Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3425105 A
Publication typeGrant
Publication dateFeb 4, 1969
Filing dateSep 23, 1965
Priority dateSep 23, 1965
Publication numberUS 3425105 A, US 3425105A, US-A-3425105, US3425105 A, US3425105A
InventorsGulde Charles James
Original AssigneeGulde Cement Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Apparatus for making concrete facing bricks with varied color and texture
US 3425105 A
Abstract  available in
Images(4)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Feb. 4,1969- J GULDE 3,425,105

C. APPARATUS FOR MAKING CONCRETE FACING BRICKS WITH VARIED COLOR AND TEXTURE Filed Sept. 23, 1965 Sheet of 4 INVENTOR.

CHARLES JAMES GULD ATTORNEY 3,425,105 BRICKS MG CONCRETE FACING coma AND TEXTURE mmnu - Sheet uuuunn INVENTOR.

ATTORNEY Feb. 4, 1969 c. J. GULDE- 3,

' APPARATUS FOR MAKING CONCRETE FACING BRICKS WITH VARIED COLOR AND TEXTURE Filed Sept. 23, 1965 Sheet 3 of 4 F/G/l F G. /2 CHARLES JAMES GULDE ATTORNEY IN VEN TOR.

Feb. 4, 1969 J. GULDE 3,425,105

APPARATUS FOR MAKING CONCRETE FACING BRICKS WITH YARIED COLOR AND TEXTURE Filed Sept. 23, 1965 Sheet 4 r'4 FIG. /3 l 25s\ |7a L 1 25m 170k I 25s; L 169/ 175 I781 CHARLES JAMES GULDE INVENTOR.

ATTORNEY I74 u 229 I68 I73 United States Patent APPARATUS FOR MAKING CONCRETE FACING 3 Claims ABSTRACT OF THE DISCLOSURE This disclosure comprises a process of and apparatus for producing concrete bricks. The apparatus comprises a cooperative combination of a block making machine slurry spraying apparatus and a slurry flow and spray control arrayed and interconnected to rapidly coat the vertical walls of the mold chambers of the block making machine on each short cycle of its block producing operation in a manner utilizing the action of the machine to distribute colored pigment in the slurry on the brick surface as desired. The disclosure also comprises the product of such a process. The product is a concrete brick with a sufliciently smooth and attractively colored surface to be used as a facing or outside surface building unit. The process provides for applying colors as color mixes to a portion of one or more vertical faces of mold chambers in a block making machine prior to adding concrete mix thereto and rapidly thereafter adding concrete mix and vibrating the mold to compact the mix and concurrently distribute over the surface of the material in the mold portions of the color mix to achieve a desired color effect; the color mix applied to the mold surfaces may be changed according to a predetermined pattern on each batch of bricks. The process is capable of considerable variation. The product, according to one embodiment thereof, has a smooth and colored surface. The concrete bricks produced by the process of this disclosure have improved mechanical characteristics as well as attractive appearance. One embodiment of the product according to this disclosure has the general appearance of a clay brick that has undergone substantial aging.

This invention relates to concrete bricks for building purposes.

Accordingly, one object of this invention is to provide apparatus for producing a new and useful concrete brick, i.e., a brick that may be used for the exterior facing of a building but which is made of concrete.

Another object of this invention is to provide apparatus for producing an improved concrete brick.

Yet another object of this invention is to provide an apparatus for producing colored and/or imperforate appearing bricks.

Yet another object of this invention is to provide apparatus for producing concrete facing brick with the colored components and the support components mutually interpenetrating at the surface of the bricks and the color components of the concrete being specifically distributed on the brick surface according to a variety of plans and effects.

Other objects of this invention will become apparent to those skilled in the art on a study of the below drawings which form a part of the specification and wherein the same numerals refer to the same parts throughout.

FIGURE 1 is a perspective view of the apparatus of this invention, comprising a conventional block making apparatus operatively attached to a pigment slurry spray and control subassemblies to produce the product of this 'ice invention; the stamp subassembly 71 is here shown in its uppermost position;

FIGURE 2 is, generally, a front perspective view of the zone 2 of the apparatus shown in FIGURE 1; more particularly, this view shows the mold frame 50 and related parts of the block making apparatus as seen along the line of discharge from the center spray head 126;

FIGURE 3 is a top and side oblique view of a single brick made according to this invention;

FIGURES 4, 5, 6, 7, 8, and 9 are, respectively, views of the faces of the block shown in FIGURE 3 along the direction of the arrows 4, 5, 6, 7, 8, and 9, respectively;

FIGURE 10 is a diagrammatic perspective view of the main subassemblies of the apparatus shown in FIGURE 1; this figure is a composite figure: it shows in dotted lines a pallet in its position prior to when the feed drawer moves over the mold frame 50 and shows a pallet 86 in full lines in its position after the concrete bricks have been formed by vibration and are stripped from mold frame 50 and are ready for transfer to the discharge conveyor 89;

FIGURE 11 is a microphotograph View of zone 11 of FIGURE 5;

FIGURE 12 shows a microphotographic view of zone 12 of FIGURE 5; this is shown to the same scale as in FIGURE 11;

FIGURE 13 is an overall diagrammatic view of the spray sequence controller subassembly showing the electrical apparatus elements and their connections for control of the sequence in which the spray subassemblies are actuated;

FIGURE 14 is a diagrammatic representation of a spray timer control subassembly for feed and discharge of one of the spray subassemblies;

FIGURE 15 is a diagrammatic showing of overall relations of the major subassemblies which perform the process steps of this invention; and

FIGURE 16 is a portion of a brick wall produced with the bricks of this invention.

The apparatus 16 according to this invention, to perform the process and provide the product of this invention comprises a block making apparatus 17 in operative combination with a pigment slurry spraying subassembly 19.

The apparatus 17 is a standard block making machine such as in U.S. Patent No. 2,366,780. It comprises a bin and chute subassembly 20, a feed distributor subassembly 26, a motor and frame subassembly 21, a mold and vibrator subassembly 30, a stamp and stripper subassembly 32, and a pallet feed and conveyor subassembly 36.

The bin and chute subassembly 20 comprises a conventional bin 18 and, operatively connected thereto, a discharge chute therefor, 22. A slidable valve plate 24 is located at the bottom of the chute 22, seals it and provides for controlling the discharge of material therefrom. A mixer 265 feeds concrete mix 35 into the bin 18.

The feed distributor subassembly 26 comprises a movable feed drawer 25 and a movable cutoff plate subassembly 28. The drawer 25 is located below the chute 22 and separated therefrom by the valve plate 24. The feed drawer is moved between its rearmost or feed position shown in solid lines in FIGURE 2 and FIGURE 10, which is to the rear (as herein described) of the mold frame 50 and its forward discharge position, shown in dotted lines in FIGURE 2, by its actuation subassembly 29.

