US3425419A - Method of lowering and raising the temperature of the human body - Google Patents

Method of lowering and raising the temperature of the human body Download PDF

Info

Publication number
US3425419A
US3425419A US469294A US3425419DA US3425419A US 3425419 A US3425419 A US 3425419A US 469294 A US469294 A US 469294A US 3425419D A US3425419D A US 3425419DA US 3425419 A US3425419 A US 3425419A
Authority
US
United States
Prior art keywords
catheter
human body
temperature
fluid
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US469294A
Inventor
Angelo Actis Dato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3425419A publication Critical patent/US3425419A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/12Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/12Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements
    • A61B1/128Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements provided with means for regulating temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/12Devices for heating or cooling internal body cavities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M19/00Local anaesthesia; Hypothermia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M25/0023Catheters; Hollow probes characterised by the form of the tubing by the form of the lumen, e.g. cross-section, variable diameter
    • A61M25/0026Multi-lumen catheters with stationary elements
    • A61M2025/0039Multi-lumen catheters with stationary elements characterized by lumina being arranged coaxially

Definitions

  • the lowering of the temperature of the human body within determined limits consists of the technique which has been called moderate hypothermia.
  • This technique has opened important possibilities in the field of cardiovascular surgery by permitting surgery on the bloodless heart. For example, surgical corrections have been made in cases of pulmonary infundibular or valvular stenosis, in cases of atrial-septal defects, and in cases of rapid operations on the mitral valve.
  • Certain methods have heretofore been used in the technique of moderate hypothermia in man but none have been entirely satisfactory.
  • One method consists in immersing the human body in a tub of cold water until the body temperature is reduced to the desired degree. This method has many diadvantages including the fact that the cooling is very slow and the cooling of the various body organs is not uniform. Furthermore, the temperature of the human body can not be easily controlled or changed during the surgical operation, and the operation must be fully completed before the warming of the human body can be commenced. In addition, there is danger of infection during the surgery due to the fact that the body is immersed in the water.
  • a still further method which has heretofore been used in the technique of moderate hypothermia has been to bypass the blood from the superior vena cava to the inferior vena cava through a heat exchanger wherein the temperature of the blood can be raised or lowered.
  • This method has a serious disadvantage in that the thorax is open for a long period of time to accommodate the connection to the venae cavae, and the cooling of the human body can only be commenced after the thorax has been opened and the apparatus connected.
  • this involves dangers of hemolysis of the blood because of the additional operation on the heart.
  • FIG. 1 shows a cross-sectional view of one form of a heat exchanger catheter used in combination with other elements of my device.
  • FIG. 2 shows a cross-sectional view of another form of a heat exchanger catheter that can be used in combination with the other elements of my device.
  • FIG. 3 is a perspective view showing, in dashed lines, a heat exchanger catheter according to the invention as received in the human body and connected to fluid circulating and control means.
  • the invention is directed to a method of inducing moderate hypothemia in a patient by using a metallic catheter with internal passageways through which a fluid, such as water, at a desired temperature, can be circulated by suitable valve and pump means connected to one end of the catheter.
  • a fluid such as water
  • the other end of the catheter is closed and rounded so that the catheter can be inserted in a blood-carrying vessel of the human body.
  • the catheter has been inserted through the femoral vein, isolated at the inguinal region, then through the inferior vena cava as far as the right atrium and the superior vena cava. Fluid refrigerated at about 0 C.
  • Valve means are provided so that fluid at a higher temperature of approximately 40 C. can be circulated through the heat exchanger catheter to restore the temperature of the human body to a normal temperature after the intra-cardiac operation is finished.
  • FIG. 1 I have shown one form of heat exchanger catheter which is generally indicated at 10.
  • the catheter is of elongated cylindrical shape and the material used in its construction is stainless steel.
  • the dimensions of the catheter used in conjunction with my invention can, of course, vary to some extent. However, by way of example, in catheters which have been successfully used according to my invention, the length has been approximately 70 centimeters.
  • the outside diameter of such catheters has ranged from those of approximately 2 millimeters in diameter for use in the case of children to approximately 6 millimeters in diameter for use in the case of adults.
  • the wall thickness of the stainless steel material used therein has been approximately .1 millimeter.
  • the outside wall 11 of the catheter 10 is closed and rounded at one end 12.
  • the wall 11 is enlarged to form a chamber 13 having a passageway 14 extending through a radially disposed nipple 15.
  • a stainless steel tube 16 which is open at both ends is concentrically disposed within the outside wall 11 of catheter 10.
  • One end of said tube 16 lies adjacent to, but spaced from, the closed rounded end 12 of catheter 10.
  • the other end of tube 16 extends through a wall 17 that closes the end of chamber 13 and projects therebeyond as indicated at 18.
  • Tube 16 is secured in a fluid-tight connection to wall portion 17 by means of solder 19.
  • a human body is shown on an operating table, generally indicated at 20.
  • the catheter 10 is shown in the human body as by dashed lines, and a flexible hose 21 is attached to the projecting end 18 of tube 16 with a suitable fluid-tight connection.
  • a second flexible hose 22 is attached through a fluid-tight connection to nipple 15.
  • the pump and electric motor are of the type commercially available and it is not thought necessary to describe the features of either the pump or the motor.
  • the flexible hose 21 leading from catheter 10 is connected to the outlet of pump 23, and the inlet on pump 23 is connected through a flexible hose 27 to a two-way valve, generally indicated at 28.
  • a flexible hose 29 leads from the two-way valve 28 to a tank 30, on the lower shelf of cart 26, and into a fluid supply, generally indicated at 31.
  • the flexible hose 22 from catheter 10 is connected to a second two-way valve, generally indicated at 32, and a flexible hose 33 leads from this second twoway valve 32 into the fluid supply 31 in tank 30.
  • the two-way valves can be of well-known construction but are provided so that the fluid flow through the valve can be directed in either of two paths by manual control means.
  • the method of use of the heat exchanger catheter 10 and associated fluid circulating and valve mechanisms to achieve a state of moderate hypothermia in a human body is as follows.
  • the patient, in general anesthesia, is placed on the operating table 20.
  • the right femoral vein is exposed in the inguinal region through a small transverse incision in the vein so that the heat exchanger catheter 10 can be introduced through this vein to the inferior vena cava, into the right atrium, and into the superior vena cava.
  • the procedure is relatively easy as a result of the fact that the anatomic location of these body parts is in approximately a straight line. Occasional obstacles to the advancement of the catheter through the body can be overcome by raising the lombar region of the patient.
  • the fluid supply 31 being circulated through the heat exchanger catheter 10 in the manner described in the preceding paragraph is chilled to a temperature of approximately 0 C.
  • the fluid can be as desired, but as an example, a mixture of alcohol, water, and chipped ice has been used in tank 30 to provide a chilling fluid. Cooling of the human body is obtained by direct contact between the outside wall 11 of the heat exchanger catheter l0 and the circulating venous blood. The cooling is rapid because the heat gradient between the outside wall 11 of the catheter 10, at approximately 0 C., and the blood is very high. I have found that to lower the temperature of the body to approximately 29 to 30 C., twelve to fifteen minutes are needed in the case of children and twenty to thirty minutes in the case of adults.
  • the surgeon performs thoracotomy to expose the heart and principal vessels.
  • the catheter is withdrawn to a level to allow the closure of both the superior and the inferior venae cavae.
  • the heart becomes bloodless so that the right atrium or ventricle and the pulmonary artery can be opened to permit the correction of atrial-septal defects or pulmonary infundibular or valvular stenosis.
  • the temperature of 29 to 30 C the temperature of 29 to 30 C.
  • FIG. 3 of the drawings there is a second tank 34 on the lower shelf of cart 26.
  • This tank is adapted to hold a supply of fluid 35, such as water, which is maintained at a temperature of approximately 40 C. by a thermostatically controlled immersion type electric heater, generally indicated at 36, that is in contact the fluid 35.
  • This electric heater can be of any well-known commercial type and it is not thought necessary to describe the heater in detail here.
  • a flexible hose 37 leads from the supply of fluid 35 to the two-way valve 28 and a flexible hose 38 leads to the second two-way valve 32.
  • the thoracic wall is closed, and by the time the surgeon has finished, the temperature of the human body will normally have reached approximately 35 C.
  • the catheter is then removed and the incision on the femoral vein is closed.
  • FIG. 2 I have shown another form of heat exchanger catheter which is generally designated by the number 39.
  • a section of tubing is bent in U- shape with parallel and lengthwise extending tubular portions 40 and 41 in contact with each other.
  • the end 42 of the heat exchanger catheter 39 is closed and rounded, and at the opposite end the tubular portion 40 and 41 diverge in a Y-shape having arms leading to chambers, generally indicated at 43 and 44.
  • Nipples 45 and 46 extend from chambers 43 and 44, respectively, and are adapted to receive flexible hoses 21 and 22 in fluid-tight connections in a manner similar to the connection of these hoses to the heat exchanger catheter 10.
  • the arrow within the heat exchanger catheter 39 indicates the direction of flow of the fluid in the catheter, and it will be appreciated that the catheter functions in the same manner as the heat exchanger catheter previously described.
  • My device for inducing moderate hypothermia in man has many advantages in its use over previously used methods. Among these advantages is the fact that the device is not expensive or unwieldy for use in an operating room and is available for immediate use even though such use was not contemplated when surgery was commenced. Furthermore, the cooling and warming of the body is uniform since the circulating blood in the body is cooled or warmed directly. In addition, the temperature control of the body under the direction of the surgical team is continuous, easy, and sure. A further advantage in the use of my device lies in the fact that the duration of the operation can be shortened since thoracotomy and the suture can be done during cooling and rewarming of the body respectively.
  • the device is not limited to this field.
  • the device can be used in cases of intractable hypothermia.
  • the device has been successfully used with smaller catheters than those above described and illustrated in FIGS. 1 and 2 of the drawings for insertion in the smaller blood vessels to produce hypothermia in various body organs.
  • a method for lowering and raising the temperature of a human body including the steps of inserting a catheter to lie within the flowing blood stream in a blood-carrying vessel of the body and then lowering or raising the temperature of the wall surface of the catheter in contact with the blood flowing around said catheter so as to provide for a heat flow between said catheter and said blood.
  • a method for inducing moderate hypothermia in a human body which comprises the steps of inserting a catheter having walls permitting a heat transfer therethrough into a flowing blood stream within a bloodcarrying vessel of the body, urging said catheter through said blood-carrying vessel into the human heart and then lowering the temperature of the catheter surface in intimate contact with the flowing blood in the blood-carrying vessel and the heart to a temperature much below that of the normal temperature of the blood in the human body so that said blood can be cooled to a desired temperature.
  • the method of lowering the temperature of a human body comprising the steps of inserting a metallic catheter to lie in the blood stream flowing within the femoral vein of the human body, pushing said catheter through said vein to the human heart, lowering the temperature of the catheter wall surface in contact with the flowing blood in the vein and heart to a predetermined temperature lower than that of the human blood in said vein and heart, and maintaining said catheter wall surface at such predetermined temperature for a time suflicient to lower the temperature of the human blood by an appreciable amount through the heat transfer between said catheter and said flowing blood.
  • the method of control of the temperature of a human body including the steps of inserting a catheter in a flowing blood stream within the human body, lowering the temperature of the surface of the catheter in contact with the blood flowing around said catheter in the blood stream to a predetermined temperature so as to cool the blood, maintaining the surface of the catheter at this predetermined temperature for a period of time and then raising the temperature of the surface of the catheter in contact with the blood to another predetermined temperature so as to warm the blood.

