Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3428110 A
Publication typeGrant
Publication dateFeb 18, 1969
Filing dateMay 27, 1968
Priority dateFeb 14, 1968
Also published asUS3590902
Publication numberUS 3428110 A, US 3428110A, US-A-3428110, US3428110 A, US3428110A
InventorsWalker James, Westwood Geoffrey W
Original AssigneeFoseco Fordath Ag
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Process for the production of foundry cores and molds
US 3428110 A
Abstract  available in
Images(4)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 7,211/68 US. Cl. 164-43 9 Claims Int. Cl. B22c 1/22, 9/12, 15/20 ABSTRACT OF THE DISCLOSURE A process for the preparation of foundry cores and molds having the advantage of a rapid cure of the binder employed is achieved by providing a mixture of sand, a curable binder, and a polyisocyanate, and after introducing the such mixture into a core box, mold, or pattern to form a green core or mold passing a volatile amine therethrough.

The present invention relates to the production of cores and molds for use in the production of metal castings, which cores and molds comprise a foundry aggregate, such as sand, which has been formed into a coherent mass with a binder; more particularly, the present invention relates to an improved process of providing a rapid cure of the binder employed by mixing such curable binder with polyisocyanate, and thereafter effecting a rapid cure by the action of a volatile amine.

Cores and molds for use in making metal castings have been normally prepared from mixtures of an aggregate material and a binding amount of a polymerizable or curable binder. The binder allows the mixture to be molded or shaped into the desired form and thereafter cured or allowed to cure to form a self-supporting structure. Minor amounts of modifying materials such as iron oxides, ball clay and other inorganic substances have been included in these mixtures to give a bond at high temperature, i.e., when the binder has been destroyed. Hot strength properties are of importance to the foundry industry because of the requirement of producing dimensionally accurate castings of an acceptable surface finish.

Generally, after the aggregate and the binder have been mixed, the resultant mix is rammed, blown or otherwise introduced into a mold, core box or pattern (hereinafter referred to for convenience as a core box), so as to take the shape of the internal surfaces of such core box. The formed shape then has a given setting or hardening time, i.e., the time which must elapse before sufficient strength has developed in the formed shape to enable it to be removed from the core box. Previously it was the practice to remove the core from the box while still in the green state, i.e., while unhardened, the core later being subjected to a stoving operation which cured the binder and produced a strong, hard shape which could withstand the handling to which it was later subjected. This process suffered from the disadvantage, however, that the cores tended to lose dimensional accuracy due to sagging before and during the stoving cycle.

It has accordingly been realized, therefore, that curing or hardening of the core should take place while the core is still in the core box. There are two main classes of processes for effecting such curing, those carried out in heated boxes and those carried out in cold boxes. The former class, while being capable of producing dimensionally accurate cores at a rapid rate of production has a number of disadvantages, i.e. the cost of heating the boxes. In addition, expensive boxes are required, there are high equip- 3,428,110 Patented Feb. 18, 1969 ment maintenance costs and there is considerable operator fatigue. Therefore, such processes are not completely satisfactory and accordingly not practically used.

The cold box methods generally used can be divided into two types, i.e. those using organic binders and catalysts and those using inorganic binders, such as sodium silicate and gassing techniques. The former type suffers from the disadvantage that it is necessary that the binder system possess a sufliciently long bench or shelf life, i.e. the time interval between the time at which the mix is prepared and the time at which the mix has become so agglomerated that it can no longer be readily and effectively fed into the core box. This results in a long setting or curing time, of the order of thirty minutes or an hour or longer.

The latter type of cold-setting process has a number of disadvantages also, i.e. lack of breakdown (i.e. decomposition of binder and collapse of bonded sand) after casting, excessively high hot strengths, and comparatively low cold strengths, these being associated with the use of inorganic binders. Gassing techniques have a number of advantages and it has been proposed in, for example, US. Patent 3,179,990 to provide a gassing method of producing a core in which the aggregate is mixed with an organic binder. The particular type of binder disclosed in that specification is, however, quite complex and not one of the normal types of binders normally employed in the foundry industry.