The mold and vibrator subassembly 30 comprises a mold frame 50 with a plurality of like rectangular chambers therein such as 51, 52, 53, 54, 55, and 56. The mold frame is supported on a pallet as 85. The pallet 85 is supported on resilient pier members as 41 and 42. Frame 50 has a vibratory subassembly as 43 on each side there- 3 of. Subassembly 43 comprises eccentric weight members as 44A and 44B firmly fixed on a shaft 45. The shaft 45 is rotatably mounted in hearings in mold ears 48 and 49 which ears are firmly attached to the mold frame 50. Each shaft as 45 is driven, as by pulley, 46, by motor as 61.

The motor and frame subassembly 21 comprises the block making machine frame 66 mounted on the foundation 67, and mold vibration motors 61 and 62 mounted on the frame 66. The mold vibration motors 61 and 62 each drive a pulley, as 46, by a belt, as 47, between each motor and pulley. The motor 61 drives a pulley 46 on one side of the mold frame 50 and another similar drive wheel pulley serves to transmit power from the motor 62 to a vibration generating subassembly similar to 43 on the other side of frame 50. The frame subassembly 66 is provided with a feed drawer motor and drive subassembly 68 which is operatively connected to the feed drawer actuation subassembly 29 (as described in U.S. Patent No. 2,366,780).

The stamp and stripper subassembly 32 comprises a set of stamps as 71 through 76 which match and enter the chambers such as chambers 51 through 56 respectively in the frame 50. A stamp drive mechanism 69 is supported on frame 66 for the stamp subassembly 32 (as described in U.S. Patent No. 2,366,780).

The conveyor subassembly 36 comprises the conveyor frame 80 on which are supported conventional conveyor chains 82 and 83 and pallets as '84, 85, 86, and 87. The conveyor feed portion 88 passes pallets as 84 and 85 to the supports, as 41 and 42 therefor below the mold frame 50. The pallets as 86 and 87 with the plastic bricks thereon move away from the frame 50 on the discharge portion 89 of the conveyor. Details of such conventional structures are given in U.S. Patent No. 2,366,780.

The pigment slurry spray subassembly 19 comprises a slurry tank subassembly 92, a slurry pipe and valve subassembly 94 and a slurry flow and spray control subassembly 96.

The slurry tank subassembly comprises three similar tanks 101, 102 and 103 each of 55 gallon capacity and each is firmly supported on a tank support frame 104 at a level substantially higher than the mold frame subassembly 50. In the preferred embodiment the bottoms of tanks 101, 102 and 103 are all at the same level and 20 feet above the top of mold frame 50. Each tank as 101, 102, and 103 is connected by its discharge line as 105, 106, and 107 at the bottom thereof to a one-way check valve 109, 110, 111, respectively.

The slurry pipe and valve subassembly 94- comprises check valves 109, 110, 111; metering conduits 113, 114, 115; vent lines 117, 118, 119; spray heads 125, 126, 127; vent line valves 135, 136, 137; discharge head valves 138, 139, 140; a compressed air reservoir tank 132; air manifold line 134; air inlet lines 121, 122, 123; and air discharge control valves 128, 129, and 130. The check valves 109, 110, 111 are respectively connected to the top portion of downwardly extending vertical spray metering conduits 113, 114 and 115 respectively. Tho top of conduits 113, 114 and 115 are respectively connected to the inlet portion of vent line valves 135, 136, and 137 respectively; the outlet ends of valves 135, 136, and 137 are operatively connected to the bottom portion of upwardly extending vent lines 117, 118 and 119. Lines 117, 118, and 119 extend to the height of the top of tanks 101, 102 and 103. Valves 109, 110' and 111 are below valves 135, 136 and 137. Below the connection of valves 109, 110 and 111 thereto, each vertical spray metering conduit line as 113, 114 and 115 is operatively attached to an air inlet line, as 121, 122, and 123 respectively and, at its bottom end to a slurry discharge spray head, as 125, 126, and 127, respectively. The air inlet lines 121, 122, and 123 are provided with air discharge control valves 128, 129 and 130 respectively; and such valves control the air flow to the corresponding spray head for that line from the air reservoir tank 132 by air manifold line 134.

The tank 132 is operatively attached to a conventional air compressor 133 therefor, and its indicator controller 147.

The spray lines 113, 114 and are rigid 1 OD. steel pipes and at their lower end, adjacent the spray head therefor are provided with spray head valves 138, 139 and 140 respectively, which control the discharge from said lines 113, 114, and 115 through the spray heads therefor. The lines 113, 114 and 115 are firmly supported on frame 66 by a bracket 142 which is firmly attached to frame 66 and lines 113, 114 and 115. Thereby the heads 125, 126 and 127 are firmly supported to the front of the most forward extension of the feed subassembly 26 and above the top of the frame 50 and below the uppermost extension of the bottom of the stamp subassembly 71, as shown in FIGURES 1, 2 and 10. FIGURE 2 is taken along a view of the mold frame 50 as seen along the axis of slurry discharge spray head 126. Each spray head as 125, 126, and 127 is aligned to direct slurry from tanks 101, 102, and 103 respectively in a stream or spray to initially strike the back faces (the faces to the rear) of mold frame 50 of all the mold cavities or chambers such as 51, 52, 53, 54, 55, and 56, of frame 50.

The slurry flow and spray control subassembly 96 comprises a spray sequence controller subassembly and a spray timer controller subassembly 152. The subassembly 150 is operatively connected to and actuated by the stamp drive mechanism subassembly '69 and is operatively connected to and actuates one or all of the subassemblies of subassembly 152. Subassembly 152 is operatively connected to and actuates various valves of subassembly 94. The valves 138, 139, 140 and 128, 129 and 130 and 135, 136 and 137 are all actuated electromagnetically by relays therefor as below described for the valves of subassembly 153.

Subassembly 152 comprises a plurality of like individual spray subassembly timer control subassemblies 153, 154 and 155 for respectively the valves associated with each of the lines 113, 114 and 115 respectively. As these subassemblies 153, 154 and 155 are alike the description of subassembly 153 applies to the subassemblies 154 and 155.

The subassembly 150 comprises an actuator switch subassembly 160, step switch subassembly 162, sequence choice switches as 163 through and distribution lines 253, 254 and 255 all operatively connected.