Description

. Feb. 4, 1969 A. A. DATO 3,425,419
METHOD OF LOWERING AND RAISING THE TEMPERATURE OF THE HUMAN BODY Filed July 2, 1965 United States Patent M 3,425,419 METHOD OF LOWERING AND RAISING THE TEMPERATURE OF THE HUMAN BODY Angelo Actis Dato, Via Genova 4, Turin, Italy Filed July 2, 1965, Ser. No. 469,294 Claims priority, application Italy, Aug. 8, 1964,
17,699/ 64 US. Cl. 128400 Int. Cl. A61f 7/12; A61b 17/36; A61m 29/00 9 Claims ABSTRACT OF THE DISCLOSURE This invention relates to method of lowering and raising the temperature of the human body and finds particular application in the technique of moderate hypothermia as an aid to surgery on the heart.
The lowering of the temperature of the human body within determined limits consists of the technique which has been called moderate hypothermia. This technique has opened important possibilities in the field of cardiovascular surgery by permitting surgery on the bloodless heart. For example, surgical corrections have been made in cases of pulmonary infundibular or valvular stenosis, in cases of atrial-septal defects, and in cases of rapid operations on the mitral valve.
Certain methods have heretofore been used in the technique of moderate hypothermia in man but none have been entirely satisfactory. One method consists in immersing the human body in a tub of cold water until the body temperature is reduced to the desired degree. This method has many diadvantages including the fact that the cooling is very slow and the cooling of the various body organs is not uniform. Furthermore, the temperature of the human body can not be easily controlled or changed during the surgical operation, and the operation must be fully completed before the warming of the human body can be commenced. In addition, there is danger of infection during the surgery due to the fact that the body is immersed in the water.
Another method heretofore used in the technique of moderate hypothermia consists in wrapping the human body with a double layer rubber cape through which the chilling fluid can be circulated. This method is slow and the cooling of the organs of the body is not uniform. Furthermore, the apparatus is costly and is a hinderance in the operating room.
A still further method which has heretofore been used in the technique of moderate hypothermia has been to bypass the blood from the superior vena cava to the inferior vena cava through a heat exchanger wherein the temperature of the blood can be raised or lowered. This method has a serious disadvantage in that the thorax is open for a long period of time to accommodate the connection to the venae cavae, and the cooling of the human body can only be commenced after the thorax has been opened and the apparatus connected. There are also certain disadvantages in that this involves dangers of hemolysis of the blood because of the additional operation on the heart.
Another method previously used in this technique has been to place the human body in an enclosure and to Patented Feb. 4, 1969 circulate a chilling air stream over the body to cool the body. This apparatus is costly and the cooling is slow so that the method must be commenced several hours before the surgery is to be performed. It is also extremely inconvenient for the surgeon as he must work within the enclosure and there are dangers of infections due to the forced air circulation.
Thus, it seems apparent that though previous methods have been devised for the technique of moderate hypothermia in man, these methods have many'inherent disadvantages. It is therefore an object of this invention to provide a method whereby moderate hypothermia in the human body can be conveniently and safely accomplished.
It is yet another object of the invention to provide a method of inducing moderate hypothermia in man whereby the temperature of the human body can be conveniently and quickly controlled at all times by the surgical team.
It is still yet another object of the invention to provide a method of inducing moderate hypothermia which can be used with a minimum amount of danger of infection to the human body.
Other objects and advantages of my method of inducing moderate hypothermia in man with a heat exchanger catheter will be apparent during the course of the following description.
In the accompanying drawings forming a part of this specification and in which like numbers are employed to designate like parts:
FIG. 1 shows a cross-sectional view of one form of a heat exchanger catheter used in combination with other elements of my device.
FIG. 2 shows a cross-sectional view of another form of a heat exchanger catheter that can be used in combination with the other elements of my device.
FIG. 3 is a perspective view showing, in dashed lines, a heat exchanger catheter according to the invention as received in the human body and connected to fluid circulating and control means.
Generally, the invention is directed to a method of inducing moderate hypothemia in a patient by using a metallic catheter with internal passageways through which a fluid, such as water, at a desired temperature, can be circulated by suitable valve and pump means connected to one end of the catheter. The other end of the catheter is closed and rounded so that the catheter can be inserted in a blood-carrying vessel of the human body. As an example, the catheter has been inserted through the femoral vein, isolated at the inguinal region, then through the inferior vena cava as far as the right atrium and the superior vena cava. Fluid refrigerated at about 0 C. is circulated through the catheter by means of a small pump to induce moderate hypothermia in the human body so that surgery can be performed. Valve means are provided so that fluid at a higher temperature of approximately 40 C. can be circulated through the heat exchanger catheter to restore the temperature of the human body to a normal temperature after the intra-cardiac operation is finished.
In FIG. 1 I have shown one form of heat exchanger catheter which is generally indicated at 10. The catheter is of elongated cylindrical shape and the material used in its construction is stainless steel. The dimensions of the catheter used in conjunction with my invention can, of course, vary to some extent. However, by way of example, in catheters which have been successfully used according to my invention, the length has been approximately 70 centimeters. The outside diameter of such catheters has ranged from those of approximately 2 millimeters in diameter for use in the case of children to approximately 6 millimeters in diameter for use in the case of adults. In all forms of my heat exchanger catheter the wall thickness of the stainless steel material used therein has been approximately .1 millimeter.
Turning, then, to a specific description of the catheter shown in FIG. 1, the outside wall 11 of the catheter 10 is closed and rounded at one end 12. At the other end of the catheter 10 the wall 11 is enlarged to form a chamber 13 having a passageway 14 extending through a radially disposed nipple 15. A stainless steel tube 16 which is open at both ends is concentrically disposed within the outside wall 11 of catheter 10. One end of said tube 16 lies adjacent to, but spaced from, the closed rounded end 12 of catheter 10. The other end of tube 16 extends through a wall 17 that closes the end of chamber 13 and projects therebeyond as indicated at 18. Tube 16 is secured in a fluid-tight connection to wall portion 17 by means of solder 19.
Referring now to FIG. 3 of the drawings, a human body is shown on an operating table, generally indicated at 20. The catheter 10 is shown in the human body as by dashed lines, and a flexible hose 21 is attached to the projecting end 18 of tube 16 with a suitable fluid-tight connection. In the same manner, a second flexible hose 22 is attached through a fluid-tight connection to nipple 15.
A pump 23 that is driven by an electric motor 24 through belt 25, and other fluid circulating and Valve means to be described later, are mounted on the top shelf of a wheeled cart, generally indicated at 26. The pump and electric motor are of the type commercially available and it is not thought necessary to describe the features of either the pump or the motor.
The flexible hose 21 leading from catheter 10 is connected to the outlet of pump 23, and the inlet on pump 23 is connected through a flexible hose 27 to a two-way valve, generally indicated at 28. A flexible hose 29 leads from the two-way valve 28 to a tank 30, on the lower shelf of cart 26, and into a fluid supply, generally indicated at 31. The flexible hose 22 from catheter 10 is connected to a second two-way valve, generally indicated at 32, and a flexible hose 33 leads from this second twoway valve 32 into the fluid supply 31 in tank 30. The two-way valves can be of well-known construction but are provided so that the fluid flow through the valve can be directed in either of two paths by manual control means.
The method of use of the heat exchanger catheter 10 and associated fluid circulating and valve mechanisms to achieve a state of moderate hypothermia in a human body is as follows. The patient, in general anesthesia, is placed on the operating table 20. The right femoral vein is exposed in the inguinal region through a small transverse incision in the vein so that the heat exchanger catheter 10 can be introduced through this vein to the inferior vena cava, into the right atrium, and into the superior vena cava. The procedure is relatively easy as a result of the fact that the anatomic location of these body parts is in approximately a straight line. Occasional obstacles to the advancement of the catheter through the body can be overcome by raising the lombar region of the patient.
Assume, then, that the heat exchanger catheter 10 has been inserted in the human body as described above and that the electric motor 24 is driving the pump 23. Fluid from the fluid supply 31 is drawn through hose 29, two-way valve 28, hose 27, through pump 23, and through hose 21 into the tube 16. As indicated by the arrows within the tube 16, the fluid flow is to the end of tube 16 adjacent the rounded end 12 of the catheter 10 and returning through the passageway between the outer wall 11 and tube 16 to the chamber 13. From chamber 13 the fluid is discharged through passageway 14 and into hose 22. The flow from hose 22 is through the second twoway valve 32 and hose 33 back to the fluid supply 31 in tank 30.
The fluid supply 31 being circulated through the heat exchanger catheter 10 in the manner described in the preceding paragraph is chilled to a temperature of approximately 0 C. The fluid can be as desired, but as an example, a mixture of alcohol, water, and chipped ice has been used in tank 30 to provide a chilling fluid. Cooling of the human body is obtained by direct contact between the outside wall 11 of the heat exchanger catheter l0 and the circulating venous blood. The cooling is rapid because the heat gradient between the outside wall 11 of the catheter 10, at approximately 0 C., and the blood is very high. I have found that to lower the temperature of the body to approximately 29 to 30 C., twelve to fifteen minutes are needed in the case of children and twenty to thirty minutes in the case of adults.
During the time that the catheter 10 is being used to lower the temperature of the human body, the surgeon performs thoracotomy to expose the heart and principal vessels. When the temperature of the human body has reached approximately 30 C., the catheter is withdrawn to a level to allow the closure of both the superior and the inferior venae cavae. The heart becomes bloodless so that the right atrium or ventricle and the pulmonary artery can be opened to permit the correction of atrial-septal defects or pulmonary infundibular or valvular stenosis. At the temperature of 29 to 30 C. of the human body the circulatory arrest can not exceed eight to ten minutes and the surgeon must operate during this time After the surgeon has finished the intra-cardiac operation, the heat exchanger catheter 10 is replaced in its former position in the right atrium or in the superior vena cava. When this has been done the warming of the human body toward a more normal temperature is commenced, and the apparatus forming part of my device which is used for this purpose will now be described. As seen in FIG. 3 of the drawings, there is a second tank 34 on the lower shelf of cart 26. This tank is adapted to hold a supply of fluid 35, such as water, which is maintained at a temperature of approximately 40 C. by a thermostatically controlled immersion type electric heater, generally indicated at 36, that is in contact the fluid 35. This electric heater can be of any well-known commercial type and it is not thought necessary to describe the heater in detail here. A flexible hose 37 leads from the supply of fluid 35 to the two-way valve 28 and a flexible hose 38 leads to the second two-way valve 32.
The fluid flow path or circulation from the two-way valve 28 through pump 23 catheter 10, and returning to the second two-way valve 32 has already been described in conjunction with the use of the chilled fluid supply 31 and it is not believed necessary to repeat this description. It should be'clear, however, that if the two-way valves 28 and 32 are manually operated to stop the flow of fluid from tank 30 and permit the flow of the warming fluid from the second tank 34, then the warming fluid from the supply of fluid 35 will be circulated through the catheter 10 in the same manner as was the chilled fluid. Thus, the surgical team can manually operate the two-way valves 28 and 32 to direct either chilled fluid from the tank 30 or heated fluid from the tank 34 through the catheter 10.
During the time that the patient is being rewarmed by the circulation of the heated fluid from the second tank 34, the thoracic wall is closed, and by the time the surgeon has finished, the temperature of the human body will normally have reached approximately 35 C. The catheter is then removed and the incision on the femoral vein is closed.
While the above description of the use of my device indicates that the catheter 10 can be introduced into the human body through the femoral vein, it should be understood that this is not the only manner of insertion of the catheter 10 into the human body. For example, in three cases of surgery the catheter 10 was introduced through the femoral artery, the aorta, to the origin of the left carotid artery. The results were similar to the cases in which the femoral vein was employed, and my device has been successfully employed in 131 cardiac operations.
In FIG. 2 I have shown another form of heat exchanger catheter which is generally designated by the number 39. In this particular form, a section of tubing is bent in U- shape with parallel and lengthwise extending tubular portions 40 and 41 in contact with each other. The end 42 of the heat exchanger catheter 39 is closed and rounded, and at the opposite end the tubular portion 40 and 41 diverge in a Y-shape having arms leading to chambers, generally indicated at 43 and 44. Nipples 45 and 46 extend from chambers 43 and 44, respectively, and are adapted to receive flexible hoses 21 and 22 in fluid-tight connections in a manner similar to the connection of these hoses to the heat exchanger catheter 10. The arrow within the heat exchanger catheter 39 indicates the direction of flow of the fluid in the catheter, and it will be appreciated that the catheter functions in the same manner as the heat exchanger catheter previously described.
My device for inducing moderate hypothermia in man has many advantages in its use over previously used methods. Among these advantages is the fact that the device is not expensive or unwieldy for use in an operating room and is available for immediate use even though such use was not contemplated when surgery was commenced. Furthermore, the cooling and warming of the body is uniform since the circulating blood in the body is cooled or warmed directly. In addition, the temperature control of the body under the direction of the surgical team is continuous, easy, and sure. A further advantage in the use of my device lies in the fact that the duration of the operation can be shortened since thoracotomy and the suture can be done during cooling and rewarming of the body respectively.
While the above description of my device has been in connection with its use for inducing moderate hypothermia in the human body so as to permit open heart surgery, the device is not limited to this field. For example, the device can be used in cases of intractable hypothermia. Also, the device has been successfully used with smaller catheters than those above described and illustrated in FIGS. 1 and 2 of the drawings for insertion in the smaller blood vessels to produce hypothermia in various body organs.
In compliance with the requirements of the patent statutes, I have here shown and described the preferred embodiments of my invention.
I claim:
1. A method for lowering and raising the temperature of a human body including the steps of inserting a catheter to lie within the flowing blood stream in a blood-carrying vessel of the body and then lowering or raising the temperature of the wall surface of the catheter in contact with the blood flowing around said catheter so as to provide for a heat flow between said catheter and said blood.
2. A method for inducing moderate hypothermia in a human body which comprises the steps of inserting a catheter having walls permitting a heat transfer therethrough into a flowing blood stream within a bloodcarrying vessel of the body, urging said catheter through said blood-carrying vessel into the human heart and then lowering the temperature of the catheter surface in intimate contact with the flowing blood in the blood-carrying vessel and the heart to a temperature much below that of the normal temperature of the blood in the human body so that said blood can be cooled to a desired temperature.
3. The method as defined in claim 2 wherein the bloodcarrying vessel is a vein of the human body.
4. The method as defined in claim 2 wherein the bloodcarrying vessel is an artery of the human body.
5. The method as defined in claim 2 wherein the catheter surface is lowered to a temperature of approximately 0 C.
6. The method of lowering the temperature of a human body comprising the steps of inserting a metallic catheter to lie in the blood stream flowing within the femoral vein of the human body, pushing said catheter through said vein to the human heart, lowering the temperature of the catheter wall surface in contact with the flowing blood in the vein and heart to a predetermined temperature lower than that of the human blood in said vein and heart, and maintaining said catheter wall surface at such predetermined temperature for a time suflicient to lower the temperature of the human blood by an appreciable amount through the heat transfer between said catheter and said flowing blood.
7. The method as defined in claim 6 wherein said predetermined temperature is approximately 0 C.
8. The method of control of the temperature of a human body including the steps of inserting a catheter in a flowing blood stream within the human body, lowering the temperature of the surface of the catheter in contact with the blood flowing around said catheter in the blood stream to a predetermined temperature so as to cool the blood, maintaining the surface of the catheter at this predetermined temperature for a period of time and then raising the temperature of the surface of the catheter in contact with the blood to another predetermined temperature so as to warm the blood.
9. The method as defined in claim 8 where said predetermined temperature of the surface of the catheter to cool the blood is approximately 0 C. and said another predetermined temperature of said surface for warming the human blood is approximately 40 C.
References Cited UNITED STATES PATENTS 1,902,016 3/1933 Copeman 128-400 X 2,077,453 4/1937 Albright 128--401 3,088,288 5/1963 Elfving 128399 X 3,142,158 7/1964 Podolsky 128-399 X 3,228,400 1/1966 Armao 128-303.1 3,272,203 9/1966 Chato 128-3031 3,315,681 4/ 1967 Poppendiek.
OTHER REFERENCES Rowbotham, et al., Cooling Cannula for Use in the Treatment of Cerebral Neoplasms, Lancet, J an. 3, 1959, pp. 12-15.
Cooper Cryogenic Surgery of the Basal Ganglia, J.A.M.A. Aug. 18, 1962, pp. 600-604.
DALTON L. TRULUCK, Primary Examiner.
US. Cl. X.R. 128303.1, 343
US469294A 1964-08-08 1965-07-02 Method of lowering and raising the temperature of the human body Expired - Lifetime US3425419A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT1769964 1964-08-08

