Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3451479 A
Publication typeGrant
Publication dateJun 24, 1969
Filing dateJun 12, 1967
Priority dateJun 12, 1967
Publication numberUS 3451479 A, US 3451479A, US-A-3451479, US3451479 A, US3451479A
InventorsParker Harry W
Original AssigneePhillips Petroleum Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Insulating a casing and tubing string in an oil well for a hot fluid drive
US 3451479 A
Abstract  available in
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

H. W. PARKER INSULATING A CASING AND TUBING STRING IN AN OIL WELL FOR 'A HOT FLUID DRIVE Filed June 12, 1967 A TTORNEVS United States Patent 3,451,479 INSULATING A CASING AND TUBING STRING IN AN OIL WELL FOR A HOT FLUID DRIVE Harry W. Parker, Bartlesville, Okla., assignor to Phillips Petroleum Company, a corporation of Delaware Filed June 12, 1967, Ser. No. 645,442 Int. Cl. E21b 21/00, 43/24, 33/03 US. Cl. 166303 4 Claims ABSTRACT OF THE DISCLOSURE Tubing and casing strings in a well penetrating an oil stratum to be produced by hot fluid drive, such as with steam, are coated on the walls thereof forming the annulus by packing off the annulus adjacent or near the stratum, filling the annulus with an aqueous solution of a water-soluble inorganic salt, such as borax, sodium carbonate, sodium sulfate, and mixtures thereof, preferably containing a binder, and injecting a hot fluid thru the tubing string into the stratum to evaporate water from the solution in the annulus while venting steam therefrom at the wellhead and deposit a substantial coat of the salt in solid form on the walls of the annulus.

This invention relates to a method for insulating the walls of a casing and tubing string forming the annulus of a well penetrating an oil stratum to be used in a hot fluid drive process and to the resulting insulated tubing and casing strings.

The production of oil from underground oil-bearing strata by hot fluid drive such as steam, hot water, and in situ combustion is conventional in the petroleum industry. In hot steam drive at temperatures above 400 F. and as high as 750 F., the casing is subjected to these extreme temperatures, resulting in casing buckling and severe damage to the cement around the casing. Similar deterioration and damage to the casing often results from reverse burning in situ combustion wherein the hot gases from the combustion zone pass thru hot sand or rock in passing to the production well and are at temperatures up to 1000 F. and higher. In addition to the damage to the downhole casing, there is also a substantial and expensive heat loss to the strata surrounding the casing generally termed the overburden. Slip-on and wrap-on insulation of various types have been proposed and it is estimated that such insulation will reduce thermal losses by more than eighty percent and provide adequate protection for the downhole casing.

This invention is concerned with a method of insulating the walls of the casing and tubing strings forming the annulus of a well which is simple, practical, and economically feasible and with the resulting insulated tubing and casing strings.

Accordingly, it is an object of the invention to provide a simple and effective method for insulating the inner wall of a casing string and the outer wall of a tubing string forming the annulus of a well, while the strings are in place in the well. Other objects of the invention will become apparent to one skilled in the art upon consideration of the accompanying disclosure.

A broad aspect of the invention comprises setting a packer downhole on a tubing string in a well leading to a stratum containing oil to seal off the annulus between the tubing string and the surrounding casing, substantially filling the annulus above the packer with a concentrated aqueous solution of a water-soluble inorganic salt, injecting a hot fluid thru the tubing string into the stratum so as to heat and boil said solution while venting steam from the annulus at the wellhead, and continuing the injection of hot fluid thru the tubing string so as to deposit 3,451,479 Patented June 24, 1969 said salt in solid form on the outside wall of the tubing string and the inside wall of the casing string substantially to the packer. The salt solution can be saturated and contain undissolved salt. The salt solution may also contain a suitable binder for binding the particles of salt together and for binding the salt to the walls of the tubing and casing strings. One or more salts of the group borax, sodium carbonate, and sodium sulfate are generally utilized. Concentrated solutions of these salts are effective in forming porous insulating coatings on the strings. Sodium silicate and metal stearate soaps provide suitable binders for the salt particles and for binding the salt particles to the metal in the well. It is also feasible to incorporate in the salt solution solid polymers in particulate form, such as in short fiber form, as well as fibers of other materials which deposit on the walls of the casing and tubing strings in admixture with the solid salt with or without a binder. The concentration of binder or filler is generated in the range of about 5 to 20 weight percent of the salt in the solution.