Switch subassembly 160 comprises (a) a switch support bar 159 which is rigidly attached to frame 66 and firmly supported on foundation 67 and (b) a feeler switch subassembly 158. The subassembly 158 comprises a rigid casing 157 supported on bar 159. The casing supports a switch feeler arm and a switch 191. Arm 190 is operatively attached to switch 191 and spring means keeps arm 190 in extended position whereby the switch 191 is normally open. Switch 191 is connected at one end or terminal to a power source 192 and at its other end or terminal is connected by the actuator line 161 to Step switch 162. Arm 190 extends from casing 157; the arm 190 is actuated by contact with a link member, as 195, which is a part of the stamp drive mechanism 69. Arm 190 is moved by member 195 and actuates (closes) switch 191 'at the time the stamp or pressure head subassembly 71 is raised to its uppermost position as in FIGURE 1, because link 195 attached to subassembly 71 is then raised and strikes the arm 190: this striking and closing of switch 191 passes power from source 192 to electromagnetic drive piston 197 of step switch 162.

An arm 199 of piston 197 then turns step slave wheel 200 of step switch 162 one step in a predetermined sequence of spray compositions. The step switch control wheel 200 is firmly and operatively connected to and rotates rigid step switch shaft 202 about its axis and so actuates each of a set of eccentric sequential step switch plates as 203209 also attached to that shaft.

Each step switch plate as 203-209 actuates one of a pair of normally open electrical switch contact points as 213-219 respectively. Points 213 only are shown in closed position in FIGURE 13. One of each pair of points, as 213219 is connected to power source 192 and the other of each pair is connected to the solenoid coil of a relay switch as 223-229 respectively. Each relay solenoid coil serves to actuate a relay switch (as 230 and 231 for coils 223 and 224, respectively). Each such switch as 230 is operatively connected to one terminal of each of three switches as 163, 164 and 165.

Each switch 163, 164 and 165 is connected at its other terminal to lines 253, 254 and 255. Lines 253, 254 and 255 are each respectively connected to subassemblies 153, 154 and 155.

Each relay as 223, 224, 225, 226, 227, and 228 is connected by three switches (163, 164, 165 for relay 23; 166, 167, 168 for relay 224; 169, 170, 171 for relay 225; 172, 173, 174 for relay 226; 175, 176, 177 for relay 227; 178, 179, 180 for relay 228) whereby each position of the step relay switch 162 may actuate any or all of the subassemblies 153, 154 or 155. FIGURE 13 diagrammatically shows the relations of Table I.

In the preferred embodiment, switch 162 is a 9-position step switch and each closure of the switch 191 by movement of arm 195 of pressure head subassembly 71' sequentially brings one other plate of the step switch into operation, whereby a predetermined sequence of actuation of subassemblies 153, 154 and/ or 155 and spray from tank 101 and/ or tank 102 and/ or tank 103 into the mold 50 is achieved.

subassembly 153 comprises a first time delay subassembly 240, a second time delay subassembly 244, and electromagnetic solenoids 242, 243 and 245 actuating the pistons of valves 128, 138 and 135 respectively. These are operatively connected as shown in FIGURE 14. The representation of the electrically operated valves conforms in general to the Recommended Practices Committee of Instrument Society of America. Such solenoid operated control valves are conventional (pages 260 and 258 of Handbook of Measurement and Control, Instruments Publishing Co., 1951). The time delays are also conventional and may have a wiring diagram as shown in Figures 4-9', page 62, Typical Electronic Timing Relay Circuit, and as discussed at pages 410 of Maintenance Manual of Electronic Control, E. Miller, McGraw-Hill Book Co., New York, 1949, or Figures 206 and 208 (pages 240 244) of Electronics for Electricians and Radio Men, Coyne Electrical School, Chicago, 1945. The details of such conventional timers and solenoid valves are not the essence of this invention.

Time delay relay subassembly 240 has an adjustable control dial 247. This dial provides for adjustably setting and controlling the length of time of opening of valves 128 and 138 and the discharge from pipe 113. Time delay 244 has a similar adjustable control dial 248 to control the time of delay between closing of valves 128 and 138 and opening of valves 135 and discharge from line 113 and refill thereof from tank 101 after line 253 is activated by subassembly 150. subassemblies 154 and 155 have similar or commercially identical time delay subassemblies to control the time of discharge from filling of lines 114 and 115 respectively with the liquid from tanks 102 and 103, respectively after lines 254 and 255, respectively are actuated by subassembly 150.

According to this invention, the components of the concrete (sand, gravel, cement and water) are stored at 261, 262, 263, and 264, respectively, blended in a mixer 265, and passed to bin 18. The surfaces of the cavities in the mold assembly 50 are covered with a layer of pigment slurry by the subassembly 19. The chambers as 51-56 of the mold are then filled with concrete mix agitated and compacted. The peripheral layer of pigment slurry is then distributed over and through the surface layer of the concrete block thus formed. The resulting coated bricks as 270 are then stripped from the mold and forwarded over the conveyor system 36 to a kiln as 277 whereat they are cured.

According to this invention, a standard concrete mix 16 for a concrete block such as set out at Table II is fed into a tumbler 18, there well mixed and thence to the bin 20. The concrete passes via chute and accumulates above the valve subassembly plate 24. It opens to pass a given volume of concrete to a distributor subassembly 26 which has a lower cutoff plate 28 provided therewith. A pallet is moved to below the mold and held in contact therewith by piers as 41, 42. subassembly 19 sprays and then the distributor subassembly 26 moves forward from the position shown in FIGURE 10 to the dotted line position 27 shown in FIGURE 2. Thereafter (during its operating cycle) the cutoff plate 28 is moved backward from the forward position of the distributor subassembly 26 and the concrete mix material therefor carried in the distributor or drawer subassembly 25 drops into the block-forming orifices of the mold subassembly 30. The distributor subassembly frame then moves backward to the position shown in FIGURE 10 beneath chute 22.

When the feed drawer moves back to its original position it strikes off excess material from the top of the mold. A quantity of material adequate in amounts to make a commercial desirable block is left in the mold chambers but the top of this block is not completely packed. The mold is designed so that it is higher than the required height of the block. When the pressure head comes down and the vibrations continue the top of the block will be packed and smoothed out and thus completed. Although the vibration units as 43 have sufficient power to move the mold 50 through a larger amplitude than its actual operating amplitude, the jolting effect adequately packs the concrete in the mold and when the pressure head falls down upon the concrete material in the mold (which mold continues to vibrate) the top of 'the concrete material is rapidly packed and smoothed out. The pressure head or stamp subassembly 32 rests on the concrete material in the mold and progressively descends as the concrete becomes packed. The pressure head is limited so that the pressure head sinks only a predetermined amount into the mold and so forms blocks of universal height. Thereafter the pallet 85 is moved downward; the blocks in the mold follow the pallet and are stripped from the mold as the stamp subassembly 32 moves from its upper position shown in FIGURES 2 and 10 downward and pushes out the concrete bricks as 270 formed by the vibration onto the conveyor belt subassembly 36. The bricks are then passed to kilns as 277 whereat they are treated at F. for four hours; the temperature is then gradually raised at a substantially even rate to 360 F. over a period of two hours and then held at 360 F. for five hours. Following this five hour treatment the bricks are discharged.