Publications (1)

Publication Number Publication Date
US3425419A true US3425419A (en) 1969-02-04

Family

ID=11150556

Family Applications (1)

Application Number Title Priority Date Filing Date
US469294A Expired - Lifetime US3425419A (en) 1964-08-08 1965-07-02 Method of lowering and raising the temperature of the human body

Country Status (1)

Country Link
US (1) US3425419A (en)

Cited By (167)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3674031A (en) * 1969-03-29 1972-07-04 Linde Ag Method of and device for cryogenic surgery
US3696813A (en) * 1971-10-06 1972-10-10 Cryomedics Cryosurgical instrument
US3809520A (en) * 1972-02-22 1974-05-07 R Wilk Fluid heated scoop
US4216767A (en) * 1977-02-21 1980-08-12 Machida Endoscope Co., Ltd. Endoscope with closed pressurized inner cavity
US4241729A (en) * 1977-08-04 1980-12-30 Machida Endoscope Co., Ltd. Endoscope with gas-tight cap permitting pressurization
US4318722A (en) * 1980-04-09 1982-03-09 Gerald Altman Infrared radiation cooler for producing physiologic conditions such as a comfort or hypothermia
US4411265A (en) * 1979-06-18 1983-10-25 Eichenlaub John E Ear wax removing device
DE3546523A1 (en) * 1985-12-07 1987-06-11 Blaudszun Bernd Dipl Ing Device for the cooling of defined surface areas of bodies of any type by spraying on a cold gas
DE3611971A1 (en) * 1986-04-09 1987-10-15 Mueller Christa Dr Method and device for treating tumour tissue by heat, by means of interstitial micro heat exchangers inserted in the body
US4793352A (en) * 1986-02-07 1988-12-27 Eichenlaub John E Limited heat transfer device and method
US4934996A (en) * 1984-02-27 1990-06-19 Boston Scientific Corporation Pressure-controlled intermittent coronary sinus occlusion apparatus and method
US4969470A (en) * 1984-02-27 1990-11-13 Boston Scientific Corporation Heart analysis using pressure-controlled intermittent coronary sinus occlusion
US5147355A (en) * 1988-09-23 1992-09-15 Brigham And Womens Hospital Cryoablation catheter and method of performing cryoablation
US5241951A (en) * 1990-09-05 1993-09-07 Breg, Inc. Therapeutic nonambient temperature fluid circulation system
US5281215A (en) * 1992-04-16 1994-01-25 Implemed, Inc. Cryogenic catheter
US5281213A (en) * 1992-04-16 1994-01-25 Implemed, Inc. Catheter for ice mapping and ablation
US5330519A (en) * 1990-09-05 1994-07-19 Breg, Inc. Therapeutic nonambient temperature fluid circulation system
US5423807A (en) * 1992-04-16 1995-06-13 Implemed, Inc. Cryogenic mapping and ablation catheter
US5437673A (en) * 1993-02-04 1995-08-01 Cryomedical Sciences, Inc. Closed circulation tissue warming apparatus and method of using the same in prostate surgery
US5486208A (en) * 1993-02-10 1996-01-23 Ginsburg; Robert Method and apparatus for controlling a patient's body temperature by in situ blood temperature modification
US5531776A (en) * 1993-09-24 1996-07-02 The Ohio State University Non-invasive aortic impingement and core and cerebral temperature manipulation method
WO1997025011A1 (en) * 1996-01-08 1997-07-17 Radiant Medical, Inc. Method and apparatus for controlling body temperature
US5662695A (en) * 1990-09-05 1997-09-02 Breg, Inc. Occlusion-resistant fluid pad conformable to a body for therapeutic treatment thereof
US5716386A (en) * 1994-06-27 1998-02-10 The Ohio State University Non-invasive aortic impingement and core and cerebral temperature manipulation
US5733280A (en) * 1995-11-15 1998-03-31 Avitall; Boaz Cryogenic epicardial mapping and ablation
US5846235A (en) * 1997-04-14 1998-12-08 Johns Hopkins University Endoscopic cryospray device
WO1999037226A1 (en) 1998-01-23 1999-07-29 Del Mar Medical Technologies, Inc. Selective organ hypothermia method and apparatus
WO1999048449A1 (en) 1998-03-24 1999-09-30 Innercool Therapies, Inc. Selective organ cooling apparatus and method
WO1999066971A1 (en) 1998-06-23 1999-12-29 Innercool Therapies, Inc. Method and device for applications of selective organ cooling
WO1999066970A1 (en) 1998-06-23 1999-12-29 Innercool Therapies, Inc. Selective organ cooling apparatus and method
US6033383A (en) * 1996-12-19 2000-03-07 Ginsburg; Robert Temperature regulating catheter and methods
US6042559A (en) * 1998-02-24 2000-03-28 Innercool Therapies, Inc. Insulated catheter for selective organ perfusion
US6096068A (en) * 1998-01-23 2000-08-01 Innercool Therapies, Inc. Selective organ cooling catheter and method of using the same
US6110168A (en) * 1993-02-10 2000-08-29 Radiant Medical, Inc. Method and apparatus for controlling a patient's body temperature by in situ blood temperature modifications
US6117164A (en) * 1997-06-06 2000-09-12 Dj Orthopedics, Llc Flexible multijoint therapeutic pads
US6126684A (en) * 1998-04-21 2000-10-03 The Regents Of The University Of California Indwelling heat exchange catheter and method of using same
US6146411A (en) * 1998-12-24 2000-11-14 Alsius Corporation Cooling system for indwelling heat exchange catheter
US6149670A (en) * 1999-03-11 2000-11-21 Alsius Corporation Method and system for treating cardiac arrest using hypothermia
US6149677A (en) * 1998-03-31 2000-11-21 Innercool Therapies, Inc. Circulating fluid hypothermia method
US6165207A (en) * 1999-05-27 2000-12-26 Alsius Corporation Method of selectively shaping hollow fibers of heat exchange catheter
WO2001013837A1 (en) 1999-08-23 2001-03-01 Innercool Therapies, Inc. Method of manufacturing a heat transfer element for in vivo cooling
US6224624B1 (en) 1998-03-24 2001-05-01 Innercool Therapies, Inc. Selective organ cooling apparatus and method
US6238428B1 (en) 1998-01-23 2001-05-29 Innercool Therapies, Inc. Selective organ cooling apparatus and method employing turbulence-inducing element with curved terminations
US6245095B1 (en) 1998-03-24 2001-06-12 Innercool Therapies, Inc. Method and apparatus for location and temperature specific drug action such as thrombolysis
WO2001043661A2 (en) * 1999-12-14 2001-06-21 Radiant Medical, Inc. Method for reducing myocardial infarct by applicaton of intravascular hypothermia
US6251129B1 (en) 1998-03-24 2001-06-26 Innercool Therapies, Inc. Method for low temperature thrombolysis and low temperature thrombolytic agent with selective organ temperature control
US6251130B1 (en) 1998-03-24 2001-06-26 Innercool Therapies, Inc. Device for applications of selective organ cooling
US6254626B1 (en) 1998-03-24 2001-07-03 Innercool Therapies, Inc. Articulation device for selective organ cooling apparatus
US6270493B1 (en) 1999-07-19 2001-08-07 Cryocath Technologies, Inc. Cryoablation structure
US6287326B1 (en) 1999-08-02 2001-09-11 Alsius Corporation Catheter with coiled multi-lumen heat transfer extension
US6296654B1 (en) 1997-06-27 2001-10-02 The Ohio State University Research Foundation Non-invasive aortic impingement
US6299599B1 (en) 1999-02-19 2001-10-09 Alsius Corporation Dual balloon central venous line catheter temperature control system
US6312452B1 (en) 1998-01-23 2001-11-06 Innercool Therapies, Inc. Selective organ cooling catheter with guidewire apparatus and temperature-monitoring device
US6325818B1 (en) 1999-10-07 2001-12-04 Innercool Therapies, Inc. Inflatable cooling apparatus for selective organ hypothermia
US6338727B1 (en) 1998-08-13 2002-01-15 Alsius Corporation Indwelling heat exchange catheter and method of using same
US6364899B1 (en) 1998-01-23 2002-04-02 Innercool Therapies, Inc. Heat pipe nerve cooler
US6368304B1 (en) 1999-02-19 2002-04-09 Alsius Corporation Central venous catheter with heat exchange membrane
US6379378B1 (en) 2000-03-03 2002-04-30 Innercool Therapies, Inc. Lumen design for catheter
US6383210B1 (en) 2000-06-02 2002-05-07 Innercool Therapies, Inc. Method for determining the effective thermal mass of a body or organ using cooling catheter
US6393320B2 (en) 1999-02-19 2002-05-21 Alsius Corporation Method for treating cardiac arrest
EP1212000A1 (en) * 1999-08-11 2002-06-12 Radiant Medical, Inc. System for controlling body temperature while reducing shivering
US6419643B1 (en) 1998-04-21 2002-07-16 Alsius Corporation Central venous catheter with heat exchange properties
WO2002055129A2 (en) 2000-11-07 2002-07-18 Innercool Therapies, Inc. Fever regulation method and apparatus
US6436130B1 (en) 1999-03-02 2002-08-20 Alsius Corporation Cooling system for therapeutic catheter
US6440158B1 (en) 1990-05-11 2002-08-27 Mark A. Saab Heat transfer catheter apparatus and method of making and using same
US6447474B1 (en) 1999-09-15 2002-09-10 Alsius Corporation Automatic fever abatement system
US6450990B1 (en) 1998-08-13 2002-09-17 Alsius Corporation Catheter with multiple heating/cooling fibers employing fiber spreading features
US6458150B1 (en) 1999-02-19 2002-10-01 Alsius Corporation Method and apparatus for patient temperature control
US6460544B1 (en) 1999-03-11 2002-10-08 Alsius Corporation Method and apparatus for establishing and maintaining therapeutic hypothemia
US6464716B1 (en) 1998-01-23 2002-10-15 Innercool Therapies, Inc. Selective organ cooling apparatus and method
US20020151845A1 (en) * 2000-12-06 2002-10-17 Randell Werneth Multipurpose catheter assembly
US6471717B1 (en) 1998-03-24 2002-10-29 Innercool Therapies, Inc. Selective organ cooling apparatus and method
US20020161351A1 (en) * 1998-09-01 2002-10-31 Samson Wilfred J. Method and apparatus for treating acute myocardial infarction with selective hypothermic perfusion
US20020183815A1 (en) * 1998-01-23 2002-12-05 Nest Mark Van Method of manufacturing a heat transfer element for in vivo cooling
US6491039B1 (en) 1998-01-23 2002-12-10 Innercool Therapies, Inc. Medical procedure
US6497721B2 (en) 1993-02-10 2002-12-24 Radiant Medical, Inc. Method and apparatus for regional and whole body temperature modification
US20030023288A1 (en) * 1999-02-09 2003-01-30 Michael Magers Method and device for patient temperature control employing optimized rewarming
US6530946B1 (en) 1998-04-21 2003-03-11 Alsius Corporation Indwelling heat exchange heat pipe catheter and method of using same
US20030060863A1 (en) * 1999-02-09 2003-03-27 Dobak John D. Method and apparatus for patient temperature control employing administration of anti-shivering agents
WO2003027589A1 (en) * 2001-09-25 2003-04-03 Alsius Corporation Heating/cooling system for indwelling heat exchange catheter
US20030065922A1 (en) * 2001-09-28 2003-04-03 Fredlund John R. System and method of authenticating a digitally captured image
US6547811B1 (en) 1999-08-02 2003-04-15 Arch Development Corporation Method for inducing hypothermia
US6551349B2 (en) 1998-03-24 2003-04-22 Innercool Therapies, Inc. Selective organ cooling apparatus
US20030078641A1 (en) * 1998-01-23 2003-04-24 Innercool Therapies, Inc. Selective organ hypothermia method and apparatus
US6572640B1 (en) 2001-11-21 2003-06-03 Alsius Corporation Method and apparatus for cardiopulmonary bypass patient temperature control
US6576002B2 (en) 1998-03-24 2003-06-10 Innercool Therapies, Inc. Isolated selective organ cooling method and apparatus
US6582398B1 (en) 1999-02-19 2003-06-24 Alsius Corporation Method of managing patient temperature with a heat exchange catheter
US6585752B2 (en) 1998-06-23 2003-07-01 Innercool Therapies, Inc. Fever regulation method and apparatus
US6589234B2 (en) 2001-09-27 2003-07-08 Cryocath Technologies Inc. Cryogenic medical device with high pressure resistance tip
US6589271B1 (en) 1998-04-21 2003-07-08 Alsius Corporations Indwelling heat exchange catheter
AU763293B2 (en) * 1999-02-19 2003-07-17 Zoll Circulation, Inc. Central venous line catheter having temperature control system
US6595967B2 (en) 2001-02-01 2003-07-22 Innercool Therapies, Inc. Collapsible guidewire lumen
US6599312B2 (en) 1998-03-24 2003-07-29 Innercool Therapies, Inc. Isolated selective organ cooling apparatus
US6602276B2 (en) 1998-03-31 2003-08-05 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US6623516B2 (en) 1992-08-13 2003-09-23 Mark A. Saab Method for changing the temperature of a selected body region
US6641602B2 (en) 2001-04-13 2003-11-04 Alsius Corporation Method and device including a colo-rectal heat exchanger
US6641603B2 (en) 2001-04-13 2003-11-04 Alsius Corporation Heat exchange catheter having helically wound reinforcement
US6648906B2 (en) 2000-04-06 2003-11-18 Innercool Therapies, Inc. Method and apparatus for regulating patient temperature by irrigating the bladder with a fluid
US6669688B2 (en) * 2000-01-25 2003-12-30 The Regents Of The University Of California Method and apparatus for measuring the heat transfer coefficient during cryogen spray cooling of tissue
US6682551B1 (en) 1999-03-11 2004-01-27 Alsius Corporation Method and system for treating cardiac arrest using hypothermia
US6685732B2 (en) 1998-03-31 2004-02-03 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing microporous balloon
US20040039431A1 (en) * 2000-02-28 2004-02-26 Radiant Medical, Inc. Method and system for control of a patient's body temperature by way of transluminally insertable heat exchange catheter
US6709448B2 (en) 2001-04-13 2004-03-23 Alsius Corporation Open core heat exchange catheter, system and method
US6716236B1 (en) 1998-04-21 2004-04-06 Alsius Corporation Intravascular catheter with heat exchange element having inner inflation element and methods of use
US6719779B2 (en) 2000-11-07 2004-04-13 Innercool Therapies, Inc. Circulation set for temperature-controlled catheter and method of using the same
US6726710B2 (en) 1999-08-16 2004-04-27 Alsius Corporation Method and system for treating cardiac arrest using hypothermia
US6726708B2 (en) 2000-06-14 2004-04-27 Innercool Therapies, Inc. Therapeutic heating and cooling via temperature management of a colon-inserted balloon
US20040127851A1 (en) * 2002-12-31 2004-07-01 Alsius Corporation System and method for controlling rate of heat exchange with patient
US20040133256A1 (en) * 2001-05-31 2004-07-08 Radiant Medical, Inc. Heat transfer catheter with elastic fluid lumens
US20040143311A1 (en) * 1998-08-24 2004-07-22 Machold Timothy R. Disposable cassette for intravascular heat exchange catheter
US20040210285A1 (en) * 2002-04-04 2004-10-21 Steven Yon Method of manufacturing a heat transfer element for in vivo cooling without undercuts
US20040267250A1 (en) * 1998-03-31 2004-12-30 Yon Steven A. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US6843800B1 (en) 1998-01-23 2005-01-18 Innercool Therapies, Inc. Patient temperature regulation method and apparatus
US6849083B2 (en) 1993-02-10 2005-02-01 Radiant Medical, Inc. Method and apparatus for controlling a patients's body temperature by in situ blood temperature modification
US20050043579A1 (en) * 2001-10-26 2005-02-24 Radiant Medical, Inc. Intra-aortic balloon counterpulsation with concurrent hypothermia
US6866638B2 (en) 2002-08-12 2005-03-15 Radiant Medical, Inc. Temperature sensing system with retrograde sensor
US20050076924A1 (en) * 1998-01-23 2005-04-14 Dobak John D. Medical procedure
EP1528905A1 (en) * 2002-08-08 2005-05-11 Medivance Incorporated Patient temperature control system
EP1534199A1 (en) * 2002-08-08 2005-06-01 Medivance Incorporated Patient temperature control system connector apparatus
US6905494B2 (en) 1998-03-31 2005-06-14 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US20050171586A1 (en) * 1999-02-09 2005-08-04 Dobak John D.Iii Method and apparatus for patient temperature control employing administration of anti-shivering agents
US20050203598A1 (en) * 1999-08-02 2005-09-15 University Of Chicago Office Of Technology Transfer Method for inducing hypothermia
US6962601B2 (en) 1999-08-02 2005-11-08 University Of Chicago Office Of Technology Transfer Method for inducing hypothermia
US6991645B2 (en) 1998-01-23 2006-01-31 Innercool Therapies, Inc. Patient temperature regulation method and apparatus
US20060036302A1 (en) * 2004-05-28 2006-02-16 Kasza Kenneth E Methods of inducing protective hypothermia of organs
US20060122673A1 (en) * 2002-09-12 2006-06-08 Radiant Medical,Inc. System and method for determining and controlling core body temperature
US20060136023A1 (en) * 2004-08-26 2006-06-22 Dobak John D Iii Method and apparatus for patient temperature control employing administration of anti-shivering agents
US7077825B1 (en) 2002-01-16 2006-07-18 Radiant Medical, Inc. Method for gastric cooling using balloon catheter
US20060161232A1 (en) * 2005-01-18 2006-07-20 Kasza, Oras and Son to The University of Chicago Phase-change particulate ice slurry coolant medical delivery tubing and insertion devices
US20060167398A1 (en) * 2005-01-25 2006-07-27 Thermopeutix Inc. System and methods for selective thermal treatment
US20070056313A1 (en) * 2005-09-15 2007-03-15 Kasza Kenneth E Medical ice slurry production device
WO2007078463A1 (en) 2005-12-22 2007-07-12 The Trustees Of Columbia University In The City Of New York Systems and methods for intravascular cooling
US7291144B2 (en) 1998-03-31 2007-11-06 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US7473270B1 (en) * 2002-04-10 2009-01-06 Zoll Circulation, Inc. Methods and systems for reducing substance-induced renal damage
US20100121273A1 (en) * 2005-06-22 2010-05-13 Kochanek Patrick M Emergency preservation and resuscitation methods
US7758623B2 (en) 2003-03-17 2010-07-20 The Board Of Trustees Of The Leland Stanford Junior University Transesophageal heat exchange catheter for cooling of the heart
EP2305188A1 (en) 2005-04-27 2011-04-06 Radiant Medical, Inc. Apparatus and method for providing enhanced heat transfer from a body
US8128595B2 (en) 1998-04-21 2012-03-06 Zoll Circulation, Inc. Method for a central venous line catheter having a temperature control system
AU2011201173B2 (en) * 2000-07-21 2013-05-30 Zoll Circulation, Inc. Heat exchanger catheter for controlling body temperature
US20130296983A1 (en) * 1998-08-24 2013-11-07 Zoll Circulation, Inc. Multiple lumen heat exchange catheters
US20130304166A1 (en) * 2001-02-21 2013-11-14 Zoll Circulation Inc. Inhibition of platelet activation, aggregation and/or adhesion by hypothermia
US8690826B2 (en) 2001-09-25 2014-04-08 Zoll Circulation, Inc. Heating/ cooling system for indwelling heat exchange catheter
US8696723B2 (en) 2005-07-14 2014-04-15 Zoll Circulation, Inc. System and method for leak detection in external cooling pad
US8888832B2 (en) 2011-09-28 2014-11-18 Zoll Circulation, Inc. System and method for doubled use of patient temperature control catheter
EP2760396A4 (en) * 2011-09-28 2015-07-22 Zoll Circulation Inc Transatrial patient temperature control catheter
US20150282858A1 (en) * 2014-04-04 2015-10-08 Cpsi Holdings Llc Thermal regulation catheter system
US9241827B2 (en) 2012-09-28 2016-01-26 Zoll Circulation, Inc. Intravascular heat exchange catheter with multiple spaced apart discrete coolant loops
US9278023B2 (en) 2012-12-14 2016-03-08 Zoll Circulation, Inc. System and method for management of body temperature
US9283112B2 (en) 2011-09-20 2016-03-15 Zoll Circulation, Inc. Patient temperature control catheter with outer sleeve cooled by inner sleeve
US9314370B2 (en) 2011-09-28 2016-04-19 Zoll Circulation, Inc. Self-centering patient temperature control catheter
US9433528B2 (en) 2012-09-28 2016-09-06 Zoll Circulation, Inc. Intravascular heat exchange catheter with rib cage-like coolant path
US9474644B2 (en) 2014-02-07 2016-10-25 Zoll Circulation, Inc. Heat exchange system for patient temperature control with multiple coolant chambers for multiple heat exchange modalities
US9717625B2 (en) 2012-09-28 2017-08-01 Zoll Circulation, Inc. Intravascular heat exchange catheter with non-round coiled coolant path
US9784263B2 (en) 2014-11-06 2017-10-10 Zoll Circulation, Inc. Heat exchange system for patient temperature control with easy loading high performance peristaltic pump
US9801756B2 (en) 2012-09-28 2017-10-31 Zoll Circulation, Inc. Intravascular heat exchange catheter and system with RFID coupling
US10022265B2 (en) 2015-04-01 2018-07-17 Zoll Circulation, Inc. Working fluid cassette with hinged plenum or enclosure for interfacing heat exchanger with intravascular temperature management catheter
US10045881B2 (en) 2011-09-28 2018-08-14 Zoll Circulation, Inc. Patient temperature control catheter with helical heat exchange paths
US10420675B2 (en) 2002-01-16 2019-09-24 Zoll Circulation, Inc. Apparatus and method for esophageal cooling
US10500088B2 (en) 2014-02-14 2019-12-10 Zoll Circulation, Inc. Patient heat exchange system with two and only two fluid loops
US10537465B2 (en) 2015-03-31 2020-01-21 Zoll Circulation, Inc. Cold plate design in heat exchanger for intravascular temperature management catheter and/or heat exchange pad
US10792185B2 (en) 2014-02-14 2020-10-06 Zoll Circulation, Inc. Fluid cassette with polymeric membranes and integral inlet and outlet tubes for patient heat exchange system
US11033424B2 (en) 2014-02-14 2021-06-15 Zoll Circulation, Inc. Fluid cassette with tensioned polymeric membranes for patient heat exchange system
US11116657B2 (en) 2017-02-02 2021-09-14 Zoll Circulation, Inc. Devices, systems and methods for endovascular temperature control
US11185440B2 (en) 2017-02-02 2021-11-30 Zoll Circulation, Inc. Devices, systems and methods for endovascular temperature control
US11213423B2 (en) 2015-03-31 2022-01-04 Zoll Circulation, Inc. Proximal mounting of temperature sensor in intravascular temperature management catheter
US11337851B2 (en) 2017-02-02 2022-05-24 Zoll Circulation, Inc. Devices, systems and methods for endovascular temperature control
US11359620B2 (en) 2015-04-01 2022-06-14 Zoll Circulation, Inc. Heat exchange system for patient temperature control with easy loading high performance peristaltic pump

