as the slip element is driven downwardly over the expander during setting of the bridge plug. The lower expander 32 and thin metal overlay 35 are identical in configuration to the upper expander and metal overlay but are oppositely disposed and are cooperable with lower slip element 18 to laterally shift the lower slip element outwardly of body 10.

The expanders 31, 32 are made of an elastomeric material such as Hycar having a significantly greater durometer hardness value than the annular elastomer packing element 30. By way of example, packing element 30 may have a durometer hardness value in a range of -70, while the elastomer expanders 31, 32 may have durometer hardness values in the range of -100. A characteristic of such elastomers is that they behave like incompressible fluids. External forces applied thereto will generate internal pressures within elastomers which may cause cold flow or extrusion along paths of least resistance. But, if the system is closed, the elastomers will transmit such pressures to the enclosure, there being no substantial change in volume of the elastomers.

The expanders 31, 32 have suflicient hardness to cause radial expansion of the integral expansible slip elements 18, 21 as the abutments force the slips over the expanders. Metal overlays 34, 35 reduce the frictional drag. Eventually, the wickers or teeth 19, 23 engage the wall of the conduit. A part of the forces transmitted by the abutments to the slip elements during setting of the bridge plug acts to move expanders 31, 32 toward each other to foreshorten and expand packing element 30. Also, peripheral portions 37, 38 of the expanders flow outwardly to engage the wall of conduit 36. When the teeth have engaged the wall as shown in FIG. 3, both the elastomer expanders 31, 32 and the elastomer packing element 30 are confined by the wall of conduit 36, the plug body and the metal overlays 34, 35 which are backed by the wall engaged slips elements. The system is then closed. Further increased setting forces generate further pressures within the elastomers. Pressures within packing element 30 create a tight pack-off between the conduit 36 and body 10. Pressures generated within expanders 31, 32 act outwardly on the slip elements to dig the wickers or teeth 19, 23 into the Wall of the conduit and firmly anchor the bridge plug therein.

As previously mentioned, the radially outer portions 37, 38 of the expanders 31, 32 cold flow outwardly to engage the wall of conduit 36. These annular portions, being of high hardness relative to packing element 30 serve to prevent cold fiow of extrusion of the packing element under pressure. It -will also be noted that the slip elements 18, 21 themselves serve as back-ups for both the outer portions 37, 38 of the expanders and the packing element 30 to aid in effectively packing-off the annulus between the conduit 36 and body 10.

Turning now to the locking device 16 between the upper movable abutment and body 10, attention is directed to FIG. 2. An upper peripheral portion 39 of body 10 has a special thread form 40 formed thereon. This thread form is a modified coarse buttress variety and defines a helical thread track 41. An upper beveled surface of the thread form 40 provides a helical cam surface 42. Internally formed in movable abutment 15 is a helical groove 43, the groove having the same lead as thread form 40. Received in track 41 and partially in groove 43 is a locking device in the form of a rectangular wire coil spring 44. The inside diameter of the spring in its u-nflexed condition is approximately equal to the diameter of thread track 41. The width of the spring is slightly less than the depth of groove 43. If a downward force is exerted on abutment 15 to move it downwardly relative to body 10, cam surface 42 on thread form 40 acts to radially expand the coil spring 44 outwardly into groove 43 until the spring disengages from thread form 40. When the upper face 45 of the spring passes the lower face 46 of the thread form, the inherent resiliency of the spring will cause it to snap inwardly into track 41. Thus, it will be apparent that downward movement of the abutment 15 relative to body 10 is permitted. However, it will also be apparent that upward movement of the abutment relative to the body is not permitted. Abutment between the upper face 45 of spring 44 and the lower face 46 of thread form 40 locks the movable abutment and body together.

In operation, the elements of the bridge plug are assembled as shown in FIG. 1 and the plug is operatively connected to a setting tool which is capable of exerting an upward pull on body 10 and a downward push on abutment 15. Such setting tools are well known and need not be fully described here. The apparatus is then shifted downwardly through the well conduit to a predetermined setting point. When desired, the setting tool is actuated and an upwardly directed setting force isapplied to body 10 and a downwardly directed setting force is applied through a setting sleeve (not shown) to movable abutment 15. Generally, upper restraining band 25 is made to have less strength than lower restraining band 26 Therefore, as

upper abutment 15 moves downwardly on the body 10, the top slip element 21 is wedged over the expander 31 and expanded against the well conduit 36 prior to expansion of the lower slip element 18.