The types of organic binders at present in use include natural drying oils, such as oiticica oil, synthetic drying oils based upon polyhydric alcohol esters of ethylenically unsaturated fatty acids, oil-modified alkyl resins, petroleum polymers containing cyclopentadiene or dicyclopentadiene, polyester resins, epoxy resins, urea-formaldehyde resins, melamine-formaldehyde resins and phenolformaldehyde resins. Furfuryl alcohol-based resins and furfuryl alcohol-modified resins are also commonly used.

It has also been proposed for example, as in French patent specification No. 1,132,248, to provide a binder system which includes a drying oil, such as oiticica oil, and a polyisocyanate which increases the rate at which the core develops sufficient stripping strength.

Such a system is also disclosed in United States Patent 3,255,500 wherein a polyisocyanate is employed in a binder comprising a drying oil, modified alkyd resin etc. While such processes have increased the curing rate of the curable binder it has still been the desire of the industry to provide a more rapid curing system which will overcome the inherent deficiencies and disadvantages of the previously employed processes.

Accordingly, it is a principal object of the present invention to provide a method of producing foundry cores and molds which eliminates the inherent deficiencies and disadvantages of prior art processes.

A further object of the present invention comprises an improved method of producing foundry cores and molds wherein a polyisocyanate is employed in conjunction with a curable binder, a rapid curing being attained by the employment of a volatile amine.

A still further object of the present invention comprises an improved method of producing foundry cores and molds having the advantage of a rapid cure of the binder employed by a former mixture of sand, a curable binder and a polyisocyanate, and after introducing such mixture into a core box, mold or pattern, passing a volatile amine therethrough.

Still further objects and advantages of the process of the present invention will become more apparent from the following more detailed description thereof.

The above objects and advantages of the process of the present are achieved by providing a process for the pro duction of foundry cores and molds which comprises preparing a mixture of a foundry aggregate e.g., sand, a conventional curable binder, and a polyisocyanate; introducing such mixture of sand into a core box, mold or pattern to form a green core or mold; and effecting a rapid cure not heretofore attainable by passing a volatile amine into the core box in contact and through the green core or mold.

As the curable binder employed in accordance with the present invention, any of the conventional employed organic binder systems can be employed. Thus, for example, the organic curable binder can comprise an epoxy resin binder, a polyester resin, a petroleum polymer and oil-modified alkyd resin, or a phenol-formaldehyde thermosetting resole resin among others. Again, it is within the scope of the present invention to employ any conventional organic binders capable of being cured from the green core or mold stage by passing therethrough a volatile amine in accordance with the present invention.

Generally, the organic curable binder employed in accordance with the present invention is mixed with sand or other suitable foundry aggregate in the absence of water and, in the presence of an organic solvent. Such an organic solvent can comprise for example, an aromatic solvent e.g., xylene or a conventional halogenated hydrocarbon. The binder is generally employed in the mixture in an amount by weight of about 0.25% to about by weight based on the sand, preferably between about 1% and about 3% by weight.

The organic polyisocyanate employed in accordance with the present invention also can comprise those conventionally employed in the art. Thus, for example, the organic polyisocyanate can comprise an organic di-isocyanate e.g., 4,4-diphenylmethane di-isocyanate or 2,4- or 2,6- toluene di-isocyanate or a higher polyisocyanate e.g., tri-phenylmethane tri-isocyanate. Preferably, the amount by weight of the polyisocyanate employed in sand-curable binder-polyisocyanate mixture is within the range of about 0.25% to about 5% by weight based on the weight of the sand, most preferably the amount of polyisocyanate being within the range of about 1% to about 3 by weight.

Generally, the bench or shelf life of such a foundry mix prepared by admixing foundry aggregates e.g., sand, organic curable binder, and polyisocyanate, e.g., the coated sand, will depend on the particular choice of binder, polyisocyanate and, in addition, solvent utilized; thus, on the average such bench or shelf life will generally be in excess of two hours.

The volatile amine employed in accordance with the present invention to provide the rapid cure of the binder in a manner not before attainable can be any volatile amine capable of effecting the cure of the curable binder. Generally, the volatile amine comprises a primary, secondary or tertiary lower alkyl substituted amine. Thus, for example, suitable volatile amines employed in accordance with the present invention include ethylamine, di-ethylamine, tri-ethylamine, tertiary butyl amine, isopropyl amine, etc.