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1902016A (en) * 1932-02-12 1933-03-21 Copeman Lab Co Refrigerating apparatus
US2077453A (en) * 1934-03-29 1937-04-20 American Anode Inc Therapeutical appliance
US3088288A (en) * 1960-12-21 1963-05-07 Thore M Elfving Thermoelectric refrigeration system
US3142158A (en) * 1962-05-28 1964-07-28 Podolsky Leon Thermoelectric cooling device
US3228400A (en) * 1962-12-03 1966-01-11 Thomas A Armao Cryogenic capsule probes
US3272203A (en) * 1963-04-29 1966-09-13 John C Chato Surgical probe
US3315681A (en) * 1964-08-17 1967-04-25 Heinz F Poppendiek Means and techniques useful for changing temperature of fluids, particularly blood

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1902016A (en) * 1932-02-12 1933-03-21 Copeman Lab Co Refrigerating apparatus
US2077453A (en) * 1934-03-29 1937-04-20 American Anode Inc Therapeutical appliance
US3088288A (en) * 1960-12-21 1963-05-07 Thore M Elfving Thermoelectric refrigeration system
US3142158A (en) * 1962-05-28 1964-07-28 Podolsky Leon Thermoelectric cooling device
US3228400A (en) * 1962-12-03 1966-01-11 Thomas A Armao Cryogenic capsule probes
US3272203A (en) * 1963-04-29 1966-09-13 John C Chato Surgical probe
US3315681A (en) * 1964-08-17 1967-04-25 Heinz F Poppendiek Means and techniques useful for changing temperature of fluids, particularly blood