The plastic masses 290 of compacted concrete mix produced by any of the procedures of Table III, parts A, B, and C, or the antique brick process herein described, may be separately treated in a conventional pressing apparatus 278 to provide rough surfaces on the future exterior surface of the brick by conventional mold or die machines and processes, e.g., as shown in US. Patents 415,774 and 415,773 prior to passage of those plastic concrete brick masses to kiln 277.

The mold frame 50 is supported on the frame 66 in slots that permit the mold to vibrate in a vertical plane; the belts between pulleys 46 and the motor as 61 driving such pulley prevents motion forward and rearward. Each mold cavity as 5156 is 8% deep, 2 /4 wide and 3%" long. The rear face of each chamber, as face 271 of chamber 56, forms the exterior or veneer face of each concrete brick formed as 270.

The tanks 101, 102, 103 are each provided with mixers therein and the mixers are driven by /3 HP. electric motors to keep the slurry therein uniformly mixed.

The lines 113, 114 and 115 are each 4 feet long from junction of line 113 of such line with the air line 121, 122 and 123 to the inlet of their discharge valves 138, 139 and 140, respectively. All these pipes have a 1 outside diameter and /4- internal diameter and are made of rigid steel. Sprays 125, 126 and 127 are of the same size and shape.

The components of the apparatus 16 are arranged, as shown in FIGURE 1 so that the operator at 260 may, While at a safe distance from the block making machine 17 and spray subassembly 19 conveniently view the bricks on the discharge conveyor 89 produced by the apparatus 16 and adjust control dials as 247, 249 and 250 of subassemblies 153, 154 and 155 respectively for control of duration of time of discharge of liquid from lines 113, 114 and 115.

The size distribution of the aggregate used for the concrete brick is given in Table II below.

TABLE II Gravel Sand Sieve size -200 Total weight, pereen The percentage of cement (by weight) for the concrete mix of Table II is 10% (A.S.T.M. type I, physical and chemical properties in A.S.T.M. C-l50-4l).

The same cement is used in the color mixes of Table III herebelow.

In regard to the spray subassembly action, at starting or zero time, subassembly 32 has finished its downward stripping motion and starts upward. About A second later, subassembly 32 has finished its upward motion, arm H moves arm 190 and closes switch 191 and actuates controller subassemblies 150 and 152.

When the solenoid controls as 242 and 243 open valves as 138 and 128 the pressure in the air compressor chamber 132 is applied against the liquid in line 113, valve 135 then being closed. Liquid in line 113 is then driven out of spray head 125. The spray head 125 discharges the liquid against all of the rearmost faces as 271 of the chambers as 56 in mold 50. The liquid stream so delivered is bounced back, in part, from such rear walls, and hits the front walls as 273 and side walls as 272 and 274 of each chamber. The thus impinged slurry adheres to the walls so impinged upon. Subsequent addition of the material from the drawer subassembly 26 into the mold chamber cavities and vibration of such material, principally in a vertical direction, results in a relatively even distribution of the impinged liquid slurry over the surfaces of the compacted material. This distribution of slurry over the surfaces of the compacted material is limited by the quantity of liquid delivered to each chamber; when more slurry is added there will be a relatively even distribution over all the surfaces of the mold chambers, e.g., surfaces 271, 272, 273, and 274 of chamber 56;

when the pressure in air tank reservoir 132 is high the stream of liquid will be bounced off more vigorously from the rear walls, as 271, to the front walls, as 273, of each chamber. When the volume of slurry delivered from a spray head as to the mold chamber as 56 is increased there will be more coverage of all surfaces of the brick. When the pressure in air line 134 is kept at 40 p.s.i.g., as shown by indicator-controller 147 and one full second is allowed from discharge from each of the lines 113, 114 and 115, a full and even coating of all faces of the bricks as 270 formed is obtained. When lesser time, i.e., 0.3 second is allowed for slurry discharge from lines 113, the surfaces of the brick as 281, 282, 283, 284, 285 and 286 appear as diagrammatically shown in FIGURES 3-9. The composition of the spray is then as in Table 111, part B, color mix 2 of red blend.

These bricks as 275 made by such process are not evenly colored throughout their entire surface; to the contrary, each surface as 281 of such brick has one portion as 287 that is a surface, which, to the naked eye, is as smooth as the outer surface of a conventional clay brick used for outside or finish or veneer purpose, while the remaining, lower portion 288 of that brick surface has an uneven appearance, as though the surface of such brick had worn or spalled slightly over the years. As such brick simulates an antique or used brick, such brick is referred to herein as antique brick. It may be made with any color pigment such a brown, green or yellow or with any combination of colors as is done by the process taught in Table III herebelow.

There is a slightly different appearance of each brick made in mold 50 at one time by this process when the surfaces of the brick are thus starved with an amount of slurry insufficient to cover the entire surface thereof. The surfaces 281, 282, 283, and 284 which extend from top (285) to bottom (286) surfaces are referred to herein as the longitudinal faces or surfaces of the brick. The surface 281 adjacent the rear mold surface, as 271 in mold chamber 56, is the one most completely covered by the color mix when the starvation mixture of the antique brick procedure is used.

The feed of concrete mixture to mold 50 begins after subassembly 17 spray has been completed, and usually takes about 2 to 3 full seconds; the striking of excess concrete mix takes about /2 second. The finished vibrations to compact the mix takes about 4 seconds and is followed by upward motion of subassembly 32 by the stamp and stripper drive subassembly 69, motion of the arm 195 thereof attached to subassembly 32 and closure of the theretofore open switch 191 and the procedure of coating the mold with a spray from subassembly 19 is repeated. The exact times for each of these steps of operation of apparatus 17 are conventionally controlled.

In the preferred embodiment of this invention the switches as 163-180 of subassembly 150 are arranged as in Table III, part B, to connect the lines 253, 254 and 255 and color mixes in tanks 101, 102 and 103 to operate in the sequences there shown and with the compositions of pigment slurry shown in Table III, part A. FIGURE 16 shows a section of wall made with concrete brick surfaced according to the Aspen Tones procedure of this invention. Other procedures using the apparatus of the invention are also shown in Table III (parts A, B, and C).