The process of producing the green core or mold in accordance with the present invention is essentially the same as conventional processes for producing such foundry molds. Thus, in a practical embodiment of the present invention, sand is fed into a combined mixer and conveyor unit as described in US. specification No. 3,268,214, a solution of an epoxy resin in xylene being for example, introduced in a continuous stream into the combined mixer and conveyor unit. A solution of 4,4-diphenylmethane di-isocyanate, for example, in an organic solvent is also introduced into the combined mixer and conveyor unit at a continuous rate. The amount by Weight of resin introduced is, for example, about 1% of the weight of the sand (A.F.S. fineness No. 55), and the amount by weight of the isocyanate is also about 1% of the weight of the sand.

The resin/isocyanate/sand mixture is introduced into a core box, there being a plurality of core boxes moving along the conveyor line, the core boxes being filled successively with the mixture as they are moved past the discharge outlet of the combined mixer and conveyor unit. After being filled with this mixture the core boxes are passed to a station at which each is connected to an air line containing a compressor and, if necessary, suction can be applied to reduce the pressure within the core box. The compressor is then operated to blow a stream of air through a vessel containing a volatile amine, such as triethylamine, the air stream containing the amine vapor then passing into the core box. The length of time for which the stream of air containing the amine vapor is passed into the core box will depend upon the size of the core, the air pressure used and the chemical characteristics of the binder system. The time for which the amine is introduced may be, for small cores, of the order of ten seconds. This compares quite favorably with the rates obtained in hot box processes. After the amine has been blown into the core box for the required length of time, air not carrying the volatile amine is blown into the core box whereby any amine which has not reacted with the polyisocyanate in the mixture will be removed, such blowing operation lasting, for example, for ten to twenty seconds. It has been found that, with any particular binder system, there is a minimum gassing time and that, if the amine is blown into the core box for less than this time, parts of the core box are not cured. If the amine is blown into core box for longer than this minimum gassing time, hardly any increase in strength is obtained.

After blowing the amine into the core boxes, such core boxes are passed successively to a stripping station at which the core boxes are opened and the cores removed. Alternatively, the resin/isocyanate/sand mixture may be blown into a core box and the subsequent gassing and stripping operations carried out immediately at the core blowing machine, such a practice allowing rapid repetitive production of cores.

The time taken to fill each core box with the sand/ resin/isocyanate mixture is of the order of a fraction of a second when a core blowing machine is used and the time that each core box spends at the station at which it is connected in the air line system may be of the order of one minute. It can therefore be seen that the time taken to produce each core is very small.

After curing each core can be subjected to a conventional core-washing process, the wash comprising for example, an aqueous or alcoholic suspension of graphite or zircon.

Although the invention has been described above in relation to the mixing of the sand, resin and isocyanate in a continuous mixer and conveyor, such mixing operation can alternatively be carried out in a batch mixer.

The present invention will now be illustrated by the following specific examples. It is to be understood however, that such examples are presented for purposes of illustration only and the present invention is in no way to be deemed as limited thereto.

Example 1 45 grams of an epoxy resin (No. 828 supplied by The Shell Chemical Company Limited) were mixed with 4,530 grams of sand (Chelford W.S. sand of A.F.S. fineness No. 45), and 45 grams of 4,4-di-phenyl methane di-risocyanate were added and the whole mixed for a period of two minutes. Compression test pieces were rammed using a standard Dietert sand rammer and a mixture of triethylamine vapor and air passed through the test piece while still in the specimen tube. The minimum gassing time required was two minutes and the compression strength obtained was 177 pounds per square inch.

Example 2 The same procedure was carried out as in Example 1 except that 45 grams of a low viscosity, high reactivity polyester resin were substituted for the epoxy resin, the polyester resin being No. 4128 supplied by British Industrial Plastics Limited. The minimum gassing time was 110 seconds and the subsequent compression strength was 175 pounds per square inch.

Example 3 The same procedure was carried out as in Example 1 except that 45 grams of a petroleum polymer consisting mainly of polymerized cyclopentadiene were substituted for the epoxy resin. The minimum gassing time was 140 seconds and the compression strength was 85 pounds per square inch.

Example 4 The same procedure was carried out as in Example 1 except that 45 grams of an alkyd resin manufactured by British Resin Products Limited were substituted for the epoxy resin. The minimum gassing time was 90 seconds and the compression strength obtained was 220 pounds per square inch.