When the upper slip element 21 abuts the conduit wall, downward shifting of the movable abutment 15 halted and the applied setting forces cause body 10 with integral abutment 11 to move upwardly, wedging the lower slip element 18 over the lower expander 32 and expanding the lower slip element against the conduit wall. During this movement, the lower and upper elastomer expanders 31, 32 are moved toward each other to foreshorten and expand the annular elastomer packing element outwardly into firm sealing engagement with the wall of the well conduit. The outer peripheral portions 37, 38 of the upper and lower expanders are also deformed slightly and engage the conduit so that there is no substantial annular clearance space through which the relatively softer packing element 30 can cold flow or extrude. Further setting forces substantially increase pressure within the expanders 31, 32 which act on slip elements 18, 21 to cause teeth 19, 23 to dig into the wall of conduit 36.

As the upper abutment 15 is moving downwardly relative to the body 10, cam surface 42 on thread form causes the coil spring 44 to resiliently flex outwardly and into the helical groove 43. The spring repeatedly flexes and returns into the helical track 41 until the abutment 15 is in its lowermost position relative to body 10. When the elements of the plug are fully expanded, the aforementioned setting tool releases from the bridge plug automatically and since upward movement of the abutment 15 relative to the body is prevented by abutment between the upper face 45 of the helical coil spring 44 and the lower face 46 of threaded form 40, the bridge plug is locked in set condition.

Any tendency of the bridge plug to move upwardly in the well conduit will be resisted by the upper slip element 21, and conversely downward movement is resisted by the lower slip element 18. Pressure differentials acting across the plug from either above or below will only serve to more firmly anchor the plug in the well conduit.

It will be observed from the foregoing that applicant has provided a new and improved bridge plug which is economical to manufacture and will function to effectively plug fluid flow in a well conduit. The slip expanders prevent cold-flow or extrusion of the annular packing element as well as performing the function of wedging and expanding the slips outwardly and supporting the slips in gripping engagement with the well conduit. No heavy steel cones are used. After full expansion of parts of the bridge plug, it is permanently locked in set condition in the well conduit.

Since certain changes may be made in the above-disclosed apparatus without departing from the scope of the inventive concept involved, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.

What is claimed is:

1. Apparatus for use in a well conduit comprising: a body; normally retracted means on said body; an abutment movable in one direction along said body for shifting said normally retracted means into engagement with the conduit; and lock means for preventing movement of said abutment in a direction opposite to said one direction whereby said normally retracted means is maintained in engagement with the conduit, said lock means including a thread form on said body forming a helical track, an internal helical groove on said abutment, and a resilient lock member normally engaging said thread form and movably disposed in said groove.

2. In a well tool: a body; slip and expander means on said body; an abutment movably mounted on said body for coaction with said slip and expander means to shift said slips means outwardly of said body; and means 5 6 cooperable with said abutment and body for permitting 2,893,492 7/1959 Brown 166119 unidirectional relative movement therebetween, said last- 3,000,443 9/ 1961 Thompson 166135 mentioned means including a buttress thread form on said 3,105,556 10/ 1963 Raulins 166214 body, a helical groove in said abutment, and a resilient 3,236,309 2/1966 Conrad 166212 X helical lock member engaging said thread form and mov- 5 3,244,233 4/ 1966 Villalon 166-134 X ably disposed in said groove. 3,311,171 3/1967 Castro 166-182 X References Cited DAVID H. BROWN, Primary Examiner. UNITED STATES PATENTS 2,737,248 3/1956 Baker 2s5 141 X 10 2,751,238 6/1956 Vegren 15114 X 166237; 151-14; 285318