Cited By (383)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3674031A (en) * 1969-03-29 1972-07-04 Linde Ag Method of and device for cryogenic surgery
US3696813A (en) * 1971-10-06 1972-10-10 Cryomedics Cryosurgical instrument
US3809520A (en) * 1972-02-22 1974-05-07 R Wilk Fluid heated scoop
US4216767A (en) * 1977-02-21 1980-08-12 Machida Endoscope Co., Ltd. Endoscope with closed pressurized inner cavity
US4241729A (en) * 1977-08-04 1980-12-30 Machida Endoscope Co., Ltd. Endoscope with gas-tight cap permitting pressurization
US4411265A (en) * 1979-06-18 1983-10-25 Eichenlaub John E Ear wax removing device
US4318722A (en) * 1980-04-09 1982-03-09 Gerald Altman Infrared radiation cooler for producing physiologic conditions such as a comfort or hypothermia
US4934996A (en) * 1984-02-27 1990-06-19 Boston Scientific Corporation Pressure-controlled intermittent coronary sinus occlusion apparatus and method
US4969470A (en) * 1984-02-27 1990-11-13 Boston Scientific Corporation Heart analysis using pressure-controlled intermittent coronary sinus occlusion
DE3546523A1 (en) * 1985-12-07 1987-06-11 Blaudszun Bernd Dipl Ing Device for the cooling of defined surface areas of bodies of any type by spraying on a cold gas
US4793352A (en) * 1986-02-07 1988-12-27 Eichenlaub John E Limited heat transfer device and method
DE3611971A1 (en) * 1986-04-09 1987-10-15 Mueller Christa Dr Method and device for treating tumour tissue by heat, by means of interstitial micro heat exchangers inserted in the body
US5147355A (en) * 1988-09-23 1992-09-15 Brigham And Womens Hospital Cryoablation catheter and method of performing cryoablation
US6440158B1 (en) 1990-05-11 2002-08-27 Mark A. Saab Heat transfer catheter apparatus and method of making and using same
US5241951A (en) * 1990-09-05 1993-09-07 Breg, Inc. Therapeutic nonambient temperature fluid circulation system
US5330519A (en) * 1990-09-05 1994-07-19 Breg, Inc. Therapeutic nonambient temperature fluid circulation system
US5662695A (en) * 1990-09-05 1997-09-02 Breg, Inc. Occlusion-resistant fluid pad conformable to a body for therapeutic treatment thereof
US5281215A (en) * 1992-04-16 1994-01-25 Implemed, Inc. Cryogenic catheter
US5281213A (en) * 1992-04-16 1994-01-25 Implemed, Inc. Catheter for ice mapping and ablation
US5423807A (en) * 1992-04-16 1995-06-13 Implemed, Inc. Cryogenic mapping and ablation catheter
US7811249B2 (en) 1992-08-13 2010-10-12 Advanced Polymers, Inc. Multi-lumen heat transfer catheters
US6623516B2 (en) 1992-08-13 2003-09-23 Mark A. Saab Method for changing the temperature of a selected body region
US20050273145A1 (en) * 1992-08-13 2005-12-08 Mark Saab Multi-lumen heat transfer catheters
US5437673A (en) * 1993-02-04 1995-08-01 Cryomedical Sciences, Inc. Closed circulation tissue warming apparatus and method of using the same in prostate surgery
US6849083B2 (en) 1993-02-10 2005-02-01 Radiant Medical, Inc. Method and apparatus for controlling a patients's body temperature by in situ blood temperature modification
US20110054575A1 (en) * 1993-02-10 2011-03-03 Zoll Circulation Inc. Methods and Apparatus for Regional and Whole Body Temperature Modification
US6306161B1 (en) 1993-02-10 2001-10-23 Radiant Medical, Inc. Catheter system for controlling a patient's body temperature by in situ blood temperature modification
US8506494B2 (en) 1993-02-10 2013-08-13 Zoll Circulation, Inc. Method and apparatus for controlling a patient's body temperature by in situ blood temperature modification
US20140257441A1 (en) * 1993-02-10 2014-09-11 Zoll Circulation, Inc. Method for Controlling Patient's Body Temperature
US20060030910A1 (en) * 1993-02-10 2006-02-09 Radiant Medical, Inc. Method and apparatus for controlling a patient's body temperature by in situ blood temperature modification
US20110313496A1 (en) * 1993-02-10 2011-12-22 Zoll Circulation, Inc. Method for Controlling a Patent's Body Temperature
US7217282B2 (en) 1993-02-10 2007-05-15 Radiant Medical, Inc. Methods and apparatus for regional and whole body temperature modification
US6436131B1 (en) * 1993-02-10 2002-08-20 Radiant Medical, Inc. Heat exchange catheter having heat exchange surface formed of metal foil
US5486208A (en) * 1993-02-10 1996-01-23 Ginsburg; Robert Method and apparatus for controlling a patient's body temperature by in situ blood temperature modification
US7311724B1 (en) 1993-02-10 2007-12-25 Radiant Medical, Inc. Method for controlling a patient's body temperature
US20080046046A1 (en) * 1993-02-10 2008-02-21 Radiant Medical, Inc. Method for endovascular management of body temperature
US6110168A (en) * 1993-02-10 2000-08-29 Radiant Medical, Inc. Method and apparatus for controlling a patient's body temperature by in situ blood temperature modifications
US8007525B2 (en) * 1993-02-10 2011-08-30 Zoll Circulation, Inc. Method for endovascular management of body temperature
US20080228141A1 (en) * 1993-02-10 2008-09-18 Radiant Medical Inc. Methods and Apparatus for Regional and Whole Body Temperature Modification
US7494504B2 (en) 1993-02-10 2009-02-24 Zoll Circulation, Inc. Methods and apparatus for regional and whole body temperature modification
US6149676A (en) * 1993-02-10 2000-11-21 Radiant Medical, Inc. Catheter system for controlling a patient's body temperature by in situ blood temperature modification
US6527798B2 (en) 1993-02-10 2003-03-04 Radiant Medical, Inc. Method and apparatus for regional and whole body temperature modification
US7771460B2 (en) 1993-02-10 2010-08-10 Zoll Circulation, Inc. Methods and apparatus for regional and whole body temperature modification
US6149673A (en) * 1993-02-10 2000-11-21 Radiant Medical, Inc. Method for controlling a patient's body temperature by in situ blood temperature modification
US5837003A (en) * 1993-02-10 1998-11-17 Radiant Medical, Inc. Method and apparatus for controlling a patient's body temperature by in situ blood temperature modification
US6497721B2 (en) 1993-02-10 2002-12-24 Radiant Medical, Inc. Method and apparatus for regional and whole body temperature modification
US5531776A (en) * 1993-09-24 1996-07-02 The Ohio State University Non-invasive aortic impingement and core and cerebral temperature manipulation method
US5716386A (en) * 1994-06-27 1998-02-10 The Ohio State University Non-invasive aortic impingement and core and cerebral temperature manipulation
US5733280A (en) * 1995-11-15 1998-03-31 Avitall; Boaz Cryogenic epicardial mapping and ablation
WO1997025011A1 (en) * 1996-01-08 1997-07-17 Radiant Medical, Inc. Method and apparatus for controlling body temperature
US6033383A (en) * 1996-12-19 2000-03-07 Ginsburg; Robert Temperature regulating catheter and methods
US5846235A (en) * 1997-04-14 1998-12-08 Johns Hopkins University Endoscopic cryospray device
US6117164A (en) * 1997-06-06 2000-09-12 Dj Orthopedics, Llc Flexible multijoint therapeutic pads
US6352550B1 (en) 1997-06-06 2002-03-05 Dj Orthopedics, Llc Flexible multijoint therapeutic pads
US6296654B1 (en) 1997-06-27 2001-10-02 The Ohio State University Research Foundation Non-invasive aortic impingement
US20060276865A1 (en) * 1998-01-23 2006-12-07 Dobak John D Iii Fever regulation method and apparatus
US20060124141A1 (en) * 1998-01-23 2006-06-15 Innercool Therapies, Inc. Patient temperature regulation method and apparatus
US20050076924A1 (en) * 1998-01-23 2005-04-14 Dobak John D. Medical procedure
US6887262B2 (en) 1998-01-23 2005-05-03 Innercool Therapies, Inc. Selective organ cooling apparatus and method
WO1999037226A1 (en) 1998-01-23 1999-07-29 Del Mar Medical Technologies, Inc. Selective organ hypothermia method and apparatus
US6843800B1 (en) 1998-01-23 2005-01-18 Innercool Therapies, Inc. Patient temperature regulation method and apparatus
US20040230265A1 (en) * 1998-01-23 2004-11-18 Innercool Therapies, Inc. Selective organ cooling apparatus and method
US6905509B2 (en) 1998-01-23 2005-06-14 Innercool Therapies, Inc. Selective organ cooling catheter with guidewire apparatus and temperature-monitoring device
US6312452B1 (en) 1998-01-23 2001-11-06 Innercool Therapies, Inc. Selective organ cooling catheter with guidewire apparatus and temperature-monitoring device
US6786218B2 (en) 1998-01-23 2004-09-07 Innercool Therapies, Inc. Medical procedure
US20040172109A1 (en) * 1998-01-23 2004-09-02 Innercool Therapies, Inc. Method of manufacturing a heat transfer element for in vivo cooling
US20040153133A1 (en) * 1998-01-23 2004-08-05 Innercool Therapies, Inc. Selective organ cooling apparatus and method
US20050240250A1 (en) * 1998-01-23 2005-10-27 Dobak John D Iii Selective organ hypothermia method and apparatus
US6364899B1 (en) 1998-01-23 2002-04-02 Innercool Therapies, Inc. Heat pipe nerve cooler
US6755850B2 (en) 1998-01-23 2004-06-29 Innercool Therapies, Inc. Selective organ hypothermia method and apparatus
US5957963A (en) * 1998-01-23 1999-09-28 Del Mar Medical Technologies, Inc. Selective organ hypothermia method and apparatus
US8163000B2 (en) 1998-01-23 2012-04-24 Innercool Therapies, Inc. Selective organ cooling catheter with guidewire apparatus and temperature-monitoring device
US20040106969A1 (en) * 1998-01-23 2004-06-03 Innercool Therapies, Inc. Inflatable catheter for selective organ heating and cooling and method of using the same
US6991645B2 (en) 1998-01-23 2006-01-31 Innercool Therapies, Inc. Patient temperature regulation method and apparatus
US7063718B2 (en) * 1998-01-23 2006-06-20 Innercool Therapies, Inc. Selective organ hypothermia method and apparatus
US6702841B2 (en) * 1998-01-23 2004-03-09 Innercool Therapies, Inc. Method of manufacturing a heat transfer element for in vivo cooling
US6702842B2 (en) 1998-01-23 2004-03-09 Innercool Therapies, Inc. Selective organ cooling apparatus and method
US6238428B1 (en) 1998-01-23 2001-05-29 Innercool Therapies, Inc. Selective organ cooling apparatus and method employing turbulence-inducing element with curved terminations
US6235048B1 (en) 1998-01-23 2001-05-22 Innercool Therapies, Inc. Selective organ hypothermia method and apparatus
US7066948B2 (en) 1998-01-23 2006-06-27 Innercool Therapies, Inc. Selective organ cooling apparatus and method
US6695873B2 (en) 1998-01-23 2004-02-24 Innercool Therapies, Inc. Inflatable catheter for selective organ heating and cooling and method of using the same
US6692488B2 (en) 1998-01-23 2004-02-17 Innercool Therapies, Inc. Apparatus for cell necrosis
US7066947B2 (en) 1998-01-23 2006-06-27 Innercool Therapies, Inc. Method of manufacturing a heat transfer element for in vivo cooling
US7094253B2 (en) * 1998-01-23 2006-08-22 Innercool Therapies, Inc. Fever regulation method and apparatus
US6676688B2 (en) 1998-01-23 2004-01-13 Innercool Therapies, Inc. Method of making selective organ cooling catheter
US6676689B2 (en) 1998-01-23 2004-01-13 Innercool Therapies, Inc. Inflatable catheter for selective organ heating and cooling and method of using the same
US6464716B1 (en) 1998-01-23 2002-10-15 Innercool Therapies, Inc. Selective organ cooling apparatus and method
US7101386B2 (en) 1998-01-23 2006-09-05 Innercool Therapies, Inc. Patient temperature regulation method and apparatus
US6468296B1 (en) * 1998-01-23 2002-10-22 Innercool Therapies, Inc. Method for low temperature thrombolysis and low temperature thrombolytic agent with selective organ temperature control
US7998182B2 (en) 1998-01-23 2011-08-16 Innercool Therapies, Inc. Selective organ cooling apparatus
US6648908B2 (en) 1998-01-23 2003-11-18 Innercool Therapies, Inc. Inflatable catheter for selective organ heating and cooling and method of using the same
US20030187489A1 (en) * 1998-01-23 2003-10-02 Innercool Therapies, Inc. Fever regulation method and apparatus
US6051019A (en) * 1998-01-23 2000-04-18 Del Mar Medical Technologies, Inc. Selective organ hypothermia method and apparatus
US7951183B2 (en) 1998-01-23 2011-05-31 Innercool Therapies, Inc. Medical procedure
US20030144714A1 (en) * 1998-01-23 2003-07-31 Innercool Therapies, Inc. Selective organ hypothermia method and apparatus
US6478811B1 (en) 1998-01-23 2002-11-12 Innercool Therapies, Inc Method for low temperature thrombolysis and low temperature thrombolytic agent with selective organ temperature control
US6482226B1 (en) 1998-01-23 2002-11-19 Innercool Therapies, Inc. Selective organ hypothermia method and apparatus
US20020183815A1 (en) * 1998-01-23 2002-12-05 Nest Mark Van Method of manufacturing a heat transfer element for in vivo cooling
US6491039B1 (en) 1998-01-23 2002-12-10 Innercool Therapies, Inc. Medical procedure
US7311725B2 (en) 1998-01-23 2007-12-25 Innercool Therapies, Inc. Patient temperature regulation method and apparatus
US6096068A (en) * 1998-01-23 2000-08-01 Innercool Therapies, Inc. Selective organ cooling catheter and method of using the same
US7371254B2 (en) 1998-01-23 2008-05-13 Innercool Therapies, Inc. Medical procedure
US20030018375A1 (en) * 1998-01-23 2003-01-23 Dobak John D. Selective organ cooling apparatus and method
US20080200970A1 (en) * 1998-01-23 2008-08-21 Innercool Therapies, Inc. Patient temperature regulation method and apparatus
US20080221651A1 (en) * 1998-01-23 2008-09-11 Innercool Therapies, Inc. Medical procedure
US6558412B2 (en) 1998-01-23 2003-05-06 Innercool Therapies, Inc. Selective organ hypothermia method and apparatus
US20030078641A1 (en) * 1998-01-23 2003-04-24 Innercool Therapies, Inc. Selective organ hypothermia method and apparatus
US7651518B2 (en) 1998-01-23 2010-01-26 Innercool Therapies, Inc. Inflatable catheter for selective organ heating and cooling and method of using the same
US6533804B2 (en) 1998-01-23 2003-03-18 Innercool Therapies, Inc. Inflatable catheter for selective organ heating and cooling and method of using the same
US7766949B2 (en) 1998-01-23 2010-08-03 Innercool Therapies, Inc. Fever regulation method and apparatus
US6540771B2 (en) 1998-01-23 2003-04-01 Innercool Therapies, Inc. Inflatable catheter for selective organ heating and cooling and method of using the same
US6042559A (en) * 1998-02-24 2000-03-28 Innercool Therapies, Inc. Insulated catheter for selective organ perfusion
US6576002B2 (en) 1998-03-24 2003-06-10 Innercool Therapies, Inc. Isolated selective organ cooling method and apparatus
US6245095B1 (en) 1998-03-24 2001-06-12 Innercool Therapies, Inc. Method and apparatus for location and temperature specific drug action such as thrombolysis
WO1999048449A1 (en) 1998-03-24 1999-09-30 Innercool Therapies, Inc. Selective organ cooling apparatus and method
US6251129B1 (en) 1998-03-24 2001-06-26 Innercool Therapies, Inc. Method for low temperature thrombolysis and low temperature thrombolytic agent with selective organ temperature control
US6224624B1 (en) 1998-03-24 2001-05-01 Innercool Therapies, Inc. Selective organ cooling apparatus and method
EP1066003A4 (en) * 1998-03-24 2004-06-02 Innercool Therapies Inc Selective organ cooling apparatus and method
US6740109B2 (en) 1998-03-24 2004-05-25 Innercool Therapies, Inc. Isolated selective organ cooling method
US6582455B1 (en) 1998-03-24 2003-06-24 Innercool Therapies, Inc. Method and device for applications of selective organ cooling
US6551349B2 (en) 1998-03-24 2003-04-22 Innercool Therapies, Inc. Selective organ cooling apparatus
US6251130B1 (en) 1998-03-24 2001-06-26 Innercool Therapies, Inc. Device for applications of selective organ cooling
US6478812B2 (en) 1998-03-24 2002-11-12 Innercool Therapies, Inc. Method and device for applications of selective organ cooling
US6471717B1 (en) 1998-03-24 2002-10-29 Innercool Therapies, Inc. Selective organ cooling apparatus and method
EP1066003A1 (en) * 1998-03-24 2001-01-10 Innercool Therapies, Inc. Selective organ cooling apparatus and method
US6254626B1 (en) 1998-03-24 2001-07-03 Innercool Therapies, Inc. Articulation device for selective organ cooling apparatus
US6475231B2 (en) 1998-03-24 2002-11-05 Innercool Therapies, Inc. Method and device for applications of selective organ cooling
US6491716B2 (en) 1998-03-24 2002-12-10 Innercool Therapies, Inc. Method and device for applications of selective organ cooling
US6599312B2 (en) 1998-03-24 2003-07-29 Innercool Therapies, Inc. Isolated selective organ cooling apparatus
US8043283B2 (en) 1998-03-31 2011-10-25 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US8157794B2 (en) 1998-03-31 2012-04-17 Innercool Therapies, Inc. Method and device for performing cooling-or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US20040267250A1 (en) * 1998-03-31 2004-12-30 Yon Steven A. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US6905494B2 (en) 1998-03-31 2005-06-14 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US6818011B2 (en) 1998-03-31 2004-11-16 Innercool Therapies, Inc. Circulating fluid hypothermia method and apparatus