Example 5 The same procedure was carried out as in Example 1 except that 45 grams of a thermosetting resole phenolformaldehyde resin were substituted for the epoxy resin, the resole resin being No. FPR 55 supplied by Fordath Limited. The minimum gassing time was seconds and the compression strength obtained was 150 pounds per square inch.

The mixes described in Examples 1 to 4 had a bench life in excess of one hour whereas the mix of Example 5 had a bench life of the order of ten minutes.

In addition to the employment of the sand or similar foundry aggregates, curable organic binder and polyisocyanate, the mixtures of the present invention can contain conventional additives generally employed in sandbinder systems. Thus, for example, conventional sandbinder systems generally contain catalysts such as cobalt naphthenate, sodium perborate and dibutyl tin dilaurate, such catalysts generally being added to accelerate the cure of the binder system. In accordance with the present invention such conventional catalysts can also be included in the binder-isocyanate-s'and mixtures employed in accordance with the process of the present invention to reduce the minimum gassing time required for the core to obtain optimum stripping strength.

While the present invention has been described primarily with respect to the foregoing specific examples, it is to be understood that the present invention is in no way to be deemed as limited thereto but should be construed as broadly as all or any equivalents thereof.

What we claim then is:

1. A process for the production of foundry moldsand cores which comprises mixing a foundry aggregate with a curable binder and a polyisocyanate, introducing the mixture into a core box, mold or pattern to form a green core or mold and passing an amine into the core box, mold or pattern to eifect curing of the core or mold.

2. A process according to claim 1 in which the curable binder is an epoxy resin.

3. A process according to claim 1 in which the curable binder is a polyester resin.

4. A process according to claim =1 in which the curable binder is petroleum polymer.

5. A process according to claim 1 in which the curable binder is an alkyd resin.

6. A process according to claim 1 in which the curable binder is a phenol-formaldehyde thermosetting resole resin.

7. A process according to claim 1 in which the amine is passed into the core box, mold pattern in the form of a vapor entrained in a gaseous carrier.

8. A process according to claim 7 in which the amine is triethylamine.

9. A process according to claim 1 in which the polyisocyanate is 4,4di-phenylmethane di-isocyanaate.

References Cited UNITED STATES PATENTS 2,913,787 11/1959 Cooper 10638.6

3,032,426 5/ 19 62 Lee 16442 X 3,179,990 4/1965 Freeman 16443 3,255,500 6/1966 En gel et 'al. 16443 FOREIGN PATENTS 1,'l32,248 3/1957 France.

I. SPENCER OVERHOLSER, Primary Examiner.

E. MAR, Assistant Examiner.

US. Cl. X.R.

Disclaimer 3,428,110.J0/mes Walker, Lower Gornal, near Dudley, and Geofi'rey W. Westwood, Walsall, England. PROCESS FOR THE PRODUCTION OF FOUNDRY CORES AND MOLDS. Patent dated Feb. 18 1969.

Disclaimer filed Apr. 24, 1969, by the assignee, Foseco-Fo'rdath 14.6 Hereby enters this disclaimer to claims 1, 6, 7, 8 and 9 of said patent. [Oficial Gazette September 23, 1.969.]