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2737248 *Jul 10, 1950Mar 6, 1956Baker Oil Tools IncNonrotary threaded coupling
US2751238 *Jul 2, 1952Jun 19, 1956Vegren Conrad RQuick acting connector
US2893492 *Nov 15, 1954Jul 7, 1959Brown Cicero CWell packers
US3000443 *Aug 19, 1957Sep 19, 1961Dresser IndBridging plug
US3105556 *May 28, 1959Oct 1, 1963Otis Eng CoAnchoring and sealing devices
US3236309 *Jul 9, 1962Feb 22, 1966Martin B ConradRetrievable packer holddown device
US3244233 *Apr 4, 1963Apr 5, 1966Halliburton CoRetrievable bridge plug
US3311171 *Jun 29, 1964Mar 28, 1967Baker Oil Tools IncRetrievable well packer
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3623551 *Jan 2, 1970Nov 30, 1971Schlumberger Technology CorpAnchoring apparatus for a well packer
US4659119 *Dec 29, 1983Apr 21, 1987Dril-Quip, Inc.Latching connector
US5906240 *Aug 20, 1997May 25, 1999Halliburton Energy Services, Inc.Slip having passageway for lines therethrough
US6685236 *Jun 28, 2002Feb 3, 2004Weatherford/Lamb, Inc.Helically wound expandable tubular insert
US6938697Mar 16, 2004Sep 6, 2005Weatherford/Lamb, Inc.Apparatus and methods for tubular makeup interlock
US6981547Dec 6, 2002Jan 3, 2006Weatherford/Lamb, Inc.Wire lock expandable connection
US6994176Mar 5, 2004Feb 7, 2006Weatherford/Lamb, Inc.Adjustable rotating guides for spider or elevator
US7004264Mar 14, 2003Feb 28, 2006Weatherford/Lamb, Inc.Bore lining and drilling
US7013997Dec 15, 2003Mar 21, 2006Weatherford/Lamb, Inc.Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7017950Sep 24, 2003Mar 28, 2006Weatherford/Lamb, Inc.Expandable connection
US7025135May 22, 2003Apr 11, 2006Weatherford/Lamb, Inc.Thread integrity feature for expandable connections
US7036610Jul 6, 2002May 2, 2006Weatherford / Lamb, Inc.Apparatus and method for completing oil and gas wells
US7040420Nov 19, 2003May 9, 2006Weatherford/Lamb, Inc.Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7073598Jul 23, 2003Jul 11, 2006Weatherford/Lamb, Inc.Apparatus and methods for tubular makeup interlock
US7083005May 31, 2005Aug 1, 2006Weatherford/Lamb, Inc.Apparatus and method of drilling with casing
US7090021Mar 16, 2004Aug 15, 2006Bernd-Georg PietrasApparatus for connecting tublars using a top drive
US7090023May 9, 2005Aug 15, 2006Weatherford/Lamb, Inc.Apparatus and methods for drilling with casing
US7093675Aug 1, 2001Aug 22, 2006Weatherford/Lamb, Inc.Drilling method
US7096982Feb 27, 2004Aug 29, 2006Weatherford/Lamb, Inc.Drill shoe
US7100710Dec 18, 2003Sep 5, 2006Weatherford/Lamb, Inc.Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7100713Apr 2, 2001Sep 5, 2006Weatherford/Lamb, Inc.Expandable apparatus for drift and reaming borehole
US7107663Sep 12, 2003Sep 19, 2006Weatherford/Lamb, Inc.Expandable coupling
US7108084Dec 24, 2003Sep 19, 2006Weatherford/Lamb, Inc.Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7117957May 25, 2004Oct 10, 2006Weatherford/Lamb, Inc.Methods for drilling and lining a wellbore
US7128154Jan 29, 2004Oct 31, 2006Weatherford/Lamb, Inc.Single-direction cementing plug
US7128161Sep 20, 2005Oct 31, 2006Weatherford/Lamb, Inc.Apparatus and methods for facilitating the connection of tubulars using a top drive
US7131505Feb 22, 2005Nov 7, 2006Weatherford/Lamb, Inc.Drilling with concentric strings of casing
US7137454May 13, 2005Nov 21, 2006Weatherford/Lamb, Inc.Apparatus for facilitating the connection of tubulars using a top drive
US7140445Mar 5, 2004Nov 28, 2006Weatherford/Lamb, Inc.Method and apparatus for drilling with casing