As each chamber in the mold 50 presents a somewhat different combination of surfaces to the spray. So there is a variation in the amount of slurry impinged upon surface of the rear face, as 271 in chamber 56, of each chamber in the mold 50. Each resultant brick as 275 therefore not only has a varied surface color and texture on each face thereof but also each brick in the batch has a surface color and texture different than the others in that same batch. This relationship occurs in the manufacture of antique brick as above described as well as in the processes performed according to the operations set out in Table III herebelow.

TABLE III [Part A] Color mix 1 Color mix 2 Color mix 3 Commercial Color Name Color, type and Cement, Water, Color Cement, Water, Color Cement, Water,

lbs. lbs. gals. lbs. gals. lbs. gals. Canadian Range R1599, 10# 10 20 k 10 20 YLO 1788, l# 10 20 Aspen Tones... YLO 1788, 15# 10 20 10 20 R0 3097, l0# 10 20 Tascosa Tinge VVF 525013, 25# 10 20 10 20 YLO 1788, l# 20 Aspen Tones, without yell0w 0 0 0 10 20 R0 3097, 10# 10 20 Tascosa Tinge, without yellow VVF 5250 F, 25# 10 20 10 20 0 0 0 Candaian Range, without yellow.-. R1599, 10# 10 20 10 20 Yellow Blend, all yellow YLO 1788, 5# 10 20 10 20 YLO 1788, l5# 10 20 Brown Blend, all brown VVF 5250 R, 10#. 10 20 5250 R, 10 20 V1370 5250 R, 10 20 Red Blend, all red R1599, 5t 10' 20 R1590, 10# 10 20 R1590, 10

' I 15 TABLE IV, PART B.COMPRESSIVE STRENGTH DATA 1 TABLE III (PART B).-SWITOH SEQUENCE OF COLOR MIX [DeS. C 62-62] XVITH EACH SWITCH FOR EFFECT OF TABLE III, Sample 6 7 8 9 10 Aver age Switch No. Width, inches 3. 65 3. 65 3.65 3. 65 Length, inches. 3. 65 3. 75 3. 70 3. 80 l 2 3 4 5 6 7 8 9 20 Gross area, sq. i 13. 69 13. 50 13.87

13. 32 Maximum load, lbs 103,000 93,000 93,000 112,

Canadian Range 1 2 3 1 1 2 3 1 1 Strength, p.s.i 7, 240 6,800 6,890 8,080 6,060 7,114 $spen Ta lles 1 g g 2 1 5 31 :1; 2 (3,000)

ascosa 1 The parenthetic figure is the corresponding figure for grade SW spen ge lgg fi 2 g g 2 3 Clay Facing Brick (A.S.I.M. 0-216). By test A.S.T.M. designation ascosa mg iwl ye C55-64%, Tentative Specifications for Concrete Building Brick, the Canadian Range, without yellow 1 1 2 1 1 2 1 1 2 results were as follows Yellow Blend, all yellow 1 2 a 1 2 3 1 2 3 sample Brown Blend, all brown. 1 2 3 1 2 3 1 2 3 1 5 m Red Blend, allred 1 2 3 1 2 3 1 2 2::::::::::::::::::::::: u

NoTE.C0lor mix No. 1 in tank 101, actuated by line 253; color mix 2 No. 2 in tank 102, actuated by line 254; color mix No. 3 in tank 103, actu- 5 5 902 ated by line 255.

Average 5. 630 TABLE III [Part C] Color and number Brick Red 1599 1 Yellow 1788 2 Crimson 6090 8 Salmon Pink 3097 Brown 5250 Black I MB222 Composition percent FE2O5 (90.51)- FezOs=H2O 86-88.. F0205, 98. F FezOs. 88-95 F8304. 7 Particle shape Spherical"... Acicular RhombohedraL. hedral Cubic. Hiding sq. ftjlb 700-1,100 275-375 1,000 1,250. 825 mesh retention, percent O.10 0.10 10 10. Size (n) 0.20.8 .2.8 15 2.4 Federal specification- TTP375 13-4075, 'ITP40 Specific gravity 5.15-5.20 4.03 3.54.7 4.96.

1 Produced by thermal decomposition and oxidation of iron salts. 2 Hydrated ferric oxide.

3 Precipitated noncalcined.

4 Precipitated ferrosoferric oxide.

As shown in FIGURE 16, the process of this invention The process of this invention producing 'Aspen Tones not only provides that there is variation of surface color produces 32 bricks, each 2%" x 3 /8" X 7%" per stroke and texture on each exposed brick surface, but also there f subassembly 32, a d, on each 700* strokes uses a total is variation of surface color between the bricks produced of 30 gallons of slurry and 10 pounds ement and 15 by the same process while utilizing conventional block pounds color per 20 gallons of Water in the slurry for an making apparatus, as 17 and 277, and-conventi nal ck overall average solids thickness of only about 3.3,u. (or

making materials (261, 262, 263, 264).' Further still, by less a below calculations).

this invention the variations are readily made, c.g., by The square inches of surface per brick are: changing pattern of switches as 163-180 as shown in Table III (parts A and B) as well as by changes in com- (3% x 7% X 2)+(7% x 2% X 2)+(3% X 2% x 2):

position of the color mixes used in tanks 101, 102 and 106 sq. inches 103 (vide Table III, part A). The intensity of coloration is readily varied by dials 247, 249 and 250. As shown in 30 n X 20 lbs. solid the procedures of Table III, parts A and B, entitled Yelga ons 20 l Slurry low Blend and Red Blend and Brown Blend the same 32 bricks 100 color may be applied to all portions of the brick sur- 700 strokesxw W faces.

The characteristics of the Aspen Tones concrete brick brick surface produced by the process of this invention are illustrated in test results from 10 samples shown in Table IV, here- Assuming for purpose of calculations a Specific gravity of below- 3 for the average of 5 to 20 lbs. of pigment (of specific TABLE IV, PART x-rns'r RESULT 1 gravity of 4 to 5) per 10 lbs. of cement, the thickness of Sample No 1 2 3 4 5 Average the cement and pigment layer is:

Width inches 3.65 3.05 3.65 3.05 3.55 3.55 Length, inch s 7.65 7. 05 7.65 7. e5 7. 05 7.65 10 5 1193- specgrav- 1 3X1O 4 in hei ht Height, inches. 2.25 2.25 2.25 2.25 2.25 2.25 Water g Absorption, percent.

24-hour submersion. 5.6 6.4 5 5 6.2 6.3 2 144 sq. inch/12 inch height 5-hour boiling 10.3 10.8 9.5 10.5 10.5 10.3

(17.0) or, expressed 111 microns,

l The parenthetic figure is the corresponding figure for grade SW clay facing brick (A.S.T.M. 0-216).

