US3436450A - Process for heat relaxing stretched polyamide filament - Google Patents

Process for heat relaxing stretched polyamide filament Download PDF

Info

Publication number
US3436450A
US3436450A US426608A US42660865A US3436450A US 3436450 A US3436450 A US 3436450A US 426608 A US426608 A US 426608A US 42660865 A US42660865 A US 42660865A US 3436450 A US3436450 A US 3436450A
Authority
US
United States
Prior art keywords
roller
relaxing
filaments
diameter
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US426608A
Inventor
Hugo Specker
Dietrich Mohrle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Viscosuisse SA
Original Assignee
Societe de la Viscose Suisse SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe de la Viscose Suisse SA filed Critical Societe de la Viscose Suisse SA
Application granted granted Critical
Publication of US3436450A publication Critical patent/US3436450A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J13/00Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass
    • D02J13/005Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass by contact with at least one rotating roll
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • D02J1/225Mechanical characteristics of stretching apparatus
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • D02J1/229Relaxing

Definitions

  • PROCESS FOR HEAT RELAXING STRETCHED POLYAMIDE FILAMBNT Filed Jan. 19, 1965 Sheet 2 of 2 oooooooaooooooooaoo 00 000 00 000 0000000 00000000000000 000000 Inventor #dj 0 be a Kc r D/ETE/CH MOHfiLE Jaw Mg 22 m Patented Apr. 1, 1969 3,436,450 PROCESS FOR HEAT RELAXING STRETCHED POLYAMlDE FILAMENT Hugo Specker and Dietrich Miihrle, Emmenbrucke, Lucerne, Switzerland, assignors to Societe de la- Viscose Snisse, Emrnenbrucke, Lucerne, Switzerland, a Swiss body corporate Filed Jan.
  • the present invention provides a process for relaxing stretched polyamide filaments so as to produce filaments of low and uniform tendency to shrink, and apparatus for use therein.
  • the polyamide filaments produced in accordance with the invention produce stable packages and woven and knitted fabrics showing only little streakiness.
  • the process of the invention comprises causing stretched but unrelaxed filaments to move in a first circumferential path at at most 110 C., then in a second circumferential path of lower diameter and at a temperature of 120 to 200 C., then in a third circumferential path of lower diameter than the second but at a higher temperature between 130 and 210 C., and finally in a fourth circumferential path of diameter equal to that of the third such path in which the said filaments are cooled.
  • the new process comprises passing stretched but unrelaxed filaments round a roller made with its surface in three sections of successively decreasing diameter, the filaments being first passed at a temperature of at most 110 C.
  • the roller required for the new process comprises three co-axial sections of successively decreasing diameter, the section of greatest diameter and part of the section of least diameter being provided with cooling means and the intermediate section and part of the section of least diameter adjacent the section of intermediate diameter being provided with heating means such that the temperature of the surface of part of the section of least diameter can be kept higher than that of the section of intermediate diameter.
  • the filaments produced by the new process have a uni form, low residual shrinkage, and the invention includes within its scope the use of the new filaments for the manufacture of woven and knitted fabrics having good dimensional stability and little streakiness.
  • Residual shrinkage is the longitudinal contraction in boiling water, determined as follows. The banks are immersed for 2.0 minutes in boiling water and then dried under a load of 0.1 gram per denier.
  • Residual shrinkage 100 X (length before shrinking) (length after shrinking) length before shrinking It is generally known that freshly stretched filaments of synthetic thermoplastic resins display a considerable residual shrinkage. Freshly stretched filaments of polyhexamethylene adipamide (nylon 66) display a high residual shrinkage, which decreases over a prolonged period asymptotically to about 10%. This residual shrinkage is in general undesirable. Inter alia, owing to the aforementioned recovery very strong and substantial bobbins must be used in the stretching operation to enable them to withstand the shrinking forces involved. On such a bobbin the individual layers of filament recover irregularly because the layers in direct contact with the solid bobbin can contract only very little, whereas the outermost layers contract much more. This produces in the reeled filament shrinkage diiferences which result in streakiness of woven and knitted fabrics. Attempts have already been made to overcome these disadvantages by heat-setting and relaxing the filaments.
  • Heat-setting performed for instance according to the method of United States patent specification No. 2,307,- 846, stabilises the length of the filament so that at temperatures below the heat-setting temperature no, or only minor, changes in length occur, even if the filaments or the woven or knitted fabrics made from them are heattreated in the slack state.
  • a swelling treatment may be performed, but in heat-setting the woven or knitted fabrics to produce and maintain a given shape a temperature must be used in such a case that is higher than the first-setting temperature.
  • United States specification No. 2,807,863 similarly describes a combination of heat-stretching, relaxing and heat-setting cord made from polyhexamethylene adipamide, which requires a voluminous installation. Relaxing is carried out in one stage at a temperature ranging from to C.
  • British specification No. 656,631 discloses a process and a device for heat-stretching and relaxing filaments with the aid of a driven and a cooperating freely revolving roller having sections of different diameter, the heat treatment being performed on a heating slide.
  • This proposal requires, however, substantial changes to be made to conventional stretching machines.
  • the filament is not heated on a roller but on a heating slide.
  • One advantage of the invention is that it makes it pos sible to use stable package on a support that is inexpensive and does not have to satisfy extreme demands of resistance to compressibility, such as a tube of cardboard or a plastic material.
  • Filaments suitable for use in the new process preferably consist of polyhexamethylene adipamide or polycaprolactam, but other polyamides or other thermoplastic polymers can also be used.
  • the filaments may have any desired final count, for example from 15 to 2000 denier (1.7 to 222 tex).
  • filaments having a count of 40 denier (4.4 tex) are suitable.
  • Those suitable for woven and knitted fabrics have a final count within the range of 15 to 300 denier (2 to 33 tex).
  • the threads may consist of monofils. or multifils, depending on the ultimate purpose.
  • Stretching is advantageously carried out with a stretching pin.
  • hotstretching may be used, for which purpose heating slides may be provided between the stretching pin and the roller, the thread being guided over them.
  • the thread is wound 2 to 4 times round the first section of the roller and the cooperating feed roller.
  • the axes of these rollers are slightly offset to ensure that the thread travels forward on these rollers in known manner.
  • the temperature of the first section of the roller must not exceed 110 C., and this can be ensured by adequate air cooling or insulation. When the cooling is satisfactory, the surface of the stretching zone hardly reaches 90 C. at a normal draw-off speed of 400 metres per minute.
  • the degree of stretch can be adjusted within wide limits and depends on the spinning conditions and on the use to which the relaxed filaments are to be put.
  • a positive temperature gradient is required between the second and third sections of the roller to prevent any heat-setting taking place before the third section.
  • This temperature difference should advantageously be at least 10 C. but, when a suitable roller design is used, it may be up to 50 C.
  • the total relaxation determined by the difference between the diameters of the individual sections, may range from 10 to 15% and depends on the ultimate use of filaments. In actual practice a lower limit of 2.5% residual shrinkage can and should be maintained. The upper limit of the residual shrinkage is probably about 7% using the temperature limits required for the performance of the invention. In general, taking into account the temperatures indicated above, a total relaxation of 13 to 14% is generally preferred. This value may apply to the two relaxing zones in 7 different proportions, and favourable results are obtained when, for example, two-thirds of the overall relaxation is carried out in the first relaxing zone.