Thus, according to the invention, there is provided a method of insulating a tubing string and a casing string in a well comprising the steps of: setting a packer downhole on said tubing string to seal off the annulus between the strings above a stratum penetrated by said well, substantially filling said annulus above said packer with a concentrated aqueous solution of a water-soluble inorganic salt; passing a hot fluid thru said tubing string so as to heat and boil said solution while venting resulting steam from said annulus at the wellhead; and continuing the third step so as to evaporate said solution and deposit said salt in solid form on the outside wall of said tubing string and the inside wall of said casing string.

A more complete understanding of the invention may be had by reference to the accompanying schematic drawing of which FIGURE 1 is an elevation in partial section thru an oil-bearing stratum penetrated by a well and FIG- URE 2 is an enlarged partial section of the insulated tubing and casing of FIGURE 1.

Referring to the drawing, and particularly to FIGURE 1, a stratum 10 containing oil is penetrated by a well 12 which is provided with a casing string 14 and a tubing string 16. Casing 14 is cemented at 18 and is perforated at 20. Valved conduit 22 connects with the annulus 24 between the casing and tubing strings at the wellhead. A packer 26 seals off annulus 24 just above stratum 10. The inner wall of the casing string is provided with a layer 28 of insulating material formed of solid inorganic salt including a binder and/or a filler. A similar insulating layer 30 is provided on the outer wall of tubing string 16.

In applying the insulation to the tubing and. casing strings, the selected solution or slurry of salt with or without a binder and/ or filler is injected thru conduit 22 into annulus 24 so as to substantially fill the annulus from packer 26 to the wellhead. Steam or other hot fluid is injected thru tubing string 16 and thru perforations 20 into stratum 10 at such a rate as to raise the temperature of the aqueous solution in the annulus to its boiling temperature and evaporate water therefrom, the same being vented thru conduit 22. As the level of the solution in annulus 24 is progressively lowered due to evaporation, solid salt is deposited on the outer wall of tubing string 16 and the inner wall of casing 14 to form substantial layers of insulating material on these strings. Even a inch or a /8 inch layer of porous salt on the walls of the strings substantially reduces heat losses from the injected steam during steam flooding of stratum 10 or, in the event that well 12 is a production well of a reverse in situ combustion operation, during venting of hot produced gases and vapors thru tubing string 16. However, it is feasible to deposit substantially thicker layers of insulating material on the walls of the annulus by the methd of the invention. It is also feasible to substantially fill the annulus with water-soluble insulating salt. The watersoluble nature of the insulating material facilitates the removal of the insulating material by passing water thru the annulus at any time that it is desired to remove the insulation. In order to do this, packer 26 may be released or unsealed so that flushing water may be injected down the tubing string and up the annulus to remove the insulating salt layer. It is also feasible to lower a water line or hose down the annulus substantially to packer 26 and flush water up the annulus and out thru conduit 22 to dissolve and remove the salt layer.

To illustrate the invention, 400 grams of sodium carbonate were mixed with 250 cc. of water, using an Osterizer on high speed for about ten minutes. This produced a viscous slurry of sodium carbonate in water. A steel pipe nipple 4 inches long and inch ID. was cleaned by grinding off dirt and rust and one end thereof was plugged and the pipe was dipped into the sodium carbonate slurry. The plug was removed from the end of the pipe and the pipe was clamped at a 45-degree angle on a ringstand. The pipe was then heated by directing a flame of an oxygen-natural gas torch thru the pipe for about five minutes. A substantial layer of sodium carbonate insulation was produced on the outer surface of the pipe. It is quite obvious that a substantially heavier layer of insulating salt can be coated onto the pipe strings in the well by filling the annulus with a concentrated aqueous solution of the salt and evaporating the water therefrom. Layers up to /8 inch in thickness and even thicker layers can be produced by the method of the invention.

It is is desirable to clean the walls of the annulus to be coated with insulating material by flushing with water or cleaning solution prior to the filling of the annulus with the concentrated salt solution. This enhances the adherence of the salt to the wall of the iron pipe.

When producing the stratum with hot steam, the injected steam utilized in evaporating the water from the annulus can be a part of the steam injection operation, the steam and condensate from the injection operation passing from the Well below packer 26 directly into the stratum thru perforations 20.

It is also feasible to start a reverse burning in situ combustion process around well 12 with the annulus filled with salt solution and effect the evaporation and deposition of salt with resulting hot produced gases passing up the tubing string as the combustion is continued.