US7291144B2 (en) 1998-03-31 2007-11-06 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US7001378B2 (en) 1998-03-31 2006-02-21 Innercool Therapies, Inc. Method and device for performing cooling or cryo-therapies, for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US20080300585A1 (en) * 1998-03-31 2008-12-04 Innercool Therapies, Inc. Method and device for performing cooling-or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US7288089B2 (en) 1998-03-31 2007-10-30 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US6602276B2 (en) 1998-03-31 2003-08-05 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US20040147914A1 (en) * 1998-03-31 2004-07-29 Kramer Hans W. Method and device for performing cooling- or cryo-therapies for, E.G., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing microporous balloon
US20050228368A1 (en) * 1998-03-31 2005-10-13 Yon Steven A Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US20010007951A1 (en) * 1998-03-31 2001-07-12 Innercool Therapies, Inc Circulating fluid hypothermia method and apparatus
US6149677A (en) * 1998-03-31 2000-11-21 Innercool Therapies, Inc. Circulating fluid hypothermia method
US8043351B2 (en) 1998-03-31 2011-10-25 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US20040087934A1 (en) * 1998-03-31 2004-05-06 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, E.G., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US6231595B1 (en) 1998-03-31 2001-05-15 Innercool Therapies, Inc. Circulating fluid hypothermia method and apparatus
US7449018B2 (en) 1998-03-31 2008-11-11 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing microporous balloon
US6685732B2 (en) 1998-03-31 2004-02-03 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing microporous balloon
US6409747B1 (en) 1998-04-21 2002-06-25 Alsius Corporation Indwelling heat exchange catheter and method of using same
US6530946B1 (en) 1998-04-21 2003-03-11 Alsius Corporation Indwelling heat exchange heat pipe catheter and method of using same
US7857781B2 (en) 1998-04-21 2010-12-28 Zoll Circulation, Inc. Indwelling heat exchange catheter and method of using same
US6755851B2 (en) 1998-04-21 2004-06-29 Alsius Corporation Indwelling heat exchange catheter and method of using same
US6419643B1 (en) 1998-04-21 2002-07-16 Alsius Corporation Central venous catheter with heat exchange properties
US6416533B1 (en) 1998-04-21 2002-07-09 Alsius Corporation Indwelling heat exchange catheter and method of using same
US8128595B2 (en) 1998-04-21 2012-03-06 Zoll Circulation, Inc. Method for a central venous line catheter having a temperature control system
US6652565B1 (en) 1998-04-21 2003-11-25 Alsius Corporation Central venous catheter with heat exchange properties
US6716236B1 (en) 1998-04-21 2004-04-06 Alsius Corporation Intravascular catheter with heat exchange element having inner inflation element and methods of use
US20050222653A1 (en) * 1998-04-21 2005-10-06 Alsius Corporation Indwelling heat exchange catheter and method of using same
US6589271B1 (en) 1998-04-21 2003-07-08 Alsius Corporations Indwelling heat exchange catheter
US6126684A (en) * 1998-04-21 2000-10-03 The Regents Of The University Of California Indwelling heat exchange catheter and method of using same
US6726653B2 (en) 1998-04-21 2004-04-27 Alsius Corp. Indwelling heat exchange catheter and method of using same
US7018399B2 (en) 1998-06-23 2006-03-28 Innercool Therapies, Inc. Method of making selective organ cooling catheter
WO1999066971A1 (en) 1998-06-23 1999-12-29 Innercool Therapies, Inc. Method and device for applications of selective organ cooling
US6261312B1 (en) 1998-06-23 2001-07-17 Innercool Therapies, Inc. Inflatable catheter for selective organ heating and cooling and method of using the same
US20040230264A1 (en) * 1998-06-23 2004-11-18 Dobak John D. Method of making selective organ cooling catheter
US6585752B2 (en) 1998-06-23 2003-07-01 Innercool Therapies, Inc. Fever regulation method and apparatus
WO1999066970A1 (en) 1998-06-23 1999-12-29 Innercool Therapies, Inc. Selective organ cooling apparatus and method
US6450990B1 (en) 1998-08-13 2002-09-17 Alsius Corporation Catheter with multiple heating/cooling fibers employing fiber spreading features
US6338727B1 (en) 1998-08-13 2002-01-15 Alsius Corporation Indwelling heat exchange catheter and method of using same
US8246669B2 (en) * 1998-08-24 2012-08-21 Zoll Circulation, Inc. Method and apparatus for regional and whole body temperature modification
US20050209658A1 (en) * 1998-08-24 2005-09-22 Radiant Medical, Inc. Disposable cassette for intravenous heat exchange catheter
US9237964B2 (en) * 1998-08-24 2016-01-19 Zoll Circulation, Inc. Multiple lumen heat exchange catheters
US20040143311A1 (en) * 1998-08-24 2004-07-22 Machold Timothy R. Disposable cassette for intravascular heat exchange catheter
US8177824B2 (en) 1998-08-24 2012-05-15 Zoll Circulation, Inc. Disposable cassette for intravenous heat exchange catheter
US20110208278A1 (en) * 1998-08-24 2011-08-25 Zoll Circulation, Inc. Method and apparatus for regional and whole body temperature modification
US20180055687A1 (en) * 1998-08-24 2018-03-01 Zoll Circulation, Inc. Multiple lumen heat exchange catheters
US8551151B2 (en) * 1998-08-24 2013-10-08 Zoll Circulation, Inc. Method and apparatus for regional and whole body temperature modification
US7247165B2 (en) 1998-08-24 2007-07-24 Radiant Medical, Inc. Disposable cassette for intravenous heat exchange catheter
US20110208277A1 (en) * 1998-08-24 2011-08-25 Zoll Circulation, Inc. Method and apparatus for regional and whole body temperature modification
US6997942B2 (en) 1998-08-24 2006-02-14 Radiant Medical, Inc. Disposable cassette for intravascular heat exchange catheter
US6620188B1 (en) 1998-08-24 2003-09-16 Radiant Medical, Inc. Methods and apparatus for regional and whole body temperature modification
US20130296983A1 (en) * 1998-08-24 2013-11-07 Zoll Circulation, Inc. Multiple lumen heat exchange catheters
US8784464B2 (en) 1998-08-24 2014-07-22 Zoll Circulation, Inc. Disposable cassette for intravascular heat exchange catheter
US20070293919A1 (en) * 1998-08-24 2007-12-20 Radiant Medical, Inc. Disposable cassette for intravenous heat exchange catheter
US8968378B2 (en) 1998-08-24 2015-03-03 Zoll Circulation, Inc. Methods for preparing a heat exchange catheter system and for heating and/or cooling a subject's body
US8740959B2 (en) * 1998-08-24 2014-06-03 Zoll Circulation, Inc. Method and apparatus for modifying the temperature of a patient
US20020161351A1 (en) * 1998-09-01 2002-10-31 Samson Wilfred J. Method and apparatus for treating acute myocardial infarction with selective hypothermic perfusion
US6146411A (en) * 1998-12-24 2000-11-14 Alsius Corporation Cooling system for indwelling heat exchange catheter
US6454792B1 (en) 1998-12-24 2002-09-24 Alsius Corporation Cooling system for indwelling heat exchange catheter
US6869440B2 (en) 1999-02-09 2005-03-22 Innercool Therapies, Inc. Method and apparatus for patient temperature control employing administration of anti-shivering agents
US20050171586A1 (en) * 1999-02-09 2005-08-04 Dobak John D.Iii Method and apparatus for patient temperature control employing administration of anti-shivering agents
US20030023288A1 (en) * 1999-02-09 2003-01-30 Michael Magers Method and device for patient temperature control employing optimized rewarming
US7189254B2 (en) 1999-02-09 2007-03-13 Innercool Therapies, Inc. Method and device for patient temperature control employing optimized rewarming
US20050096715A1 (en) * 1999-02-09 2005-05-05 Innercool Therapies, Inc. Method and device for patient temperature control employing optimized rewarming
US20030060863A1 (en) * 1999-02-09 2003-03-27 Dobak John D. Method and apparatus for patient temperature control employing administration of anti-shivering agents
US7351254B2 (en) 1999-02-09 2008-04-01 Innercool Therapies, Inc. Method and device for patient temperature control employing optimized rewarming
US6830581B2 (en) 1999-02-09 2004-12-14 Innercool Therspies, Inc. Method and device for patient temperature control employing optimized rewarming
US7422600B2 (en) 1999-02-09 2008-09-09 Innercool Therapies, Inc. Method and apparatus for patient temperature control employing administration of anti-shivering agents
US6582398B1 (en) 1999-02-19 2003-06-24 Alsius Corporation Method of managing patient temperature with a heat exchange catheter
US6393320B2 (en) 1999-02-19 2002-05-21 Alsius Corporation Method for treating cardiac arrest
US6516224B2 (en) 1999-02-19 2003-02-04 Alsius Corporation Method for treating cardiac arrest
US6299599B1 (en) 1999-02-19 2001-10-09 Alsius Corporation Dual balloon central venous line catheter temperature control system
US6458150B1 (en) 1999-02-19 2002-10-01 Alsius Corporation Method and apparatus for patient temperature control
US6620131B2 (en) 1999-02-19 2003-09-16 Alsius Corporation Dual balloon central venous line catheter temperature control system
AU763293B2 (en) * 1999-02-19 2003-07-17 Zoll Circulation, Inc. Central venous line catheter having temperature control system
US6368304B1 (en) 1999-02-19 2002-04-09 Alsius Corporation Central venous catheter with heat exchange membrane
US6436130B1 (en) 1999-03-02 2002-08-20 Alsius Corporation Cooling system for therapeutic catheter
US6460544B1 (en) 1999-03-11 2002-10-08 Alsius Corporation Method and apparatus for establishing and maintaining therapeutic hypothemia
US6682551B1 (en) 1999-03-11 2004-01-27 Alsius Corporation Method and system for treating cardiac arrest using hypothermia
US7014651B2 (en) 1999-03-11 2006-03-21 Alsius Corporation Method and system for treating cardiac arrest using hypothermia
US6149670A (en) * 1999-03-11 2000-11-21 Alsius Corporation Method and system for treating cardiac arrest using hypothermia
US20020193853A1 (en) * 1999-03-11 2002-12-19 Alsius Corp. Method and system for treating cardiac arrest using hypothermia
US6165207A (en) * 1999-05-27 2000-12-26 Alsius Corporation Method of selectively shaping hollow fibers of heat exchange catheter
US6270493B1 (en) 1999-07-19 2001-08-07 Cryocath Technologies, Inc. Cryoablation structure
US6547811B1 (en) 1999-08-02 2003-04-15 Arch Development Corporation Method for inducing hypothermia
US20090125087A1 (en) * 1999-08-02 2009-05-14 University Of Chicago Office Of Technology Transfer Method for inducing hypothermia
US20050203598A1 (en) * 1999-08-02 2005-09-15 University Of Chicago Office Of Technology Transfer Method for inducing hypothermia
US7422601B2 (en) 1999-08-02 2008-09-09 University Of Chicago Office Of Technology Transfer Method for inducing hypothermia
US6962601B2 (en) 1999-08-02 2005-11-08 University Of Chicago Office Of Technology Transfer Method for inducing hypothermia
US6287326B1 (en) 1999-08-02 2001-09-11 Alsius Corporation Catheter with coiled multi-lumen heat transfer extension
JP2003506385A (en) * 1999-08-11 2003-02-18 レイディアント メディカル インコーポレイテッド How to control body temperature while reducing tremors
EP1212000A1 (en) * 1999-08-11 2002-06-12 Radiant Medical, Inc. System for controlling body temperature while reducing shivering
EP1212000A4 (en) * 1999-08-11 2002-10-25 Radiant Medical Inc Method of controlling body temperature while reducing shivering
JP4787919B2 (en) * 1999-08-11 2011-10-05 ゾール サーキュレイション インコーポレイテッド A system that controls body temperature while reducing tremors
US6726710B2 (en) 1999-08-16 2004-04-27 Alsius Corporation Method and system for treating cardiac arrest using hypothermia
WO2001013837A1 (en) 1999-08-23 2001-03-01 Innercool Therapies, Inc. Method of manufacturing a heat transfer element for in vivo cooling
US6447474B1 (en) 1999-09-15 2002-09-10 Alsius Corporation Automatic fever abatement system
US20030167034A1 (en) * 1999-09-15 2003-09-04 Balding David P. Automatic fever abatement applications
US7052508B2 (en) 1999-10-07 2006-05-30 Innercool Therapies, Inc. Inflatable heat transfer apparatus
US6676690B2 (en) 1999-10-07 2004-01-13 Innercool Therapies, Inc. Inflatable heat transfer apparatus
US6325818B1 (en) 1999-10-07 2001-12-04 Innercool Therapies, Inc. Inflatable cooling apparatus for selective organ hypothermia
WO2001043661A2 (en) * 1999-12-14 2001-06-21 Radiant Medical, Inc. Method for reducing myocardial infarct by applicaton of intravascular hypothermia
US20090254161A1 (en) * 1999-12-14 2009-10-08 Zoll Circulation, Inc. Method for reducing myocardial infarct by application of intravascular hypothermia
US8568464B2 (en) 1999-12-14 2013-10-29 Zoll Circulation, Inc. Method for reducing myocardial infarct by application of intravascular hypothermia
US7510569B2 (en) * 1999-12-14 2009-03-31 Zoll Circulation, Inc. Use of intravascular hypothermia during angioplasty procedures
WO2001043661A3 (en) * 1999-12-14 2002-01-03 Radiant Medical Inc Method for reducing myocardial infarct by applicaton of intravascular hypothermia
US6811551B2 (en) * 1999-12-14 2004-11-02 Radiant Medical, Inc. Method for reducing myocardial infarct by application of intravascular hypothermia
US20050027290A1 (en) * 1999-12-14 2005-02-03 Radiant Medical, Inc. Method for reducing myocardial infarct by application of intravascular hypothermia
US6669688B2 (en) * 2000-01-25 2003-12-30 The Regents Of The University Of California Method and apparatus for measuring the heat transfer coefficient during cryogen spray cooling of tissue
US20070203552A1 (en) * 2000-02-28 2007-08-30 Radiant Medical, Inc. Method and system for control of a patient's body temperature by way of a transluminally insertable heat exchange catheter
US10085880B2 (en) 2000-02-28 2018-10-02 Zell Circulation, Inc. Method and system for control of a patient's body temperature by way of a transluminally insertable heat exchange catheter
US7879077B2 (en) 2000-02-28 2011-02-01 Zoll Circulation, Inc. Method and system for control of a patient's body temperature by way of a transluminally insertable heat exchange catheter
US7175649B2 (en) 2000-02-28 2007-02-13 Radiant Medical, Inc. Method and system for control of a patient's body temperature by way of transluminally insertable heat exchange catheter
US20040039431A1 (en) * 2000-02-28 2004-02-26 Radiant Medical, Inc. Method and system for control of a patient's body temperature by way of transluminally insertable heat exchange catheter
US7963986B2 (en) 2000-02-28 2011-06-21 Zoll Circulation, Inc. Method and system for control of a patient's body temperature by way of a transluminally insertable heat exchange catheter
US6576001B2 (en) 2000-03-03 2003-06-10 Innercool Therapies, Inc. Lumen design for catheter
US6379378B1 (en) 2000-03-03 2002-04-30 Innercool Therapies, Inc. Lumen design for catheter
US6918924B2 (en) 2000-04-06 2005-07-19 Innercool Therapies, Inc. Method and apparatus for regulating patient temperature by irrigating the bladder with a fluid
US6648906B2 (en) 2000-04-06 2003-11-18 Innercool Therapies, Inc. Method and apparatus for regulating patient temperature by irrigating the bladder with a fluid
US7258662B2 (en) 2000-05-02 2007-08-21 Radiant Medical, Inc. Method and system for control of a patient's body temperature by way of transluminally insertable heat exchange catheter
US20040050154A1 (en) * 2000-05-02 2004-03-18 Radiant Medical, Inc. Method and system for control of a patient's body temperature by way of transluminally insertable heat exchange catheter
US7211105B2 (en) 2000-06-02 2007-05-01 Innercool Therapias, Inc. Method for determining the effective thermal mass of a body or organ using a cooling catheter
US20040116987A1 (en) * 2000-06-02 2004-06-17 Innercool Therapies, Inc. Method for determining the effective thermal mass of a body or organ using a cooling catheter
US6660028B2 (en) 2000-06-02 2003-12-09 Innercool Therapies, Inc. Method for determining the effective thermal mass of a body or organ using a cooling catheter
US6383210B1 (en) 2000-06-02 2002-05-07 Innercool Therapies, Inc. Method for determining the effective thermal mass of a body or organ using cooling catheter
US7491223B2 (en) 2000-06-14 2009-02-17 Innercool Therapies, Inc. Therapeutic heating and cooling via temperature management of a colon-inserted balloon
US20040199229A1 (en) * 2000-06-14 2004-10-07 Innercool Therapies, Inc. Therapeutic heating and cooling via temperature management of a colon-inserted balloon