  • the diameter of the section of greatest diameter is :5 mm.
  • that of the section of intermediate diameter is 91:4 mm. and that of the section of least diameter is 87:4 mm.
  • the filament is wound 3 to 8 times round the third section of the roller and the associated zone of the feed roller, the best value for the precise number of times being found by preliminary experiment. While keeping the tension constant, the filament is then cooled by being wound 2 to 5 times round a cooled part of the third section and is finally reeled under a moderate tension.
  • the temperature of the cooled zone should be as low as possible. In general, the roller itself will provide sufficient cooling, but when very thick filaments are made, there is no objection to providing additional cooling, for example by blowing cold air onto the filament.
  • the reeling speed is adjusted in known manner by the weight of the traveller to suit the speed of rotation of the spindle and the ring diameter.
  • the residual shrinkage may vary from 2.5 to 7% with a maximum deviation of :0.3% from the mean value per packages.
  • the filaments form stable packages that are easy to unwind and can be stored for any length of time. In woven and knitted fabrics made from them, the filaments produce little streakiness and ensure excellent dimensional stability of these fabrics. For an equal drawing rate applied to the filaments the elasticity of the woven and knitted fabrics made therefrom is superior to that obtained with unrelaxed filaments so that the practical value of many finished products is appreciably improved.
  • the roller of the invention which is intended to replace the stretching roller of a stretch-twisting frame, consists of three sections:
  • the first section which acts as a. conventional stretching roller, has the largest diameter.
  • This zone may consist, for example, of a collar of a plastic material which is resistant to wear and tear and is a poor heat conductor, or it may taken the form of a metal collar which makes pointwise contact with the roller body.
  • the collar may be cooled by an air current produced or assisted by transverse or longitudinal ribs.
  • the collar may have radial bores through which cooling air can escape outwards during rotation of the roller.
  • the second preferably narrow, section has a smaller diameter than the first and constitutes the first relaxing zone.
  • the third section of the roller has a smaller diameter than the second section and is in part the second relaxing zone. Inside this zone there is advantageously provided an electric heater so that in operation it has a higher temperature than the second section. Part of the third section acts as a cooling zone. As in the first section, the cooling may be achieved by longitudinal or transverse cooling ribs and radial bores.
  • FIGURE 1 is a diagram of a commercial stretch-twisting frame
  • FIGURE 2 is a roller in accordance with the invention with a plastic collar in the stretching zone;
  • FIGURE 3 is a roller in accordance with the invention with a metal collar in the stretching zone together with its associated feed roller.
  • the spinning bobbin 1 is fed by the spinning machine and placed on the stretch-twisting frame; the yarn is unwound over the top of the bobbin.
  • the yarn runs over a yarn guide 2 through the supply device 3 consisting of a pair of rollers, round the stretching pin 4 and onto the draw-off unit consisting of feed roller 5 and stretching roller 6 past which it is guided by a further yarn guide 7 and by means of the traveller 8 twisted on a ring twisting spindle 9 and 10 and finally reeled.
  • FIGURE 2 illustrates a roller 6A according to the invention, the upper half being shown in section and the lower half in side elevation.
  • the roller 6A is composed of the roller body 11 (seating on a spindle not shown in the drawing) and the plastic collar 12 shrunk onto it.
  • the plastic collar 12, which accepts the freshly stretched filament, has the largest circumference.
  • the roller body 11 has a first, narrow step and a second, wider step 13, a cavity 14 for fitting an electric heating coil and a thinner end portion 15, which is perforated to provide intense cooling and has a diameter equal to that of the second relaxing step 13.
  • the plastic collar 12 should advantageously make only pointwise contact with the roller body 11 to prevent as far as possible any transfer of heat to the freshly stretched filament.
  • the collar may be designed so that it is cooled in operation by the air flowing past it.
  • FIGURE 3 illustrates another variant of a roller 6B in accordance with the invention with its associated feed roller 5.
  • the upper half of the roller is shown diagrammatically in section, whereas the lower half is shown in side elevation.
  • the roller 68 is attached via a thermal insulation 17 to a spindle 16. It is composed of the roller body 18 which is polished externally and has inside a cavity 19 to accept an electric heating unit 20.
  • the roller body 18 carries on a thermal insulation 21 a polished metal ring 22 which is internally cooled in operation by circulating air. To improve the air circulation further, the metal ring may additionally be provided with radial bores (not shown) distributed over its whole surface.
  • the metal ring 22 has the largest diameter and is used to accept the freshly stretched filaments.
  • the roller body 18 has a narrow first relaxing zone 23, a wider second relaxing zone 24, and an open end portion 25 which has internal cooling ribs 26 and radial cooling bores; the diameter of the latter is equal to that of the second relaxing zone 24.
  • FIGURE 2 of the accompanying drawings Another thread of polyhexamethylene adipamide, consisting of 13 monofils., is stretched by 323% on the same stretch-twisting frame, but in this case the conventional stretching roller has been replaced by a roller as shown in FIGURE 2 of the accompanying drawings.
  • the thread coming from the stretching pin is wound twice round the cooled first section of the roller, which has a surface temperature of 81 C. and a diameter of 101.2 -mm., and round the associated zone of the feed roller.
  • the thread is guided as shown in FIGURE 1.
  • a two-stage relaxation is performed.
  • the thread is relaxed by 9% at a surface temperature of 150 C.
  • the number of windings is determined in known manner by the offset angle between the two rollers, the width of the thread and the width of the individual zones.
  • the properties of the threads A to D are shown in the following table:
  • the temperature difference between the two relaxing stages ranges from 10 to 30 C.
  • the above table shows that it is possible to obtain by the new process low and uniform residual shrinkage values.
  • the relaxed threads are very suitable for making doubled tops of stockings.
  • the textile products made therefrom can be dyed evenly and possess excellent dimensional stability.
  • Example 2 The experiments described in the foregoing example were repeated under slightly modified conditions with a coarser thread, consisting of 34 monofils., from polyhexamethylene adipamide containing 0.3% of titanium dioxide, in a manner such that a thread was obtained which had a count of about 210 denier (23 tex) and an elongation at break of about 19 to 24%.
  • four variants were relaxed under different conditions and each was reeled on cops at a speed of 266 metres per minute on a ring twisting spindle revolving .at 5400 rpm. with the aid of a ring of 12 cm. diameter and a traveller weighing 0.26 gram.
  • the following table shows the relaxing conditions and the results that can be achieved in this manner:
  • the drawing rate applied to the relaxed threads was intentionally chosen higher so as to arrive at an elongation at break comparable with that of the relaxed threads.
  • the relaxed threads possess greater tensile strength and display a low and uniform residual shrinkage. They are suitable for a variety of technical purposes in which a very minor residual shrinkage is of importance.
  • Example 3 Polycaprolactam threads, containing 34 monofils, are stretched as described in Example 2, except that the second relaxing zone has a diameter smaller by 4% than the first, and are then reeled under the temperature conditions given below so that a thread is obtained which has a count of about 230 denier (25 tex).