Z This is a 24-hour submersion test in cold water. 1.3 X 10' in. X 3 5-hour submersion in boiling water.

As cement particles average over 10,u in diameter (with an average surface area of 1600 sq. c./ gram) the layer of cement and pigment formed by the liquid slurry from tank 101, 102, and 103 isusually not complete. Nevertheless the coated surface portion as 287 of the bricks as 270 or 275 appears as smooth to the naked eye as does clay brick veneer facing. At about 8 magnification as shown in FIGURE 11, zone 11 of FIGURE 5 has some perforations 291-301. The same magnification of area 12 in zone 288 of brick 275 on which surface area where there is no coating is shown for comparison in FIGURE 12; such common concrete block surface appears rough to the naked eye. The antique brick process produces a gradation between the smooth portion concrete with a pigment-cement layer as 287 and the nonsmooth uncovered portions as 288 and zone 12 of FIG- URE 5.

Portland cement has a coefficient of thermal expansion of 5.9 inch/inch F. and concrete is normally accepted as having a coefiicient of thermal expansion of 5.5)(10- inch/inch F. (Concrete Manual by US. Department of Interior, Bureau of Reclamation, sixth edition, page 16; and Engineering Materials Handbook, Mantell, pp. 2324). However, the use of high pressure steam curing or autoclaving as used in the process of this invention decreases the amount of cement needed in the mix and provides a unit of very low reactivity to moisture expansion.

The concrete mix may be reduced in cement content, according to this invention, to reduce the coefficient of thermal expansion to 2.9x l0 (A.S.T.M. C426). The surface of the concrete bricks produced by the operation of Table III are also as smooth as clay brick to the naked eye and at 8X still appears fairly continuous and unbroken. The finely divided cement and pigment slurry here also does not, however, form a complete and unbroken surface and the expansion that such surface veneer does undergo does not accordingly provide severe stress to the more porous concrete meshwork therebelow because sueh surface is not in fact complete and the pores provide for stress relief. Therefore, this high cement content layer does not interfere with the low coefficient of thermal expansion of the mass of the concrete brick therebelow. The pore sizes are less than .015 inch in diameter and about .005 inch in diameter average.

Accordingly, the concrete bricks produced by the apparatus of this invention present exterior surfaces that appear smooth and continuous to the naked eye but do not suffer any mechanical disadvantage from a relatively high cement content in their surface layer. There is no mechanical disadvantage due to the high thermal coefficient of expansion of the cement (5.56 to 6x 10 in./in. F.) in the high cement content surface layer because the surface layer of cement and pigment, although complete to the naked eye (like a halftone or newspaper picture) is (like a newspaper picture formed of dots), not complete and so does not interfere with the design factor of lower (as low as 29x10 in./in. F.) coefficient of thermal expansion provided by the concrete mixes used in this invention. In the preferred embodiment of this invention the coefficient of thermal expansion of the bricks as 270 and 290 produced thereby is 3.3)(10' to 4.0 10- in./in. F., the same as clay brick (Engineering Materials Handbook, Mantell, pp. -15).

While the operations have been here disclosed as making concrete bricks of a given size, the scope of the invention, of course, covers making concrete blocks colored as above described in regard to the process of Table III whereby to provide a permanent and uniform coloration and surface texture to all of a group of such blocks notwithstanding any variations in the color of the concrete of which made, as well as to produce a variation of surface color on such blocks as above described in particular for bricks. This is accomplished by using a conventional block mold in lieu of the brick mold 50 above described.

Although in accordance with the provisions of the patent statutes, particular preferred embodiments of this invention have been described and the principles of the invention have been described in the best mode in which it is ow contemplated applying such principles, it will be understood that the operations, constructions and compositions shown and described are merely illustrative and that my invention is not limited thereto and, accordingly, alterations and modifications which readily suggest themselves to persons skilled in the art without departing from the true spirit of the disclosure hereinabove are intended to be included in the scope of the annexed claims.

I claim;

1. Apparatus for making concrete bricks, each of which bricks has a varied surface color and texture on each face thereof made in a given batch and a surface color and texture made in a separate batch are different from that in the first batch, comprising a brick making apparatus and a slurry spraying assembly, the brick making apparatus comprising a concrete feed distributor subassembly, a motor and frame subassembly, a mold and vibrating subassembly, a stamp and stripper subassembly, and a pallet feed and conveyor subassembly operatively connected, the pallet feed and conveyor assembly comprising a pallet,

the mold and vibrating subassembly comprising a mold,

said mold comprising a plurality of vertically extending mold chambers within the outline of the sides of said mold, each of said mold chambers open at its top end and open at its bottom end, said vertically extending mold chambers outlined by vertically extending walls, said pallet located at the bottom of said vertically extending walls and extending across and closing the bottom of said mold chambers,

the spray assembly comprising a tank subassembly, a

slurry pipe and valve subassembly, and a valve control subassembly operatively connected,

the tank subassembly comprising a plurality of liquid containing tanks, the slurry pipe and valve subassembly comprising a vertically extending conduit, a liquid inlet valve at one end thereof, an outlet valve and spray head at the other, and an air inlet line thereto operatively connected, said air line being connected by separate valve means to each of said conduit lines between their inlet and outlet valve, each of said separate valve means operatively connected to said valve control subassembly, each of said conduit means operatively connected to one of the liquid tank means,

the valve control subassembly comprising means operatively connected to and actuated by movement of said stamp and stripper subassembly when said stamp and stripper subassembly is raised from said mold subassembly, a sequential step switch means in said control subassembly operatively attached at each different step thereof to different groups of valve control means, each of said groups of valve control means is operatively attached to a plurality of switches, each of which switches is attached to the said separate valve means of one of said conduits, and the discharge valve of each of said conduits is adjacent to but laterally spaced away from a side of said mold and directed at a vertically extending wall portion of the mold chambers therein.

2. Apparatus as in claim 1 wherein the discharge portion of the conveyor system of the brick making apparatus is in the line of sight of the valve control subassembly of the spray assembly.

3. Apparatus as in claim 1 wherein the valve control means includes time control means to vary the duration of time of discharge from each said conduit spray head between 0.3 and 1.0 second.

(References on following page) Poston.

Marshall 264-256 5 Paashe 118315 Gelbman et a1 25-45 'Hand et a1 264309 14 I. SPENCER OVERHOLZER, Primary Examiner.

ROBERT D. BALDWIN, Assistant Examiner.