US6726708B2 (en) 2000-06-14 2004-04-27 Innercool Therapies, Inc. Therapeutic heating and cooling via temperature management of a colon-inserted balloon
AU2011201173C1 (en) * 2000-07-21 2013-10-03 Zoll Circulation, Inc. Heat exchanger catheter for controlling body temperature
AU2011201173B2 (en) * 2000-07-21 2013-05-30 Zoll Circulation, Inc. Heat exchanger catheter for controlling body temperature
US20040102825A1 (en) * 2000-11-07 2004-05-27 Innercool Therapies, Inc. Circulation set for temperature-controlled catheter and method of using the same
US6719779B2 (en) 2000-11-07 2004-04-13 Innercool Therapies, Inc. Circulation set for temperature-controlled catheter and method of using the same
WO2002055129A3 (en) * 2000-11-07 2002-11-07 Innercool Therapies Inc Fever regulation method and apparatus
EP1331908A4 (en) * 2000-11-07 2007-09-19 Innercool Therapies Inc Fever regulation method and apparatus
EP1331908A2 (en) * 2000-11-07 2003-08-06 Innercool Therapies, Inc. Fever regulation method and apparatus
AU2002246582B2 (en) * 2000-11-07 2006-11-23 Zoll Circulation, Inc. Fever regulation method and apparatus
WO2002055129A2 (en) 2000-11-07 2002-07-18 Innercool Therapies, Inc. Fever regulation method and apparatus
US7004960B2 (en) 2000-11-07 2006-02-28 Innercool Therapies, Inc. Circulation set for temperature-controlled catheter and method of using the same
US6719723B2 (en) 2000-12-06 2004-04-13 Innercool Therapies, Inc. Multipurpose catheter assembly
US20020151845A1 (en) * 2000-12-06 2002-10-17 Randell Werneth Multipurpose catheter assembly
US6979345B2 (en) 2000-12-06 2005-12-27 Innercool Therapies, Inc. Multipurpose catheter assembly
US6595967B2 (en) 2001-02-01 2003-07-22 Innercool Therapies, Inc. Collapsible guidewire lumen
US10369044B2 (en) 2001-02-21 2019-08-06 Zoll Circulation, Inc. Inhibition of platelet activation, aggregation and/or adhesion by hypothermia
US9358153B2 (en) * 2001-02-21 2016-06-07 Zoll Circulation, Inc. Inhibition of platelet activation, aggregation and/or adhesion by hypothermia
US20130304166A1 (en) * 2001-02-21 2013-11-14 Zoll Circulation Inc. Inhibition of platelet activation, aggregation and/or adhesion by hypothermia
US6641603B2 (en) 2001-04-13 2003-11-04 Alsius Corporation Heat exchange catheter having helically wound reinforcement
US6641602B2 (en) 2001-04-13 2003-11-04 Alsius Corporation Method and device including a colo-rectal heat exchanger
US6709448B2 (en) 2001-04-13 2004-03-23 Alsius Corporation Open core heat exchange catheter, system and method
US20040133256A1 (en) * 2001-05-31 2004-07-08 Radiant Medical, Inc. Heat transfer catheter with elastic fluid lumens
US9624926B2 (en) 2001-09-25 2017-04-18 Zoll Circulation, Inc. Heating/ cooling system for indwelling heat exchange catheter
WO2003027589A1 (en) * 2001-09-25 2003-04-03 Alsius Corporation Heating/cooling system for indwelling heat exchange catheter
EP2119988A3 (en) * 2001-09-25 2012-01-11 ZOLL Circulation, Inc. Heating-cooling system for medical indwelling heat-exchange catheter
US8790304B2 (en) 2001-09-25 2014-07-29 Zoll Circulation, Inc. Tubing set to interconnect heating/cooling system and indwelling heat exchange catheter
US8690826B2 (en) 2001-09-25 2014-04-08 Zoll Circulation, Inc. Heating/ cooling system for indwelling heat exchange catheter
US6581403B2 (en) 2001-09-25 2003-06-24 Alsius Corporation Heating/cooling system for indwelling heat exchange catheter
US6589234B2 (en) 2001-09-27 2003-07-08 Cryocath Technologies Inc. Cryogenic medical device with high pressure resistance tip
US20030065922A1 (en) * 2001-09-28 2003-04-03 Fredlund John R. System and method of authenticating a digitally captured image
US9180236B2 (en) 2001-10-26 2015-11-10 Zoll Circulation, Inc. Intra-aortic balloon counterpulsation with concurrent hypothermia
US9533086B2 (en) 2001-10-26 2017-01-03 Zoll Circulation, Inc. Intra-aortic balloon counterpulsation with concurrent hypothermia
US8430899B2 (en) 2001-10-26 2013-04-30 Zoll Circulation, Inc. Intra-aortic balloon counterpulsation with concurrent hypothermia
US7959643B2 (en) 2001-10-26 2011-06-14 Zoll Circulation, Inc. Intra-aortic balloon counterpulsation with concurrent hypothermia
US20050043579A1 (en) * 2001-10-26 2005-02-24 Radiant Medical, Inc. Intra-aortic balloon counterpulsation with concurrent hypothermia
US6572640B1 (en) 2001-11-21 2003-06-03 Alsius Corporation Method and apparatus for cardiopulmonary bypass patient temperature control
US7896009B2 (en) 2002-01-16 2011-03-01 Zoll Circulation, Inc. Method for gastric cooling using balloon catheter
US10420675B2 (en) 2002-01-16 2019-09-24 Zoll Circulation, Inc. Apparatus and method for esophageal cooling
US20110166633A1 (en) * 2002-01-16 2011-07-07 Zoll Circulation, Inc. Method of gastric cooling using balloon catheter
US9138344B2 (en) 2002-01-16 2015-09-22 Zoll Circulation, Inc. Apparatus and method of gastric cooling using balloon catheter
US7077825B1 (en) 2002-01-16 2006-07-18 Radiant Medical, Inc. Method for gastric cooling using balloon catheter
US20060253095A1 (en) * 2002-01-16 2006-11-09 Radiant Medical, Inc. Method for gastric cooling using balloon catheter
US8652190B2 (en) 2002-01-16 2014-02-18 Zoll Circulation, Inc. Heat exchange catheter apparatus and method for manipulating patient's body temperature
US20040210285A1 (en) * 2002-04-04 2004-10-21 Steven Yon Method of manufacturing a heat transfer element for in vivo cooling without undercuts
US7288109B2 (en) 2002-04-04 2007-10-30 Innercool Therapies. Inc. Method of manufacturing a heat transfer element for in vivo cooling without undercuts
US8172889B2 (en) 2002-04-04 2012-05-08 Innercoll Therapies, Inc. Method of manufacturing a heat transfer element for in vivo cooling without undercuts
US20090182400A1 (en) * 2002-04-10 2009-07-16 Zoll Circulation, Inc. Methods and systems for reducing substance-induced renal damage
US7473270B1 (en) * 2002-04-10 2009-01-06 Zoll Circulation, Inc. Methods and systems for reducing substance-induced renal damage
EP1528905A1 (en) * 2002-08-08 2005-05-11 Medivance Incorporated Patient temperature control system
EP1528905A4 (en) * 2002-08-08 2008-02-27 Medivance Inc Patient temperature control system
EP1534199A1 (en) * 2002-08-08 2005-06-01 Medivance Incorporated Patient temperature control system connector apparatus
EP1534199A4 (en) * 2002-08-08 2007-08-29 Medivance Inc Patient temperature control system connector apparatus
US20050159673A1 (en) * 2002-08-12 2005-07-21 Radiant Medical, Inc. Temperature sensing system with retrograde sensor
US7407487B2 (en) 2002-08-12 2008-08-05 Radiant Medical, Inc. Temperature sensing system with retrograde sensor
US6866638B2 (en) 2002-08-12 2005-03-15 Radiant Medical, Inc. Temperature sensing system with retrograde sensor
US7666215B2 (en) * 2002-09-12 2010-02-23 Radiant Medical, Inc. System and method for determining and controlling core body temperature
US20060122673A1 (en) * 2002-09-12 2006-06-08 Radiant Medical,Inc. System and method for determining and controlling core body temperature
US20160228291A1 (en) * 2002-09-12 2016-08-11 Zoll Circulation, Inc. System And Method For Determining And Controlling Core Body Temperature
US20120191166A1 (en) * 2002-09-12 2012-07-26 Zoll Circulation, Inc. System and method for determining and controlling core body temperatue
US9314367B2 (en) * 2002-09-12 2016-04-19 Zoll Circulation, Inc. System and method for determining and controlling core body temperature
US20100152822A1 (en) * 2002-09-12 2010-06-17 Zoll Circulation, Inc. System and method for determining and controlling core body temperature
US8435278B2 (en) * 2002-09-12 2013-05-07 Zoll Circulation, Inc. System and method for determining and controlling core body temperatue
US20140058484A1 (en) * 2002-09-12 2014-02-27 Zoll Circulation, Inc.A System and method for determining and controlling core body temperature
US8100957B2 (en) * 2002-09-12 2012-01-24 Zoll Circulation, Inc. System and method for determining and controlling core body temperature
US7278984B2 (en) 2002-12-31 2007-10-09 Alsius Corporation System and method for controlling rate of heat exchange with patient
US7641632B2 (en) 2002-12-31 2010-01-05 Zoll Circulation, Inc. System and method for controlling rate of heat exchange with patient
US20070293921A1 (en) * 2002-12-31 2007-12-20 Alsius Corporation System and method for controlling rate of heat exchange with patient
US20040127851A1 (en) * 2002-12-31 2004-07-01 Alsius Corporation System and method for controlling rate of heat exchange with patient
US7758623B2 (en) 2003-03-17 2010-07-20 The Board Of Trustees Of The Leland Stanford Junior University Transesophageal heat exchange catheter for cooling of the heart
US20060036302A1 (en) * 2004-05-28 2006-02-16 Kasza Kenneth E Methods of inducing protective hypothermia of organs
US20060136023A1 (en) * 2004-08-26 2006-06-22 Dobak John D Iii Method and apparatus for patient temperature control employing administration of anti-shivering agents
US20060161232A1 (en) * 2005-01-18 2006-07-20 Kasza, Oras and Son to The University of Chicago Phase-change particulate ice slurry coolant medical delivery tubing and insertion devices
US7789846B2 (en) 2005-01-25 2010-09-07 Thermopeutix, Inc. System and methods for selective thermal treatment
US7704220B2 (en) 2005-01-25 2010-04-27 Thermopeutix, Inc. Systems and methods for selective thermal treatment
US20060167399A1 (en) * 2005-01-25 2006-07-27 Solar Ronald J Systems and methods for selective thermal treatment
US20060167398A1 (en) * 2005-01-25 2006-07-27 Thermopeutix Inc. System and methods for selective thermal treatment
EP3187157A1 (en) 2005-04-27 2017-07-05 ZOLL Circulation, Inc. Apparatus & method for providing enhanced heat transfer from a body
EP2929862A1 (en) 2005-04-27 2015-10-14 ZOLL Circulation, Inc. Apparatus & method for providing enhanced heat transfer from a body
EP2305188A1 (en) 2005-04-27 2011-04-06 Radiant Medical, Inc. Apparatus and method for providing enhanced heat transfer from a body
US11311414B2 (en) 2005-04-27 2022-04-26 Zoll Circulation, Inc. Apparatus and method for providing enhanced heat transfer from a body
US20110028961A1 (en) * 2005-06-22 2011-02-03 Kochanek Patrick M Emergency preservation and resuscitation methods
US20100121273A1 (en) * 2005-06-22 2010-05-13 Kochanek Patrick M Emergency preservation and resuscitation methods
US8628512B2 (en) 2005-06-22 2014-01-14 University of Pittsburgh—of the Commonwealth System of Higher Education Emergency preservation and resuscitation methods
US8696723B2 (en) 2005-07-14 2014-04-15 Zoll Circulation, Inc. System and method for leak detection in external cooling pad
US9615966B2 (en) 2005-07-14 2017-04-11 Zoll Circulation, Inc. System and method for leak detection in external cooling pad
US7389653B2 (en) 2005-09-15 2008-06-24 The University Of Chicago Medical ice slurry production device
US20070056313A1 (en) * 2005-09-15 2007-03-15 Kasza Kenneth E Medical ice slurry production device
US20090018504A1 (en) * 2005-12-22 2009-01-15 John Pile-Spellman Systems and methods for intravascular cooling
US8343097B2 (en) 2005-12-22 2013-01-01 Hybernia Medical Llc Systems and methods for intravascular cooling
WO2007078463A1 (en) 2005-12-22 2007-07-12 The Trustees Of Columbia University In The City Of New York Systems and methods for intravascular cooling
US9283112B2 (en) 2011-09-20 2016-03-15 Zoll Circulation, Inc. Patient temperature control catheter with outer sleeve cooled by inner sleeve
US9283110B2 (en) 2011-09-20 2016-03-15 Zoll Circulation, Inc. Patient temperature control catheter with outer sleeve cooled by inner sleeve
US10561526B2 (en) 2011-09-28 2020-02-18 Zoll Circulation, Inc. Transatrial patient temperature control catheter
US10045881B2 (en) 2011-09-28 2018-08-14 Zoll Circulation, Inc. Patient temperature control catheter with helical heat exchange paths
US9314370B2 (en) 2011-09-28 2016-04-19 Zoll Circulation, Inc. Self-centering patient temperature control catheter
EP2760396A4 (en) * 2011-09-28 2015-07-22 Zoll Circulation Inc Transatrial patient temperature control catheter
US8888832B2 (en) 2011-09-28 2014-11-18 Zoll Circulation, Inc. System and method for doubled use of patient temperature control catheter
US9259348B2 (en) 2011-09-28 2016-02-16 Zoll Circulation, Inc. Transatrial patient temperature control catheter
US9402764B2 (en) 2011-09-28 2016-08-02 Zoll Circulation, Inc. Self-centering patient temperature control catheter
US9801756B2 (en) 2012-09-28 2017-10-31 Zoll Circulation, Inc. Intravascular heat exchange catheter and system with RFID coupling
US11571332B2 (en) 2012-09-28 2023-02-07 Zoll Circulation, Inc. Intravascular heat exchange catheter and system with RFID coupling
US9241827B2 (en) 2012-09-28 2016-01-26 Zoll Circulation, Inc. Intravascular heat exchange catheter with multiple spaced apart discrete coolant loops
US10596029B2 (en) 2012-09-28 2020-03-24 Zoll Circulation, Inc. Intravascular heat exchange catheter with rib cage-like coolant path
US9717625B2 (en) 2012-09-28 2017-08-01 Zoll Circulation, Inc. Intravascular heat exchange catheter with non-round coiled coolant path
US9433528B2 (en) 2012-09-28 2016-09-06 Zoll Circulation, Inc. Intravascular heat exchange catheter with rib cage-like coolant path
US11219550B2 (en) 2012-12-14 2022-01-11 Zoll Circulation, Inc. System and method for management of body temperature
US9278023B2 (en) 2012-12-14 2016-03-08 Zoll Circulation, Inc. System and method for management of body temperature
US9474644B2 (en) 2014-02-07 2016-10-25 Zoll Circulation, Inc. Heat exchange system for patient temperature control with multiple coolant chambers for multiple heat exchange modalities
US10828189B2 (en) 2014-02-07 2020-11-10 Zoll Circulation Inc. Heat exchange system for patient temperature control with multiple coolant chambers for multiple heat exchange modalities
US10500088B2 (en) 2014-02-14 2019-12-10 Zoll Circulation, Inc. Patient heat exchange system with two and only two fluid loops
US10792185B2 (en) 2014-02-14 2020-10-06 Zoll Circulation, Inc. Fluid cassette with polymeric membranes and integral inlet and outlet tubes for patient heat exchange system
US11033424B2 (en) 2014-02-14 2021-06-15 Zoll Circulation, Inc. Fluid cassette with tensioned polymeric membranes for patient heat exchange system
US20150282858A1 (en) * 2014-04-04 2015-10-08 Cpsi Holdings Llc Thermal regulation catheter system
US11419656B2 (en) * 2014-04-04 2022-08-23 Cpsi Holdings Llc Thermal regulation catheter system
US11353016B2 (en) 2014-11-06 2022-06-07 Zoll Circulation, Inc. Heat exchange system for patient temperature control with easy loading high performance peristaltic pump
US9784263B2 (en) 2014-11-06 2017-10-10 Zoll Circulation, Inc. Heat exchange system for patient temperature control with easy loading high performance peristaltic pump
US10502200B2 (en) 2014-11-06 2019-12-10 Zoll Circulation, Inc. Heat exchanges system for patient temperature control with easy loading high performance peristaltic pump
US11213423B2 (en) 2015-03-31 2022-01-04 Zoll Circulation, Inc. Proximal mounting of temperature sensor in intravascular temperature management catheter
US10537465B2 (en) 2015-03-31 2020-01-21 Zoll Circulation, Inc. Cold plate design in heat exchanger for intravascular temperature management catheter and/or heat exchange pad
US11359620B2 (en) 2015-04-01 2022-06-14 Zoll Circulation, Inc. Heat exchange system for patient temperature control with easy loading high performance peristaltic pump
US10022265B2 (en) 2015-04-01 2018-07-17 Zoll Circulation, Inc. Working fluid cassette with hinged plenum or enclosure for interfacing heat exchanger with intravascular temperature management catheter
US11759354B2 (en) 2015-04-01 2023-09-19 Zoll Circulation, Inc. Working fluid cassette with hinged plenum or enclosure for interfacing heat exchanger with intravascular temperature management catheter
US11185440B2 (en) 2017-02-02 2021-11-30 Zoll Circulation, Inc. Devices, systems and methods for endovascular temperature control
US11116657B2 (en) 2017-02-02 2021-09-14 Zoll Circulation, Inc. Devices, systems and methods for endovascular temperature control
US11337851B2 (en) 2017-02-02 2022-05-24 Zoll Circulation, Inc. Devices, systems and methods for endovascular temperature control
US11883323B2 (en) 2017-02-02 2024-01-30 Zoll Circulation, Inc. Devices, systems and methods for endovascular temperature control