Description

\ April 1, 1969 H. SPECKER ETAL 3,436,450
PROCESS FOR HEAT RELAXING STRETCHED POLYAMIDE FILAMENT Filed Jan. 19, 1965 I Sheet of 2 O QOOOOOOOOOOOO o oooooooooooeuo OOOOOOOOOOOOOOOO lnvenlor A Horneys April I, 1969 H. SPECKER ET AL 3,436,450
PROCESS FOR HEAT RELAXING STRETCHED POLYAMIDE FILAMBNT Filed Jan. 19, 1965 Sheet 2 of 2 oooooooaooooooooaoo 00 000 00 000 0000000 00000000000000 000000 Inventor #dj 0 be a Kc r D/ETE/CH MOHfiLE Jaw Mg 22 m Patented Apr. 1, 1969 3,436,450 PROCESS FOR HEAT RELAXING STRETCHED POLYAMlDE FILAMENT Hugo Specker and Dietrich Miihrle, Emmenbrucke, Lucerne, Switzerland, assignors to Societe de la- Viscose Snisse, Emrnenbrucke, Lucerne, Switzerland, a Swiss body corporate Filed Jan. 19, 1965, Ser. No. 426,608 Claims priority, application Great Britain, Jan. 28, 1964, 3,710/64 Int. Cl. 1329c 25/00; Dtllf 7/06 U.S. Cl. 264--237 7 Claims The present invention provides a process for relaxing stretched polyamide filaments so as to produce filaments of low and uniform tendency to shrink, and apparatus for use therein. The polyamide filaments produced in accordance with the invention produce stable packages and woven and knitted fabrics showing only little streakiness.
Broadly speaking, the process of the invention comprises causing stretched but unrelaxed filaments to move in a first circumferential path at at most 110 C., then in a second circumferential path of lower diameter and at a temperature of 120 to 200 C., then in a third circumferential path of lower diameter than the second but at a higher temperature between 130 and 210 C., and finally in a fourth circumferential path of diameter equal to that of the third such path in which the said filaments are cooled. In practice, using the form of roller described below, the new process comprises passing stretched but unrelaxed filaments round a roller made with its surface in three sections of successively decreasing diameter, the filaments being first passed at a temperature of at most 110 C. round the section of greatest diameter, then round the second and third sections of successively decreasing diameter and increasing temperature, the temperature of the second section being 120 to 200 C. and the temperature of the third section being 130 to 210 C., and final ly round a cooled portion of the third section.
The roller required for the new process comprises three co-axial sections of successively decreasing diameter, the section of greatest diameter and part of the section of least diameter being provided with cooling means and the intermediate section and part of the section of least diameter adjacent the section of intermediate diameter being provided with heating means such that the temperature of the surface of part of the section of least diameter can be kept higher than that of the section of intermediate diameter.
The filaments produced by the new process have a uni form, low residual shrinkage, and the invention includes within its scope the use of the new filaments for the manufacture of woven and knitted fabrics having good dimensional stability and little streakiness.
The terms residual shrinkage, heat-setting, relaxing and stabilising as used herein have the following meanings:
Residual shrinkage is the longitudinal contraction in boiling water, determined as follows. The banks are immersed for 2.0 minutes in boiling water and then dried under a load of 0.1 gram per denier.
Residual shrinkage 100 X (length before shrinking) (length after shrinking) length before shrinking It is generally known that freshly stretched filaments of synthetic thermoplastic resins display a considerable residual shrinkage. Freshly stretched filaments of polyhexamethylene adipamide (nylon 66) display a high residual shrinkage, which decreases over a prolonged period asymptotically to about 10%. This residual shrinkage is in general undesirable. Inter alia, owing to the aforementioned recovery very strong and substantial bobbins must be used in the stretching operation to enable them to withstand the shrinking forces involved. On such a bobbin the individual layers of filament recover irregularly because the layers in direct contact with the solid bobbin can contract only very little, whereas the outermost layers contract much more. This produces in the reeled filament shrinkage diiferences which result in streakiness of woven and knitted fabrics. Attempts have already been made to overcome these disadavantages by heat-setting and relaxing the filaments.
Heat-setting, performed for instance according to the method of United States patent specification No. 2,307,- 846, stabilises the length of the filament so that at temperatures below the heat-setting temperature no, or only minor, changes in length occur, even if the filaments or the woven or knitted fabrics made from them are heattreated in the slack state. Instead of, or in addition to, the heat-setting operation, a swelling treatment may be performed, but in heat-setting the woven or knitted fabrics to produce and maintain a given shape a temperature must be used in such a case that is higher than the first-setting temperature.
In many cases relaxing is performed by heating the filament on a flexible support or in the form of a tubeless wound package so that it can shrink freely; in this manner residual shrinkage values of less than 2% are achieved (United States specification No. 2,199,411). It has, however been observed that yarns having such low residual shrinkage values have disadvantages, for example a high stretch modulus, so that they lend themselves less readily to processing. Furthermore, it is hardly possible to produce stable package from such yarns. Thus, for example, in the book by Fourne, Synthetische Fasern, 1953, page 87, it has been stated that polyamide yarns for making stocking legs should, if possible, not be relaxed to a residual shrinkage below 6 to 7%. Even for technical fabrics, yarns having too much residual shrinkage are not suitable.
Accordingly, controlled relaxation has been resorted to so that yarns relaxed in this manner have a very minor final residual shrinkage deviating only little from the mean value. In addition relaxing Was carried out on the travelling filament and this offers a further advantage.