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2913787 *Sep 26, 1956Nov 24, 1959Dow Chemical CoShell mold composition and method of making same
US3032426 *Feb 29, 1960May 1, 1962Int Harvester CoMold composition cure accelerator
US3179990 *Oct 26, 1961Apr 27, 1965Freeman Chemical CorpFoundry composition with cross-linked polyester binder
US3255500 *Apr 12, 1965Jun 14, 1966Archer Daniels Midland CoFoundry composition comprising sand, drying oil and polyisocyanate
FR1132248A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3590902 *May 27, 1968Jul 6, 1971Foseco Fordath AgProduction of foundry cores and molds
US3676392 *Jan 26, 1971Jul 11, 1972Ashland Oil IncResin compositions
US3862080 *Jun 28, 1972Jan 21, 1975Catalin LimitedFoundry binder compositions
US3888293 *Apr 20, 1973Jun 10, 1975American Motors CorpMethod of making a foundry core
US3904559 *Nov 19, 1973Sep 9, 1975Hooker Chemicals Plastics CorpFoundry aggregate binders
US3925296 *Jan 2, 1974Dec 9, 1975Hooker Chemicals Plastics CorpFoundry aggregate binders
US3947420 *May 16, 1974Mar 30, 1976Automatisme Et TechniqueMethod for producing foundry moulds and cores as well as products thereby obtained
US3960816 *Jan 6, 1975Jun 1, 1976Commercial Solvents CorporationProcess for the preparation of a no-bake sand core from an oxazoline condensate as binder
US3962162 *Feb 19, 1974Jun 8, 1976Minnesota Mining And Manufacturing CompanyRigidly bonded green ceramics and processes
US3985699 *Jun 2, 1975Oct 12, 1976Ab BoforsMethod of manufacturing mould members of polyurethane-bonded granular material
US4051092 *Oct 26, 1976Sep 27, 1977International Minerals & Chemical CorporationFoundry core composition of aggregate and a binder therefor
US4072649 *Aug 7, 1975Feb 7, 1978Bayer AktiengesellschaftProcess for the production of foundry cores and molds
US4076683 *Aug 15, 1975Feb 28, 1978Deutsche Texaco AktiengesellschaftMolding compositions or masses suitable for manufacturing foundry molds and cores using the cold box method
US4076685 *Jan 26, 1973Feb 28, 1978Ashland Oil, Inc.Cyanoacrylate foundry binders and process
US4089363 *Dec 27, 1976May 16, 1978The Quaker Oats CompanyMethod of manufacturing shell cores and molds
US4144215 *Jun 21, 1978Mar 13, 1979International Minerals & Chemical Corp.Binders for foundry mixes comprising polyisocyanate and styrene-allyl alcohol copolymer or alkylene oxide derivative thereof
US4148777 *May 9, 1977Apr 10, 1979Delta Oil Products CorporationBinder for foundry process
US4179427 *Mar 21, 1978Dec 18, 1979Ashland Oil, Inc.Phenolic resin-polyisocyanate binders
US4209428 *Sep 26, 1977Jun 24, 1980Fordath LimitedFoundry binders
US4224201 *Dec 19, 1978Sep 23, 1980Fordath LimitedFoundry binders
US4268425 *May 14, 1979May 19, 1981Ashland Oil, Inc.Phenolic resin-polyisocyanate binder systems containing a drying oil and use thereof
US4273179 *Aug 16, 1978Jun 16, 1981Ashland Oil, Inc.Phenolic resin-polyisocyanate binder systems containing dibasic ester solvents
US4366266 *Jul 14, 1981Dec 28, 1982Valvoline Oil & Chemicals Ltd.Binder compositions and process for making molded products therewith
US4370463 *Mar 30, 1981Jan 25, 1983Ashland Oil, Inc.Process for no-bake foundry application utilizing polyurethanes based on amine polyols
US4371649 *Jul 16, 1981Feb 1, 1983Eduardo Iglesias HernandezProcess for binding aggregates with a vacuum-activated catalyst
US4448907 *Jan 24, 1983May 15, 1984Ashland Oil, Inc.Process for casting lightweight metals
US4518723 *Oct 22, 1982May 21, 1985Cl Industries, Inc.Curable epoxy resin compositions and use in preparing formed, shaped, filled bodies
US5275648 *Jan 8, 1993Jan 4, 1994Giesserei Verfahrens Technik Inc.Heat curable organic resin foundry sand binder composition
US5286765 *Dec 19, 1991Feb 15, 1994Bayer AktiengesellschaftProcess for the preparation of foundry cores and molds
CN104923713A *Apr 30, 2015Sep 23, 2015宁夏共享化工有限公司Long-storage-life triethylamine method cold core box curing agent and production method thereof
EP0417600A2 *Sep 4, 1990Mar 20, 1991Bayer AgMethod for producing foundry cores and moulds
EP0417600A3 *Sep 4, 1990Oct 28, 1992Bayer AgMethod for producing foundry cores and moulds
Classifications
U.S. Classification164/526, 164/16, 164/21, 106/38.6
International ClassificationB22C1/16, C08G18/00, C08G18/58, C08G18/54, B22C9/00, B22C1/22, C08G18/18, B22C9/12
Cooperative ClassificationC08G18/58, C08G18/1891, C08G18/542, B22C9/123, B22C1/162, B22C1/2273
European ClassificationC08G18/58, B22C1/16B, C08G18/54B, B22C1/22F10, C08G18/18Z, B22C9/12A