Similar Documents

Publication Publication Date Title
US3425419A (en) Method of lowering and raising the temperature of the human body
JP4456764B2 (en) Heat exchange indwelling catheter cooling system
US6572640B1 (en) Method and apparatus for cardiopulmonary bypass patient temperature control
US3140716A (en) Heat exchanger for blood
US6558412B2 (en) Selective organ hypothermia method and apparatus
US6491039B1 (en) Medical procedure
US6033383A (en) Temperature regulating catheter and methods
US4298006A (en) Systemic hyperthermia with improved temperature sensing apparatus and method
US6494903B2 (en) Over the wire heat exchange catheter with distal valve
US6325818B1 (en) Inflatable cooling apparatus for selective organ hypothermia
US4111209A (en) Topical hypothermia apparatus and method for treating the human body and the like
US4181132A (en) Method and apparatus for effecting hyperthermic treatment
US6235048B1 (en) Selective organ hypothermia method and apparatus
US9180236B2 (en) Intra-aortic balloon counterpulsation with concurrent hypothermia
US6599312B2 (en) Isolated selective organ cooling apparatus
US4479798A (en) Subcutaneous implant useful in effecting hyperthermic treatment
US6716236B1 (en) Intravascular catheter with heat exchange element having inner inflation element and methods of use
US20020161349A1 (en) Cerebral temperature control
US20080046046A1 (en) Method for endovascular management of body temperature
US20020111616A1 (en) Method for reducing myocardial infarct by application of intravascular hypothermia
US20010002442A1 (en) Isolated selective organ cooling method and apparatus
WO1998040040A1 (en) Urethral warming catheter
US4476867A (en) Apparatus for effecting hyperthermic treatment
US20050076924A1 (en) Medical procedure
WO1999005996A1 (en) Method and apparatus for maintaining body temperature during surgery