A variety of processes and devices for the controlled relaxing of yarns of synthetic thermoplastic resins have been described. Thus, for example, United States specifications Nos. 3.003,222 and 3,069,836 describe an unheaded roller having two sections of unequal diameter cooperating with several feed rollers, arranged after the stretching zone and requiring a separate heating device between the section of larger diameter and the section of smaller diameter. A similar one-step roller has been described in United States specification No. 2,956,330 and in French specification No. 1,206,907. These layouts are of little use on stretching machines which, as is known, have little spare space.
United States specification No. 2,807,863 similarly describes a combination of heat-stretching, relaxing and heat-setting cord made from polyhexamethylene adipamide, which requires a voluminous installation. Relaxing is carried out in one stage at a temperature ranging from to C.
Finally, British specification No. 656,631 discloses a process and a device for heat-stretching and relaxing filaments with the aid of a driven and a cooperating freely revolving roller having sections of different diameter, the heat treatment being performed on a heating slide. This proposal requires, however, substantial changes to be made to conventional stretching machines. In addition, the filament is not heated on a roller but on a heating slide.
It has been found that freshly stretched yarns of polyhexamethylene adipamide yarns of different counts shrink at a temperature above 120 C. within a fraction of a second. Relaxing on conical or heated rollers made in two sections produced only a minor reduction of the residual shrinkage since heat-setting occurred after only a few windings. It has also surprisingly been found that it is possible to reduce residual shrinkage to a fairly constant mean value of 2.5% by relaxing by a total of about 13% in 2 stages with an increasing temperature gradient on a roller made in three sections of decreasing diameter, heated to a maximum temperature of 210 C., without impairing the dyeing properties or the white content of the yarn. It is, however, of importance that the freshly stretched filament should not be heated to near the relaxing temperature.
One advantage of the invention is that it makes it pos sible to use stable package on a support that is inexpensive and does not have to satisfy extreme demands of resistance to compressibility, such as a tube of cardboard or a plastic material. To achieve this, the only stretching roller of the stretching machine--or when several such rollers are provided, the lastis replaced by the three section roller of the invention.
In the new process, it is convenient to stretch polyamide filaments in the first section of the roller, which has a maximum temperature of 110 C. and the largest diameter. In the second and third sections the filaments are ordinarily relaxed to a total of to (Hereinafter these two sections are alternatively referred to as the first and second relaxing zones.)
Filaments suitable for use in the new process preferably consist of polyhexamethylene adipamide or polycaprolactam, but other polyamides or other thermoplastic polymers can also be used. The filaments may have any desired final count, for example from 15 to 2000 denier (1.7 to 222 tex). For stocking yarns, for example for doubled tops, filaments having a count of 40 denier (4.4 tex) are suitable. Those suitable for woven and knitted fabrics have a final count within the range of 15 to 300 denier (2 to 33 tex). For technical fabrics to be subsequently coated, for example tarpaulins, counts ranging from 210 to 1680 denier'(23 to 185 tex) are usual, whereas for heavy fabrics counts above 1100 denier (121 tex) are usual. The threads may consist of monofils. or multifils, depending on the ultimate purpose.
Stretching is advantageously carried out with a stretching pin. For threads of polyhexamethylene adipamide having a final count higher than 200 denier (22 tex) hotstretching may be used, for which purpose heating slides may be provided between the stretching pin and the roller, the thread being guided over them.
To prevent slip, the thread is wound 2 to 4 times round the first section of the roller and the cooperating feed roller. The axes of these rollers are slightly offset to ensure that the thread travels forward on these rollers in known manner. The temperature of the first section of the roller must not exceed 110 C., and this can be ensured by adequate air cooling or insulation. When the cooling is satisfactory, the surface of the stretching zone hardly reaches 90 C. at a normal draw-off speed of 400 metres per minute.
The degree of stretch can be adjusted within wide limits and depends on the spinning conditions and on the use to which the relaxed filaments are to be put.
When stretching is performed with the use of heat, it has a certain influence on the subsequent relaxation. However, the stretching and relaxing conditions may readily be matched by one skilled in the art within the limits of the invention.
As stated above, a positive temperature gradient is required between the second and third sections of the roller to prevent any heat-setting taking place before the third section. This temperature difference should advantageously be at least 10 C. but, when a suitable roller design is used, it may be up to 50 C. For the same purpose it is of advantage when the filament passes round the first relaxing zone only once or at most twice. The total relaxation, determined by the difference between the diameters of the individual sections, may range from 10 to 15% and depends on the ultimate use of filaments. In actual practice a lower limit of 2.5% residual shrinkage can and should be maintained. The upper limit of the residual shrinkage is probably about 7% using the temperature limits required for the performance of the invention. In general, taking into account the temperatures indicated above, a total relaxation of 13 to 14% is generally preferred. This value may apply to the two relaxing zones in 7 different proportions, and favourable results are obtained when, for example, two-thirds of the overall relaxation is carried out in the first relaxing zone.
Preferably the diameter of the section of greatest diameter is :5 mm. that of the section of intermediate diameter is 91:4 mm. and that of the section of least diameter is 87:4 mm.