US. Cl. X.R.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1641049 *Dec 27, 1926Aug 30, 1927Emmett V PostonProcess of veneering brick
US1899101 *Oct 4, 1928Feb 28, 1933Marshall Earl PMethod of forming cementitious bodies and material for use in same
US2195753 *Jul 28, 1937Apr 2, 1940Jens A PaascheSurface treating apparatus
US2366780 *Aug 21, 1941Jan 9, 1945Hamlin F AndrusMethod for making building blocks
US2806277 *May 10, 1950Sep 17, 1957HandWall-forming process
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3799716 *Jun 23, 1972Mar 26, 1974Crowe Gulde IncApparatus for manufacture of coated bricks
US3809516 *Dec 8, 1971May 7, 1974S KomakiApparatus for manufacturing a light-weight concrete panel with pattern designs on its surface
US3920369 *Dec 15, 1972Nov 18, 1975Boehringer & CoMachine for the production and cleaning of exposed aggregate slabs
US3955907 *May 28, 1974May 11, 1976Keniti YamasitaApparatus for molding layered concrete slabs
US4050864 *Nov 26, 1975Sep 27, 1977Saiji KomakiApparatus for manufacturing concrete panels with surface pattern decorations
US4127377 *Feb 14, 1977Nov 28, 1978Marvin Glass & AssociatesStamp design kit
US4229156 *Jan 15, 1979Oct 21, 1980Abc Concrete ProductsApparatus for making concrete brick having antique appearance
US5133915 *May 11, 1990Jul 28, 1992Josef MettenProcess for the production and treatment of concrete blocks
US5281125 *Jan 17, 1992Jan 25, 1994Siegfried GebhardtDevice for the production or manufacture of stones or blocks
US6382947 *Aug 22, 2000May 7, 2002Hengestone Holdings, Inc.Color blending apparatus
US6854966 *Feb 7, 2002Feb 15, 2005Acme Brick CompanyApparatus and method for adding a coloring agent to a material for brick making
US6910796Apr 22, 2002Jun 28, 2005Anchor Wall Systems, Inc.Process and equipment for producing concrete products having blended colors
US6918715Jun 19, 2001Jul 19, 2005Anchor Wall Systems, Inc.Block splitting assembly and method
US6923565Apr 22, 2002Aug 2, 2005Anchor Wall Systems, Inc.Process and equipment for producing concrete products having blended colors
US7066167Jan 6, 2005Jun 27, 2006Anchor Wall Systems, Inc.Block splitting assembly and method
US7140867Jan 4, 2002Nov 28, 2006Anchor Wall Systems, Inc.Mold for making a masonry block
US7208112Feb 5, 2003Apr 24, 2007Anchor Wall Systems, Inc.Concrete block and method of making same
US7458800Oct 20, 2006Dec 2, 2008Anchor Wall Systems, Inc.Mold assembly for manufacturing a masonry block
US7695268Apr 19, 2007Apr 13, 2010Marshall ConcreteSystem and method for manufacturing concrete blocks
US7807083Apr 5, 2007Oct 5, 2010Anchor Wall Systems, Inc.Method of making a concrete block
US7849656Apr 18, 2008Dec 14, 2010Anchor Wall Systems, Inc.Dry cast block arrangement and methods
US7967001Jun 28, 2011Anchor Wall Systems, Inc.Block splitting assembly and method
US8006683Aug 30, 2011Anchor Wall Systems, Inc.Block splitting assembly and method
US8028688Oct 4, 2011Pavestone Company, LlcConcrete block splitting and pitching apparatus and method
US8128851Dec 16, 2009Mar 6, 2012Anchor Wall Systems, Inc.Concrete block and method of making same
US8136516Aug 2, 2010Mar 20, 2012Pavestone, LLCConcrete block splitting and pitching apparatus
US8327833Dec 11, 2012Anchor Wall Systems, Inc.Block splitting assembly and method
US8540915Jan 27, 2012Sep 24, 2013Anchor Wall Systems, Inc.Concrete block and method of making same
US8865039Aug 21, 2013Oct 21, 2014Anchor Wall Systems, Inc.Method of making a concrete block
US20030126821 *Jan 4, 2002Jul 10, 2003Scherer Ronald J.Masonry block and method of making same
US20030146534 *Feb 7, 2002Aug 7, 2003Chutich Mark W.Apparatus and method for adding a coloring agent to a material for brick making
US20030182011 *Feb 5, 2003Sep 25, 2003Scherer Ronald J.Concrete block and method of making same
US20030197310 *Apr 22, 2002Oct 23, 2003Bailey Paul W.Process and equipment for producing concrete products having blended colors
US20040218985 *May 29, 2003Nov 4, 2004Klettenberg Charles N.Method of making a composite masonry block
US20050099882 *Dec 17, 2004May 12, 2005Achor Wall Systems, Inc.Process and equipment for producing concrete products having blended colors
US20050115555 *Jan 6, 2005Jun 2, 2005Anchor Wall Systems, Inc.Block splitting assembly and method
US20050122833 *Jan 12, 2005Jun 9, 2005Anchor Wall Systems, Inc.Process and equipment for producing concrete products having blended colors
US20060169270 *Dec 7, 2005Aug 3, 2006Anchor Wall Systems, Inc.Block splitting assembly and method
US20070062149 *Oct 20, 2006Mar 22, 2007Anchor Wall Systems, Inc.Masonry block and method of making same
US20070193181 *Jan 30, 2006Aug 23, 2007Klettenberg Charles NDry-cast concrete block
US20080092870 *Oct 18, 2006Apr 24, 2008Pavestone Company, L.P.Concrete block splitting and pitching apparatus and method
US20080096471 *Oct 18, 2006Apr 24, 2008Pavestone Company, L.P.Concrete block splitting and pitching apparatus and method
US20080258340 *Apr 19, 2007Oct 23, 2008Klettenberg Charles NSystem and method for manufacturing concrete blocks
US20090260314 *Oct 22, 2009Mugge Jimmie LDry cast block arrangement and methods
US20100313868 *Dec 16, 2010William Howard KarauConcrete block splitting and pitching apparatus and method
US20110061640 *Nov 23, 2010Mar 17, 2011Anchor Wall Systems, Inc.Block splitting assembly and method
US20110168152 *Jul 14, 2011Anchor Wall Systems, Inc.Block splitting assembly and method
US20130181370 *Jan 12, 2012Jul 18, 2013Hossein RafieMethod and a system for handling processed wet clay bricks
USD609367Feb 2, 2010Anchor Wall Systems, Inc.Molded surface of a concrete product