US7147068Dec 5, 2003Dec 12, 2006Weatherford / Lamb, Inc.Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7165634Oct 2, 2003Jan 23, 2007Weatherford/Lamb, Inc.Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7188687Jul 27, 2004Mar 13, 2007Weatherford/Lamb, Inc.Downhole filter
US7191840Mar 5, 2004Mar 20, 2007Weatherford/Lamb, Inc.Casing running and drilling system
US7213656Apr 26, 2004May 8, 2007Weatherford/Lamb, Inc.Apparatus and method for facilitating the connection of tubulars using a top drive
US7216727Dec 21, 2000May 15, 2007Weatherford/Lamb, Inc.Drilling bit for drilling while running casing
US7219744Nov 29, 2005May 22, 2007Weatherford/Lamb, Inc.Method and apparatus for connecting tubulars using a top drive
US7228901Dec 1, 2005Jun 12, 2007Weatherford/Lamb, Inc.Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7240928Sep 17, 2003Jul 10, 2007Weatherford/Lamb, Inc.Tubing connection arrangement
US7264067Oct 1, 2004Sep 4, 2007Weatherford/Lamb, Inc.Method of drilling and completing multiple wellbores inside a single caisson
US7284617May 20, 2004Oct 23, 2007Weatherford/Lamb, Inc.Casing running head
US7303022Apr 27, 2004Dec 4, 2007Weatherford/Lamb, Inc.Wired casing
US7311148Feb 9, 2004Dec 25, 2007Weatherford/Lamb, Inc.Methods and apparatus for wellbore construction and completion
US7325610Mar 5, 2004Feb 5, 2008Weatherford/Lamb, Inc.Methods and apparatus for handling and drilling with tubulars or casing
US7334650Feb 2, 2004Feb 26, 2008Weatherford/Lamb, Inc.Apparatus and methods for drilling a wellbore using casing
US7360594Mar 5, 2004Apr 22, 2008Weatherford/Lamb, Inc.Drilling with casing latch
US7370707Apr 5, 2004May 13, 2008Weatherford/Lamb, Inc.Method and apparatus for handling wellbore tubulars
US7413020Mar 5, 2004Aug 19, 2008Weatherford/Lamb, Inc.Full bore lined wellbores
US7503397Jul 29, 2005Mar 17, 2009Weatherford/Lamb, Inc.Apparatus and methods of setting and retrieving casing with drilling latch and bottom hole assembly
US7509722Mar 5, 2003Mar 31, 2009Weatherford/Lamb, Inc.Positioning and spinning device
US7578043Jun 8, 2006Aug 25, 2009Weatherford/Lamb, Inc.Coupling tubulars
US7588078 *Feb 2, 2006Sep 15, 2009Baker Hughes IncorporatedExtended reach anchor
US7617866Sep 8, 2005Nov 17, 2009Weatherford/Lamb, Inc.Methods and apparatus for connecting tubulars using a top drive
US7650944Jul 11, 2003Jan 26, 2010Weatherford/Lamb, Inc.Vessel for well intervention
US7712523Mar 14, 2003May 11, 2010Weatherford/Lamb, Inc.Top drive casing system
US7730965Jan 30, 2006Jun 8, 2010Weatherford/Lamb, Inc.Retractable joint and cementing shoe for use in completing a wellbore
US7857052May 11, 2007Dec 28, 2010Weatherford/Lamb, Inc.Stage cementing methods used in casing while drilling
US7887103Feb 7, 2007Feb 15, 2011Watherford/Lamb, Inc.Energizing seal for expandable connections
US7895726May 18, 2004Mar 1, 2011Weatherford/Lamb, Inc.Tubing connector and method of sealing tubing sections
US7938201Feb 28, 2006May 10, 2011Weatherford/Lamb, Inc.Deep water drilling with casing
US8136216Jul 14, 2009Mar 20, 2012Weatherford/Lamb, Inc.Method of coupling expandable tubing sections
US8276689May 18, 2007Oct 2, 2012Weatherford/Lamb, Inc.Methods and apparatus for drilling with casing
USRE42877Jul 9, 2010Nov 1, 2011Weatherford/Lamb, Inc.Methods and apparatus for wellbore construction and completion
DE3426848A1 *Jul 20, 1984Jul 11, 1985Dril Quip IncEinrastende verbindung
Classifications
U.S. Classification166/206, 411/262, 411/929, 166/237, 285/318
International ClassificationE21B33/129
Cooperative ClassificationE21B33/1293, E21B33/129, Y10S411/929
European ClassificationE21B33/129, E21B33/129L