The filament is wound 3 to 8 times round the third section of the roller and the associated zone of the feed roller, the best value for the precise number of times being found by preliminary experiment. While keeping the tension constant, the filament is then cooled by being wound 2 to 5 times round a cooled part of the third section and is finally reeled under a moderate tension. The temperature of the cooled zone should be as low as possible. In general, the roller itself will provide sufficient cooling, but when very thick filaments are made, there is no objection to providing additional cooling, for example by blowing cold air onto the filament. When the filaments are reeled on ring twisting spindles the reeling speed is adjusted in known manner by the weight of the traveller to suit the speed of rotation of the spindle and the ring diameter.
As mentioned above, the residual shrinkage may vary from 2.5 to 7% with a maximum deviation of :0.3% from the mean value per packages. The filaments form stable packages that are easy to unwind and can be stored for any length of time. In woven and knitted fabrics made from them, the filaments produce little streakiness and ensure excellent dimensional stability of these fabrics. For an equal drawing rate applied to the filaments the elasticity of the woven and knitted fabrics made therefrom is superior to that obtained with unrelaxed filaments so that the practical value of many finished products is appreciably improved.
The roller of the invention, which is intended to replace the stretching roller of a stretch-twisting frame, consists of three sections: The first section, which acts as a. conventional stretching roller, has the largest diameter. This zone may consist, for example, of a collar of a plastic material which is resistant to wear and tear and is a poor heat conductor, or it may taken the form of a metal collar which makes pointwise contact with the roller body. In addition, the collar may be cooled by an air current produced or assisted by transverse or longitudinal ribs. Furthermore, the collar may have radial bores through which cooling air can escape outwards during rotation of the roller.
The second preferably narrow, section has a smaller diameter than the first and constitutes the first relaxing zone.
The third section of the roller has a smaller diameter than the second section and is in part the second relaxing zone. Inside this zone there is advantageously provided an electric heater so that in operation it has a higher temperature than the second section. Part of the third section acts as a cooling zone. As in the first section, the cooling may be achieved by longitudinal or transverse cooling ribs and radial bores. The accompanying drawings illustrate a few variants of the device according to the present invention; where FIGURE 1 is a diagram of a commercial stretch-twisting frame;
FIGURE 2 is a roller in accordance with the invention with a plastic collar in the stretching zone; and
FIGURE 3 is a roller in accordance with the invention with a metal collar in the stretching zone together with its associated feed roller.
In FIGURE 1, the spinning bobbin 1 is fed by the spinning machine and placed on the stretch-twisting frame; the yarn is unwound over the top of the bobbin. The yarn runs over a yarn guide 2 through the supply device 3 consisting of a pair of rollers, round the stretching pin 4 and onto the draw-off unit consisting of feed roller 5 and stretching roller 6 past which it is guided by a further yarn guide 7 and by means of the traveller 8 twisted on a ring twisting spindle 9 and 10 and finally reeled.
FIGURE 2 illustrates a roller 6A according to the invention, the upper half being shown in section and the lower half in side elevation. The roller 6A is composed of the roller body 11 (seating on a spindle not shown in the drawing) and the plastic collar 12 shrunk onto it. The plastic collar 12, which accepts the freshly stretched filament, has the largest circumference. The roller body 11 has a first, narrow step and a second, wider step 13, a cavity 14 for fitting an electric heating coil and a thinner end portion 15, which is perforated to provide intense cooling and has a diameter equal to that of the second relaxing step 13.
The plastic collar 12 should advantageously make only pointwise contact with the roller body 11 to prevent as far as possible any transfer of heat to the freshly stretched filament. Alternatively, the collar may be designed so that it is cooled in operation by the air flowing past it.
FIGURE 3 illustrates another variant of a roller 6B in accordance with the invention with its associated feed roller 5. The upper half of the roller is shown diagrammatically in section, whereas the lower half is shown in side elevation. The roller 68 is attached via a thermal insulation 17 to a spindle 16. It is composed of the roller body 18 which is polished externally and has inside a cavity 19 to accept an electric heating unit 20. The roller body 18 carries on a thermal insulation 21 a polished metal ring 22 which is internally cooled in operation by circulating air. To improve the air circulation further, the metal ring may additionally be provided with radial bores (not shown) distributed over its whole surface. The metal ring 22 has the largest diameter and is used to accept the freshly stretched filaments. The roller body 18 has a narrow first relaxing zone 23, a wider second relaxing zone 24, and an open end portion 25 which has internal cooling ribs 26 and radial cooling bores; the diameter of the latter is equal to that of the second relaxing zone 24.
The following examples illustrate the process of this invention.
Example 1 A thread of polyhexamethylene adipamide consisting of 13 monofils. is stretched for experimental purposes by 323% on a conventional stretch-twisting frame with the use of a stretching pin at a speed of 440 in. per minute at the bobbin. The count of the reeled, stretched thread is 40 denier (4.4 tex) [=Thread A]. The weight of the traveller used is 0.04 gram, the spindle rotates at 7800 revolutions per minute and the ring diameter is 12.5 cm.