USD609368Feb 2, 2010Anchor Wall Systems, Inc.Molded surface of a concrete product
USD609821Feb 9, 2010Anchor Wall Systems, Inc.Molded surface of a concrete product
USD611164Mar 2, 2010Anchor Wall Systems, Inc.Molded surface of a concrete product
USD613880Apr 13, 2010Anchor Wall Systems, Inc.Mold surface of a concrete block
USD619735Jul 13, 2010Anchor Wall Systems, Inc.Molded surface of a concrete product
USD620134Jul 20, 2010Anchor Wall Systems, Inc.Molded surface of a concrete product
USD620614Jul 27, 2010Anchor Wall Systems, Inc.Molded surface of a concrete product
USD625026Dec 22, 2009Oct 5, 2010Anchor Wall Systems, Inc.Molded surface of a concrete product
USD625840Oct 19, 2010Anchor Wall Systems, Inc.Molded surface of a concrete product
USD625841Oct 19, 2010Anchor Wall Systems, Inc.Molded surface of a concrete product
USD625842Oct 19, 2010Anchor Wall Systems, Inc.Molded surface of a concrete product
USD631982Feb 1, 2011Anchor Wall Systems, Inc.Molded surface of a concrete product
USD632807Feb 15, 2011Anchor Wall Systems, Inc.Molded surface of a concrete product
USD636093Apr 12, 2011Anchor Wall Systems, Inc.Molded surface of a concrete product
USD636094Apr 12, 2011Anchor Wall Systems, Inc.Molded surface of a concrete product
USD638553May 24, 2011Anchor Wall Systems, Inc.Molded surface of a concrete product
USD638957May 31, 2011Anchor Wall Systems, Inc.Molded surface of a concrete product
USD639455Jun 7, 2011Anchor Wall Systems, Inc.Molded surface of a concrete product
USD639456Jun 7, 2011Anchor Wall Systems, Inc.Molded surface of a concrete product
USD643942Aug 23, 2011Anchor Wall Systems, Inc.Molded surface of a concrete product
USD645165Sep 13, 2011Anchor Wall Systems, Inc.Molded surface of a concrete product
USD646402Oct 4, 2011Anchor Wall Systems, Inc.Molded surface of a concrete product
USD650492Dec 13, 2011Anchor Wall Systems, Inc.Molded surface of a concrete product
USD650916Dec 20, 2011Anchor Wall Systems, Inc.Molded surface of a concrete product
USD651723Jan 3, 2012Anchor Wall Systems, Inc.Molded surface of a concrete product
USD652953Jan 24, 2012Anchor Wall Systems, Inc.Molded surface of a concrete product
USD653772Feb 7, 2012Anchor Wall Systems, Inc.Molded surface of a concrete product
USD657889Apr 17, 2012Anchor Wall Systems, Inc.Molded surface of a concrete product
USD658783May 1, 2012Anchor Wall Systems, Inc.Molded surface of a concrete product
USD662224Jun 19, 2012Anchor Wall Systems, Inc.Molded surface of a concrete product
USD662226Jun 19, 2012Anchor Wall Systems, Inc.Molded surface of a concrete product
USD662610Jun 26, 2012Anchor Wall Systems, Inc.Molded surface of a concrete product
USD673693Jan 1, 2013Anchor Wall Systems, Inc.Molded surface of a concrete product
USD673695Jan 1, 2013Anchor Wall Systems, Inc.Molded surface of a concrete product
USD676151Feb 12, 2013Anchor Wall Systems, Inc.Molded surface of a concrete product
USD678552Mar 19, 2013Anchor Wall Systems, Inc.Molded surface of a concrete product
USD679029Mar 26, 2013Anchor Wall Systems, Inc.Molded surface of a concrete product
USD679833Apr 9, 2013Anchor Wall Systems, Inc.Molded surface of a concrete product
USD685923May 5, 2011Jul 9, 2013Anchor Wall Systems, Inc.Molded surface of a concrete product
USD686345Nov 9, 2012Jul 16, 2013Anchor Wall Systems, Inc.Molded surface of a concrete product
USD687167Nov 9, 2012Jul 30, 2013Anchor Wall Systems, Inc.Molded surface of a concrete product
USD687975Dec 14, 2012Aug 13, 2013Anchor Wall Systems, Inc.Molded surface of a concrete product
USD690837Jan 18, 2013Oct 1, 2013Anchor Wall Systems, Inc.Molded surface of a concrete product
USD693481Nov 5, 2012Nov 12, 2013Anchor Wall Systems, Inc.Molded surface of a concrete product
USD696425Feb 8, 2013Dec 24, 2013Anchor Wall Systems, Inc.Molded surface of a concrete product
USD698041Mar 1, 2013Jan 21, 2014Anchor Wall Systems, Inc.Molded surface of a concrete product
USD698942Jun 13, 2013Feb 4, 2014Anchor Wall Systems, Inc.Molded surface of a concrete product
USD699866May 30, 2013Feb 18, 2014Anchor Wall Systems, Inc.Molded surface of a concrete product
USD703346Sep 12, 2012Apr 22, 2014Anchor Wall Systems, Inc.Molded surface of a concrete product
USD705951Jun 18, 2013May 27, 2014Anchor Wall Systems, Inc.Molded surface of a concrete product
USD711015Sep 27, 2013Aug 12, 2014Anchor Wall Systems, Inc.Molded surface of a concrete product
USD713057Nov 5, 2013Sep 9, 2014Anchor Wall Systems, Inc.Molded surface of a concrete product
USD722391Apr 8, 2014Feb 10, 2015Anchor Wall Systems, Inc.Molded surface of a concrete product
USD722706Feb 25, 2014Feb 17, 2015Anchor Wall Systems, Inc.Molded surface of a concrete product
USD728830Jun 23, 2014May 5, 2015Anchor Wall Systems, Inc.Molded surface of a concrete product
USD743054Dec 17, 2014Nov 10, 2015Anchor Wall Systems, Inc.Molded surface of a concrete product
USD749237Dec 17, 2014Feb 9, 2016Anchor Wall Systems, Inc.Molded surface of a concrete product
Classifications
U.S. Classification425/130, 425/155, 425/200, 425/448, 425/404, 264/256, 425/452, 425/434, 425/424
International ClassificationB28B19/00
Cooperative ClassificationB28B19/00
European ClassificationB28B19/00
Legal Events
DateCodeEventDescription
Feb 23, 1984AS02Assignment of assignor's interest
Owner name: GULDE BLOCK AND BRICK, INC., 2801 E. 3RD, AMARILLO
Effective date: 19840126
Owner name: SOUTHWEST PRESTRESSED CONCRETE CO.,
Feb 23, 1984ASAssignment
Owner name: GULDE BLOCK AND BRICK, INC., 2801 E. 3RD, AMARILLO
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SOUTHWEST PRESTRESSED CONCRETE CO.,;REEL/FRAME:004225/0851
Effective date: 19840126