Certain modifications of the invention will become apparent to those skilled in the art and the illustrative details disclosed are not to be construed as imposing unnecessary limitations on the invention.

I claim:

1. A method of insulating a tubing string and a casing string in a well comprising the steps of:

(a) setting a packer downhole on said tubing string to seal off the annulus between the strings above a stratum penetrated by said well;

(b) substantially filling said annulus above said packer with a concentrated aqueous solution of a water-soluble inorganic salt;

(c) passing a hot fluid thru said tubing string so as to heat and boil said solution while venting resulting steam from said annulus at the wellhead; and

(d) continuing step (c) so as to evaporate said solution and deposit said salt in solid form on the outside wall of said tubing string and the inside wall of said casing string.

2. The method of claim 1 wherein said inorganic salt is selected from the group consisting of borax, sodium carbonate, sodium sulfate, and mixtures thereof.

3. The method of claim 1 wherein a binder is incorporated in said solution.

4. The process of claim 1 wherein said hot fluid is steam being injected into said stratum in a steam drive oil production process.

References Cited UNITED STATES PATENTS 1,700,995 2/1929 Burns et al. 138145 X 3,012,606 12/1961 Brooke l661 3,142,336 7/1964 Doscher 16657 X 3,358,756 12/1967 Vogel 166-40 X 3,385,363 5/1968 Hamby et al 166-1 X OTHER REFERENCES Owens, W. D., et al.: Steam Stimulation for Secondary Recovery. In Producers Monthly 29(4), April 1965, pp. 8 and 10-13.

CHARLES E. OCONNELL, Primary Examiner. I. A. CALVERT, Assistant Examiner.

U.S. Cl. X.R. 117-97; 16657

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1700995 *Jul 13, 1926Feb 5, 1929Freeport Sulphur CoProcess of protecting pipe from corrosion
US3012606 *Oct 17, 1958Dec 12, 1961Phillips Petroleum CoMethod of protecting a well casing and tubing against leakage, collapse, and corrosion
US3142336 *Jul 18, 1960Jul 28, 1964Shell Oil CoMethod and apparatus for injecting steam into subsurface formations
US3358756 *Mar 12, 1965Dec 19, 1967Shell Oil CoMethod for in situ recovery of solid or semi-solid petroleum deposits
US3385363 *Sep 14, 1966May 28, 1968Shell Oil CoMethod for metal coating a tubing string in situ in a well
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3525399 *Aug 23, 1968Aug 25, 1970Exxon Production Research CoTechnique for insulating a wellbore with silicate foam
US3650327 *Jul 14, 1970Mar 21, 1972Shell Oil CoThermal insulation of wells
US3664424 *Dec 21, 1970May 23, 1972Exxon Production Research CoMethod for insulating a well
US3664425 *Dec 21, 1970May 23, 1972Exxon Production Research CoWell insulation method
US3796265 *Jun 7, 1972Mar 12, 1974Eickmeier JMethod for producing high hydrogen sulfide content gas wells
US3861469 *Oct 24, 1973Jan 21, 1975Exxon Production Research CoTechnique for insulating a wellbore with silicate foam
US4276936 *Oct 1, 1979Jul 7, 1981Getty Oil Company, Inc.Method of thermally insulating a wellbore
US4496001 *Sep 30, 1982Jan 29, 1985Chevron Research CompanyVacuum system for reducing heat loss
US4516520 *Aug 31, 1982May 14, 1985The Babcock & Wilcox CompanyMethod and apparatus of thermal detection using bonded coupon
US4595057 *May 18, 1984Jun 17, 1986Chevron Research CompanyParallel string method for multiple string, thermal fluid injection
US4667739 *Mar 10, 1986May 26, 1987Shell Oil CompanyThermal drainage process for recovering hot water-swollen oil from a thick tar sand
US7306039 *Aug 13, 2003Dec 11, 2007Bj Services CompanyMethods of using crosslinkable compositions
DE2440429A1 *Aug 23, 1974Apr 30, 1975Exxon Production Research CoVerfahren zum thermischen isolieren eines bohrloches
Classifications
U.S. Classification166/303, 166/57, 427/239, 427/237
International ClassificationE21B36/00
Cooperative ClassificationE21B36/003, E21B36/00
European ClassificationE21B36/00C, E21B36/00