Another thread of polyhexamethylene adipamide, consisting of 13 monofils., is stretched by 323% on the same stretch-twisting frame, but in this case the conventional stretching roller has been replaced by a roller as shown in FIGURE 2 of the accompanying drawings. The thread coming from the stretching pin is wound twice round the cooled first section of the roller, which has a surface temperature of 81 C. and a diameter of 101.2 -mm., and round the associated zone of the feed roller. The thread is guided as shown in FIGURE 1. After the stretching, a two-stage relaxation is performed. In the second section of the roller, which has a diameter of 92.1 mm., the thread is relaxed by 9% at a surface temperature of 150 C. and in the third section, which has a diameter of 88.8 mm., it is relaxed by another 3% at a surface temperature of 162 C. The first relaxing zone and the associated zone of the feed roller is traversed once by the thread and the second relaxing zone four times. Finally, the thread runs twice round the cooling zone of the third section (having a surface temperature of 130 C.) together with the associated zone of the feed roller and is then reeled on cops at a speed of 440 metres per minute under the same conditions as for the unrelaxed thread [=Thread B]. The number of windings is determined in known manner by the offset angle between the two rollers, the width of the thread and the width of the individual zones.
Two further identical starting threads as in the precedingexperiment are stretched and relaxed in the manner described above but with the following surface temperature [=Threads C and D].
Thread 0 Thread D Stretching zone 83 85 Relaxing zones (maximum, about). 169 176 Cooling zone 135 141 The properties of the threads A to D are shown in the following table:
Residual shrinkage, unrecovered, from waist to tip of cop (percent) 11:1:08 3.0:];03 3.2i0.3 3.2;b0.3
The temperature difference between the two relaxing stages ranges from 10 to 30 C.
The above table shows that it is possible to obtain by the new process low and uniform residual shrinkage values. The relaxed threads are very suitable for making doubled tops of stockings. The textile products made therefrom can be dyed evenly and possess excellent dimensional stability.
When the relaxing is carried out with the same device at a temperature outside the range required for the performance of the present process, for example at C. or 230 C., the yarn runs badly and many ruptures occur.
Example 2 The experiments described in the foregoing example were repeated under slightly modified conditions with a coarser thread, consisting of 34 monofils., from polyhexamethylene adipamide containing 0.3% of titanium dioxide, in a manner such that a thread was obtained which had a count of about 210 denier (23 tex) and an elongation at break of about 19 to 24%. In all, four variants were relaxed under different conditions and each was reeled on cops at a speed of 266 metres per minute on a ring twisting spindle revolving .at 5400 rpm. with the aid of a ring of 12 cm. diameter and a traveller weighing 0.26 gram. The following table shows the relaxing conditions and the results that can be achieved in this manner:
The drawing rate applied to the relaxed threads was intentionally chosen higher so as to arrive at an elongation at break comparable with that of the relaxed threads.
The relaxed threads possess greater tensile strength and display a low and uniform residual shrinkage. They are suitable for a variety of technical purposes in which a very minor residual shrinkage is of importance.
Example 3 Polycaprolactam threads, containing 34 monofils, are stretched as described in Example 2, except that the second relaxing zone has a diameter smaller by 4% than the first, and are then reeled under the temperature conditions given below so that a thread is obtained which has a count of about 230 denier (25 tex).
cessive circumferential paths defined by four successive portions of a roller along the length of the roller, the filaments being stretched by movement in the first path which is at a temperature of at most C., then being relaxed while moving in the second path which is of smaller diameter than the first at a temperature of to 200 C., then being further relaxed while moving in the third path which is of smaller diameter than the second at a temperature at least 10 C. higher than the temperature of the second path and of to 210 C., and finally being cooled in the fourth path which is of the same diameter as the third.
2. Process according to claim 1 in which the third circumferential path has a diameter from 10 to 15% less than that of the first circumferential path.
3. Process according to claim 2 in which the second circumferential path has a diameter greater than that of the third by about one-third of the difference in diameter of the first and third circumferential paths.
4. Process according to claim 3 in which the filament moves 2 to 4 times round the first circumferential path, once to twice round the second circumferential path, 3 to 8 times round the third circumferential path, and 2 to 5 times round the fourth circumferential path.
5. Process according to claim 1 in which the temperature difference between the second and third circumferential paths is 10 to 50 C.
6. Process according to claim 1 in which the filaments are of polyhexamethylene adipamide.
7. Process according to claim 1 in which the filaments are of polycaprolactam.
Relaxing temperature in the 2nd relaxing stage C.) 0 120 Tensile strength (g./denier) 6.4 5. 61 .21 6. 27 6. 42 Elongation at break (percent). 23. 1 22.6 24. 25. 6 23. 6 Residual shrinkage (percent)- 9.45:0.4 8.6102 7.45:0. 05 6.63:0.1 7. 0i0.1 Percent degree of stretch 419 440 440 440 440 The difference in temperature between the first and the 40 References Cited second relaxing stage is 10 to 25 C. UNITED STATES PATENTS A thread treated in the second relaxing stage at a temperature of 110 C. could not be made to run smoothly 3,018,608 H1962 Kleekamm et 2871.3 because it wrapped itself repeatedly round the roller 3,221,385 12/1965 Stanley 28--62 owing to insufficlent relaxation. 45 FOREIGN PATENTS The thread relaxed in the second relaxing stage at 120 C. still displays a rather high residual shrinkage. Under the indicated conditions the optimum relaxation is achieved at a temperature of 160 C. in the second relaxing stage.
We claim:
1. Process for the manufacture of polya mide filaments of low and uniform tendency to shrink which comprises causing freshly stretched filaments to move in four suc- US. Cl. X.R.

Claims (1)

1. PROCESS FOR THE MANUFACTURE OF POLYAMIDE FILAMENTS OF LOW AND UNIFORM TENDENCY TO SHRINK WHICH COMPRISES CAUSING FRESHLY STRETCHED FILAMENTS TO MOVE IN FOUR SUCCESSIVE CIRCUMFERENTIAL PATHS DEFINED BY FOUR SUCCESSIVE PORTIONS OF A ROLLER ALONG THE LENGTH OF THE ROLLER, THE FILAMENTS BEING STRETCHED BY MOVEMENT IN THE FIRST PATH WHICH IS AT A TEMPERATURE OF AT MOST 110*C., THEN BEING RELAXED WHILE MOVING IN THE SECOND PATH WHICH IS OF SMALL DI-
US426608A 1964-01-28 1965-01-19 Process for heat relaxing stretched polyamide filament Expired - Lifetime US3436450A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB3710/64A GB1093422A (en) 1964-01-28 1964-01-28 Process for the manufacture of polyamide filaments having a low tendency to shrink

Publications (1)

Publication Number Publication Date
US3436450A true US3436450A (en) 1969-04-01

Family

ID=9763498

Family Applications (1)

Application Number Title Priority Date Filing Date
US426608A Expired - Lifetime US3436450A (en) 1964-01-28 1965-01-19 Process for heat relaxing stretched polyamide filament

Country Status (8)

Country Link
US (1) US3436450A (en)
BE (1) BE658938A (en)
CH (1) CH424071A (en)
DE (1) DE1660505A1 (en)
FR (1) FR1422735A (en)
GB (1) GB1093422A (en)
LU (1) LU47859A1 (en)
NL (1) NL6415182A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914835A (en) * 1974-01-14 1975-10-28 Dow Badische Co Apparatus for drawing and crimping synthetic yarn
US4042662A (en) * 1970-05-13 1977-08-16 Akzona Incorporated Continuous melt spinning and drawing of nylon 6 yarn, while reducing the liveliness of the yarn
US4075274A (en) * 1973-04-07 1978-02-21 Teijin Limited Method for drawing and heat-treating polyester yarns
EP0115041A2 (en) * 1982-12-31 1984-08-08 SNIA FIBRE S.p.A. A method of preparing a polyamidic fiber suitable for staple spinning, and fiber obtained thereby
US5279783A (en) * 1992-01-30 1994-01-18 United States Surgical Corporation Process for manufacture of polyamide monofilament suture
US5349044A (en) * 1992-01-30 1994-09-20 United States Surgical Corporation Polyamide monofilament suture manufactured from higher order polyamide
US5456696A (en) * 1993-07-20 1995-10-10 United States Surgical Corporation Monofilament suture and process for its manufacture
FR2857986A1 (en) * 2003-07-22 2005-01-28 Rieter Icbt Heated rotary cup for thermofixing textile yarns has surface shaped to control yarn shrinkage

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2318887C3 (en) * 1973-04-14 1982-11-11 Akzo Gmbh, 5600 Wuppertal Process for the production of polyester threads by shrinking heat-drawn threads in two stages
GB2101522B (en) * 1981-01-26 1984-05-31 Showa Denko Kk Producing high tenacity monofilaments
CH671243A5 (en) * 1986-08-18 1989-08-15 Mettler Soehne Maschf

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3018608A (en) * 1957-05-08 1962-01-30 Glanzstoff Ag Process for the production of lowshrinkage polyethylene terephthalate threads
GB907754A (en) * 1959-07-17 1962-10-10 Algemene Kunstzijde Unie Nv Process for treating polycaprolactam filaments
US3221385A (en) * 1961-05-24 1965-12-07 Techniservice Corp Strand streatment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3018608A (en) * 1957-05-08 1962-01-30 Glanzstoff Ag Process for the production of lowshrinkage polyethylene terephthalate threads
GB907754A (en) * 1959-07-17 1962-10-10 Algemene Kunstzijde Unie Nv Process for treating polycaprolactam filaments
US3221385A (en) * 1961-05-24 1965-12-07 Techniservice Corp Strand streatment

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042662A (en) * 1970-05-13 1977-08-16 Akzona Incorporated Continuous melt spinning and drawing of nylon 6 yarn, while reducing the liveliness of the yarn
US4075274A (en) * 1973-04-07 1978-02-21 Teijin Limited Method for drawing and heat-treating polyester yarns
US3914835A (en) * 1974-01-14 1975-10-28 Dow Badische Co Apparatus for drawing and crimping synthetic yarn
EP0115041A2 (en) * 1982-12-31 1984-08-08 SNIA FIBRE S.p.A. A method of preparing a polyamidic fiber suitable for staple spinning, and fiber obtained thereby
EP0115041A3 (en) * 1982-12-31 1985-10-30 SNIA FIBRE S.p.A. A method of preparing a polyamidic fiber suitable for staple spinning, and fiber obtained thereby
US5349044A (en) * 1992-01-30 1994-09-20 United States Surgical Corporation Polyamide monofilament suture manufactured from higher order polyamide
US5279783A (en) * 1992-01-30 1994-01-18 United States Surgical Corporation Process for manufacture of polyamide monofilament suture
US5405358A (en) * 1992-01-30 1995-04-11 United States Surgical Corporation Polyamide monofilament suture
US5540717A (en) * 1992-01-30 1996-07-30 U.S. Surgical Corporation Polyamide monofilament suture manufactured from higher order polyamide
US5456696A (en) * 1993-07-20 1995-10-10 United States Surgical Corporation Monofilament suture and process for its manufacture
FR2857986A1 (en) * 2003-07-22 2005-01-28 Rieter Icbt Heated rotary cup for thermofixing textile yarns has surface shaped to control yarn shrinkage
WO2005010252A2 (en) * 2003-07-22 2005-02-03 Rieter Textile Machinery France Rotating heating godet for textile yarn thermosetting
WO2005010252A3 (en) * 2003-07-22 2005-05-19 Rieter Textile Machinery Fr Rotating heating godet for textile yarn thermosetting

Also Published As

Publication number Publication date
CH424071A (en) 1966-11-15
FR1422735A (en) 1965-12-24
NL6415182A (en) 1965-07-29
DE1660505A1 (en) 1972-03-23
LU47859A1 (en) 1965-03-23
GB1093422A (en) 1967-12-06
BE658938A (en) 1965-05-17

Similar Documents

Publication Publication Date Title
US3436450A (en) Process for heat relaxing stretched polyamide filament
US4140844A (en) Polyacrylonitrile filament yarns
US6673443B2 (en) Polyester conjugate fiber pirn and method for producing same
US3365874A (en) Treatment of synthetic filaments
US3264816A (en) Process for producing composite yarn structure
US2803108A (en) Methods of processing textile yarns
US3775961A (en) Yarn process
US3777470A (en) Method of forming a yarn package
US5136763A (en) Process for the production of uniform yarns via reduced tension-induced slippage
US6715276B2 (en) False twist yarns and production method and production device therefor
US2988866A (en) Apparatus for the production of lowshrinkage polyethylene terephthalate threads
US3959962A (en) Method of forming a bulked polyester textile yarns
US6340523B1 (en) Process for producing high strength, high shrinkage nylon 66 filament yarn
US3018608A (en) Process for the production of lowshrinkage polyethylene terephthalate threads
US3018609A (en) Process for the hot stretching of yarns of synthetic materials
US3161913A (en) Yarn relaxing apparatus
US4019312A (en) Method of combining synthetic yarns
US3416188A (en) Apparatus for heat-treating thermoplastic synthetic fibers
JPS6113014B2 (en)
US3955351A (en) Production of bulked yarns
US3589120A (en) Process for winding polyamide yarn packages with tapered end-portions
US3450371A (en) Polyamide yarn packages with tapered end-portions and their production
JPS6411724B2 (en)
US3229015A (en) Process for drawing a synthetic linear polymer thread
US4103480A (en) Method for producing textured filament yarns with improved yarn qualities from preorientated polyamide 6